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ABSTRACT: Complex RNA structures are constructed from helical segments
connected by flexible loops that move spontaneously and in response to binding
of small molecule ligands and proteins. Understanding the conformational
variability of RNA requires the characterization of the coupled time evolution of
interconnected flexible domains. To elucidate the collective molecular motions
and explore the conformational landscape of the HIV-1 TAR RNA, we describe
a new methodology that utilizes energy-minimized structures generated by the
program “Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)”.
We apply structural filters in the form of experimental residual dipolar couplings
(RDCs) to select a subset of discrete energy-minimized conformers and carry
out principal component analyses (PCA) to corroborate the choice of the
filtered subset. We use this subset of structures to calculate solution T1 and T1ρ
relaxation times for 13C spins in multiple residues in different domains of the
molecule using two simulation protocols that we previously published. We
match the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results
introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data
and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number
of discrete conformations exchanging over time scales longer than 1 μs.

1. INTRODUCTION

It is now widely recognized that many RNA molecules are
predisposed to forming complexes with proteins by fluctuating
spontaneously through an ensemble of structural states. This
dynamic mode of RNA−protein recognition is referred to as
“conformational capture”. A description of the physical
principles involved in forming RNA−protein complexes via
conformational capture requires complete description of the
dynamics of these structurally labile RNA molecules, including
a characterization of long- and short-lived conformational states
sampled by the RNA. However, experimental characterization
of transitory states is complicated by the fact that the rate of
transition may be too fast to allow for a comprehensive
catalogue of all states.1 Thus, although progress has been made
recently in experimentally isolating the partially folded states of
proteins,2,3 the complete elucidation of protein or nucleic acid
dynamics requires analytical and computational modeling to
complement experimental observations. A common approach
toward this goal is to fit a limited set of model parameters to
experimental data that are sensitive to dynamics, such as NMR
relaxation rates, line shapes, or residual dipolar couplings.4−7

This procedure involves guessing-and-checking, using physical
constraints on possible motions of the labeled residue(s) to
guide the model-building process. However, this semianalytic

approach becomes complicated when further degrees of
freedom and new free parameters are required by the model
to fit the data adequately.
A purely computational approach to the description of

molecular states requires an accurate potential energy function
(PEF), followed by either molecular dynamics (MD) or energy-
minimization calculations. Molecular dynamics simulations are
able to generate dynamic trajectories of the molecule and, in
principle, explore molecular parameter space if sufficient
numbers of trajectories are available; examples are found
using the AMBER8−12 and CHARMM packages13−15 and
others, such as Lindorff-Larsen et al.16 However, the
extrapolation of dynamics in nucleic acids to time scales of
the order of microseconds or longer, where many conforma-
tional changes are expected to take place, has only recently
begun to be explored.17,18

Energy-minimization techniques also rely on a well-validated
energy function but involve the subsequent alteration of the
relative conformations of parts of the molecule in an iterative
manner to find the global energy minima.19−23 It is then
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possible to generate multiple sample structures more easily than
for a complete MD calculation. In the current manuscript, we
utilize structures generated by energy-minimization techniques
as a complement to MD-based analyses of dynamics. Use of
energy-minimized structures is facilitated by the availability of
structures on the Rosetta server.24 Other servers such as the
MC-SYM/MC-FOLD pipeline25 are also available that allow
the user to obtain all-atom RNA models.
We use the HIV-1 TAR (trans-activation response) RNA

molecule as a model for a dynamics simulation based on a set of
500 low energy models generated using the program
FARFAR22 for the 29-nucleotide apical section of the RNA26

(Figure 1). The TAR RNA binds the viral regulatory protein
Tat,27 a critical transcription elongation factor essential for viral
replication. The Tat binding site surrounds the single-stranded,
trinucleotide (UCU) bulge27,28 and is contained within the 29-
nucleotide construct. The bulge region interlinking the two
helical stems is the primary binding site for the Tat protein28,29

and exhibits considerable flexibility4,30−32 allowing for the two
helical regions to adopt a wide range of relative orientations.4,33

Protein binding is believed to occur by “conformational
capture”, where the free TAR RNA exchanges between multiple
conformers, one or more of which are amenable to Tat
binding.34 TAR RNA also provides a common RNA structural
motif, where two helices are connected by a single-stranded
bulge on one end and a backbone “hinge” at the other. Other
RNA’s exhibit similar structures, such as K-turns,35 or the HIV-
1 RRE (rev-response element).36,37 It is therefore worthwhile
to characterize the dynamics of such fundamental motifs,
especially to characterize “large-scale” motions (as opposed to
more localized motions) of one helical domain relative to
another.
Earlier work in our group used solid-state NMR to identify

intermediate rate motions for the residue U38 in the upper
helix.4 We more recently characterized the motions of U40 and
U42 in the lower helix (Wei Huang, unpublished data). These
data indicate that the two helices move relative to each other at
slow rates (∼105 to 106 s−1) relative to the rotational diffusion
rate of the entire molecule (∼108 s−1). These results motivated
us to look at the distributions of the orientations of the upper

helix relative to the lower helix among the set of lowest energy
structures, as characterized by the Euler angles of an upper
helix-attached reference frame relative to a different frame
attached to the lower helix. Reduction to a set of three angles
characterizes many features of the dynamical trajectory of this
particular structural motif, while simplifying a very large-
dimensional problem to a set of three essential coordinates.
Local base librations, i.e., rotations of the bases around a base
normal (representing vibrations of the base around the
equilibrium base-paired orientation) or rotations of the base
around the glycosidic bond (for the single stranded bases), are
included in the simulations as well and provide atomistic detail
regarding the motions of individual residues.
Here we extend our prior studies of nonrigid rotation and

helix reorientation in TAR RNA to a full description of the
concerted dynamics of the upper and lower helices and the
bulged loop. Our approach describes a dynamic trajectory
based on an ensemble of energy minimized structures with the
Rosetta program FARFAR. Because FARFAR does not provide
a Boltzmann-weighted distribution of states (and thus does not
provide the entropy and free energy) our calculations rely on
fitting phenomenological parameters to the data. To reduce the
complexity of the problem, a predominant set of conformers is
selected that describes its dynamic conformational ensemble.
We used experimental residual dipolar couplings (RDCs)
obtained from partial alignment of the TAR RNA by one
alignment medium to achieve this selection, and other groups
have recently used similar filtering techniques.18,38,39 A
summary of some of these techniques has been published
recently.40 In addition to filtering out a set of long-lived
conformers along the stochastic trajectory, we acquire
information regarding their relative populations. We comple-
ment the RDC filter with principal component analyses (PCAs)
based on a judiciously chosen set of backbone torsion angles, as
done to establish conformational clustering and free energy
landscapes41 of RNAs12 and proteins,39,42 and a PCA can serve
as a useful aid in setting up dynamics calculations.
Finally, we use the outcome of that analysis to calculate

solution spin−lattice relaxation times T1 and the rotating-frame
spin−lattice relaxation time T1ρ for 13C spins in nucleotides

Figure 1. 29-nucleotide apical stem-loop of HIV-1 TAR RNA: (A) secondary structure; (B) sample tertiary structure. The different submotifs and
the component residues used in the analyses are color-coded: upper helix (turquoise), lower helix (red), and the single-stranded bulge (green).
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located in the upper and lower helices and in the bulge. The
protocol would allow extensions to other observables as well,
but the current work focuses on these to provide a clear proof
of method. We direct the interested reader to more extensive
work on other NMR relaxation parameters and their
simulations.30,43 We use two methods to perform these
calculations. The first approach (slow exchange or “SE”
model) assumes an effectively infinite time scale of exchange
(i.e., the conformational exchange is much slower than any
other relevant motional time scale). The second approach
(general rate or “GR” model) allows for an arbitrary time scale
of exchange (including one that overlaps with the rotational
diffusion time scale). By combining complementary exper-
imental and analytical techniques into a single framework, we
have been able to construct a viable dynamic trajectory for the
TAR RNA. We provide a flowchart of the methodology in
Figure 2.

2. THEORETICAL AND COMPUTATIONAL METHODS
A. Solid-State NMR Models for the Lower Helix of

TAR. We present here the solid-state NMR (ssNMR)-derived
models that served as motivations for the solution relaxation
simulations. ssNMR studies of the dynamics of the uridine
bases U38, U23, and U25 in TAR were carried out using
samples selectively deuterated at the 5- and 6-carbon base
sites.4,44 U38 was chosen to represent the dynamics of the
upper helical stem, whereas U23 and U25 are of interest on
account of their positions in the single-stranded bulge. More
recently, 5,6-2H labels were introduced at the U40 and U42
positions in TAR, in correspondence with the lower helix
(U42) and an unstable base pair that closes the bulge region
(U40) (Wei Huang, unpublished data). The data included line

shapes as well as T1Z and T1Q relaxation times collected on
samples hydrated in all cases to 16 water molecules per
nucleotide to reproduce conditions where motions were shown
to be solution-like.4,44 Each of the upper helical and single-
stranded sites investigated had characteristically distinct spectral
features. Within the lower helix, U40 and U42 showed results
similar to each other, but distinct from the upper helix or
single-stranded sites. Motional models generated to fit the data
included a slower base motion consisting of jump between two
equally populated sites, superposed on a faster motion
occurring around the normal to the base-plane for the helical
residues and around the glycosidic bond for the bulge residues.
The analyses of the spectra recorded for the upper and lower
helical sites were done independently resulting in two different
sets of parameters.
The U38 base was modeled as undergoing a two-site ±4°

jump process around the base-normal at a rate of 2 × 108 s−1 in
addition to a two-equivalent-site conformational exchange
process, where the upper helix underwent a 9° bend and a
15° twist at a rate of ∼106 s−1 relative to a crystal-fixed frame.4

A similar model could fit the data for the lower helix bases U40
and U42 as well, resulting in a 0−18° bending motion and a
18−25° twisting motion of the lower helix, but at slower rates
on the order of 105 s−1. By analyzing relaxation data, we
observed small amplitude (±6° to ±9°) local motions of the
base at a rate of ∼108 s−1 for both U40 and U42. The U23 data
were fit by significantly different models, involving a local two-
site jump about the glycosidic bond of ±11° at a rate of ∼1010
s−1, and a 24° hop of the base at a rate of ∼108 s−1, whereas
U25 was modeled as experiencing a 30° jump at 6 × 107 s−1 in
addition to a much slower twisting of the base (6 × 105 s−1)
with a large amplitude of ±40°.
We utilized the same two-site jump models for the local base

motions of both the helical and bulge residues, under the
rationale that solid-state sample conditions should be able to
replicate solution conditions at least in the small-amplitude
local motions at the hydration conditions of our studies. We
also used the time scale of the local base jumps as a starting
point for simulations of the solution conditions. Finally, we
used the observation that conformational exchange motions in
solution conditions occur on a time scale similar to that in
solid-state samples. This is reflected in our use of the “slow
exchange” formalism for part of the relaxation simulations,
which assumes an exchange process much slower than all other
motional rates. We did, however, also consider the more
general case of an arbitrary rate of conformational exchange.

B. Solution-State Simulations. Structures were generated
using the program FARFAR.22 The torsion angles that were
altered in the generation of the structures used here were those
of the residues in the bulge and the bulge-adjacent base pairs of
the two helical domains. The 500 lowest energy structures
represented a distribution in energy of about 13 Rosetta units,
where 1 Rosetta unit is approximately 1 kBT (Rhiju Das, private
communication).
To reduce the dimensionality of the problem, we assumed

that the simple motif of a helix−bulge−helix can be represented
by a reduced set of relative helical orientation parameters. A set
of three Euler angles transforming between the two helices is
taken to be sufficient to discriminate between helical
conformations (Figure 3) if the helices behave as rigid
units.33,45

We have used experimental residual dipolar couplings
(RDCs) for several bonds along the molecule. Because RDCs

Figure 2. Protocol used in this manuscript for the simulation of
domain-dynamics in a molecule.
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are long-time weighted averages over all conformational states
of the molecule, they potentially provide means of extracting
both the best-fit conformers and their relative populations. The
structures that were selected by this RDC-filtering process,
along with the best-fit populations, were subsequently used to
simulate the solution relaxation times.
We incorporated the local base motions obtained by fitting

the ssNMR data into the RDC-selected structures and
calculated the solution relaxation times using previously
published methods.6,7 When a small amount of variation for
the local amplitudes and rates of motion, and for the rates of
conformational exchange between the selected structures, was
allowed, the solution relaxation times for the 17 residues in the
molecule could be calculated (7 in the lower helix, 3 in the
bulge, and 7 in the upper helix) with this method.
i. Helical Parametrization of Structures. The relative

orientations of the upper and lower helices were quantified
by considering the orientation of the normal vector of the U38
base relative to a frame defined by a z-axis aligned with the
lower helical axis. The method of evaluating this relative
orientation and the subsequent binning of structures within this
scheme is as follows:

(a) Define the upper and lower helical axes for all structures
using the program 3DNA.46 The upper helical axis is
taken to be the average local helical axis of the A27-
U38::G28-C37 and G28-C37::C29-G36 dinucleotide
steps, where the base pairs flanking the bulge were
excluded due to possible distortions from ideal A-form
helical structure. The lower helical axis is calculated
similarly as the average over the C19-G43::A20-U42 and
A20-U42::G21-C41 dinucleotide steps.

(b) Define the lower helix coordinate frame (LHF) by
choosing the lower helical axis (calculated above) as the
z-axis and the perpendicular from the z-axis to the G43
C8 atom as the y-axis. This choice of the y-axis was made
as the 500 structures did not differ in the orientations of
the first few base pairs (including C19-G43), so the y-axis
would be the same across all structures. However, the
specific choice of the G43 C8 atom for this purpose was
arbitrary.

(c) Calculate the α angles for each structure, defined as the
angle between the projection of the upper helical axis
onto the xy-plane of the LHF and the x-axis of the LHF.

(d) Calculate the β angles, defined as the angle between the
upper helical axis and lower helical axis.

(e) The γ angle is then defined by the orientation of the
normal of U38 base (the vector perpendicular to the

C4−C2 and C6−C2 bonds) about the upper helical axis.
Extracting this information from the structures requires
first removing the α and β dependence by rotating the
original U38 base-normal vector vU⃗38norm about the fixed
LHF axes as follows: vU⃗38norm′ = R⃡yLHF(−β)R⃡zLHF(−α)
vU⃗38norm. The resultant vectors are distributed around the
LHF z-axis as a function of their γ angles. The Euler
angles described above are related to the domain motions
as shown in Figure 1.

(f) Bin the 500 structures as a function of the Euler angle set
{α, β, γ}. The bins were chosen in 10° increments for α
(0° ≤ α ≤ 360°) and β (0° ≤ β ≤ 180°) angles, resulting
in 36 and 18 bins, respectively. Instead of binning the γ
angle in terms of degree increments, we fixed the number
of bins to 5 because of an observed correlation between
the α and γ angles, which results in a shift in the values of
γ for every α bin, as well as the restriction of the γ values
to only a portion of the full phase space. Thus, trying to
bin all possible γ angles would have unnecessarily
increased the computational time.

ii. RDC Constraints. To select a subset of structures for
multisite jump simulations from a starting set of 500 energy-
minimized structures generated by FARFAR, we use exper-
imental RDCs47 in conjunction with the predictive program
PALES.48 We only consider the data from a PEG/Hexanol
mixture49 because this uncharged medium aligns the charged
RNA only through steric hindrance of the overall rotation. This
situation does not require a detailed characterization of the
RNA charge density, as would be required for the simulation of
RDCs measured in charged alignment media. Extension to
charged media data may be considered in the future.
The purely steric version of PALES was used to calculate the

eigenvalues and eigenvectors of the Saupe alignment tensor of
the molecule by sampling multiple allowed orientations in the
presence of a flat (infinitely large) obstruction. The alignment
tensor eigenvalues are then used in conjunction with directional
information for a particular bond relative to the alignment
tensor principal axis frame (PAS). For the purposes of
simulating the experimental RDCs, the bond orientations are
considered to be static within each conformer. The only
motions to be considered are then the exchanges between
distinct conformers. To include dynamic sampling of multiple
conformations, we use the weighted average of the RDCs of
each conformer RDCIS

Total = ∑i=1
NconformerspiRDCIS

i for the RDC of a
bond between spins I and S, with the population of each
conformer i being represented by pi.
The residues considered for this study were C19, A20, G21,

A22, U40, C41, U42, and G43 from the lower helical stem,
U23, C24, and U25 from the bulge, and G26, A27, G28, C29,
G36, C37, U38, and C39 from the upper helical stem. The
bond types included the C6−H6 bond (pyrimidines), the C8−
H8 bond (purines), and the C5−C6 bond (pyrimidines) from
the bases, the C1′−N1 (pyrimidines) and the C1′−N9
(purines) glycosidic bonds, the C1′−H1′ and C4′−H4′
bonds from the furanose rings, and the C5′−H5′ and C5′−
H5″ bonds from the backbone. RDCs for some bond types
were not available for some of the residues. Furthermore, the
RDCs for the bulge residues were considered separately, and
not in the same simulations as the helical residues. This is
because the bulge is likely to be significantly more mobile than
the helices and will sample a significantly larger number of

Figure 3. Relation between the Euler angles determined from the
atomic coordinates and the associated domain motions.
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configurations, requiring a different set of simulation
conditions.
Effective bond lengths of the species in question are required

in the final PALES calculation. The values we chose for the
bond lengths are the aliphatic C−H bond length, rCH,Aliph = 1.1
Å,50,51 the aromatic C−H bond length, rCH,Arom = 1.09 Å
(average of Ying et al.51 and Allen et al.52), the aromatic C−C
bond length, rCC,Arom = 1.4 Å,53 the glycosidic C−N bond
length for the cytosines, rCN,GlycCyt = 1.47 Å,53 and the glycosidic
C−N bond lengths for the remaining base types, rCN,GlycRest =
1.48 Å.53

To gain a geometric perspective on the best-fit structures
from the RDC comparison, we binned the simulated couplings
for each structure according to the {α, β, γ} angles determined
for the 500 structures. The RDCs within each bin were then
uniformly averaged to produce a single bin-RDC for each bond
type and residue, rather than retaining the values for individual
structures. This was done because, although the structures
within each bin have similar helical conformations, they may
differ in the orientations of bonds of certain residues relative to
the large-scale conformations. By averaging over these
variations in the bonds, we effectively included in the
simulations the small amplitude thermal fluctuations of the
atomic bond orientations.
To select the best-fit set of structures, we started with an

arbitrary initial set of N structures and allowed the choice of the
(N + 1)th angular bin to float while attempting to optimize the
total χ2 as well as the Pearson’s correlation coefficient between
the simulated and experimental RDCs. In addition, we varied
the relative weights of the (N + 1) bins. Once the best-fit
parameters were obtained for this first iteration, the (N + 1)th
bin so obtained replaced the lowest probability structure from
the remaining N, and the search was repeated for a second
iteration and beyond. To make the final choice of N, we started
with N = 2 and after minimizing the χ2 for a choice of two
structures, we added a third and repeated the process.
Proceeding thus, we found that N = 5 structures (i.e., 5 bins
which also happened to have only one structure in each of
them) were sufficient to produce the best-fit to the RDC data,
with no improvement after the fifth iteration. In addition, as a
separate, independent check of the results of the previous
procedure and to allow for the variation of the number of bins
more easily, we generated a Markov-chain Monte Carlo
(MCMC) simulation to search through the bins and
populations for a best-fit to the RDCs, with the potential for
varying the number of bins. The number of parameters for an
N-conformer search was 2N − 1 (N bin choices + N − 1
probabilities to be floated). The Markov-chain Monte Carlo
method did not yield better results than the iterative technique.
iii. PCA of the Torsional Degrees of Freedom. To

determine the number of exchanging conformers required to
describe the dynamics in TAR RNA, and to corroborate the
results of our RDC filter, we performed a principal component
analysis (PCA), following procedures applied to molecular
ensembles of proteins,39 and RNAs.12,41,42 The covariance
matrix σij = (qi − qi)(qj − qj) was calculated as described by Mu
et al.,42 i.e., by proposing the following variable set {q2j}:

φ

φ

=

=
=

−
⎫
⎬⎪
⎭⎪

q

q
j N

cos( )

sin( )
1, ...,

j j

j j

2 1

2
torsion

(1)

where φj is the jth torsion angle of interest, and Ntorsion is the
number of torsion angles used in the analysis. The use of the
cosine and sine functions removes complications associated
with the periodicity of the torsion angles by helping to uniquely
identify particular values of the angles.
The covariance matrix of these variables is calculated with

averages over the full ensemble of structures and is
subsequently diagonalized. The eigenvalues (and associated
eigenvectors) are arranged in descending order, with the
highest values representing modes with the largest contribu-
tions to the structural scatter. In our results, we have found that
2 or 3 modes contain a majority (∼70%) of the total variance in
the data. In addition, histograms of the projections of the
ensembles for each eigenvalue are examined for Gaussianity. As
discussed in the above references,12,41 a mode whose histogram
consists of a single Gaussian-like peak only represents
continuous fluctuations about a central structure, whereas
multimodal distributions describe discrete conformations
separated by free-energy barriers. Thus, from the perspective
of assessing the conformational transitions of the molecule,
only modes with multimodal distributions are considered
relevant. This adds another layer of information regarding the
molecular dynamics. Our results for PCAs with different
choices of torsion angle sets (as described in the following)
indicate that the first 2 or 3 modes were non-unimodal in
distribution and therefore of primary significance in describing
conformational exchanges.
We performed several PCAs, each with a different choice of

coordinates. The first set included all torsional “suites”54 along
the bulge and hinge region (PCA method 1). The sugar-to-
sugar suite as defined in the above reference consists of the set
of 6 backbone torsion angles {ε, ζ, α, β, γ, δ} as well as the
glycosidic torsion angle χ. In our study, we focused attention
only on the 6 backbone torsion angles. The residues included
were A22, U23, C24, U25, G26, C39, and U40. These were
meant to encompass the conformationally relevant part of the
molecule under the assumption of relatively rigid helices. The
number of torsion angles considered was therefore 42 (7 bases
×6 torsion angles) resulting in an 84 dimensional PCA
(because the cosine and sine functions of the angles are treated
as separate variables). However, the PCA of this set resulted in
several modes which contributed substantially, with no clear
clusters in any of the largest modes.
The inclusion of the single-stranded bulge region may have

caused the lack of structure in the PCA projections calculated
in this first method, because single-stranded regions are
significantly more flexible and may add a level of disorder to
the torsional distribution. To isolate the interhelical motions,
we evaluated the PCA of only those torsional “suites” that
extend from U38 to C39 and from C39 to U40 (PCA method
2). These suites include only the hinge region of the molecule,
and resulted in a 24-dimensional PCA.
To check the robustness of the clustering results obtained

from method 2, we then carried out a series of PCAs by
successively including an additional sugar-to-sugar backbone
suite: U38 through C41 (PCA method 3), U38 through U42
(PCA method 4), C37 through U42 (PCA method 5), and C37
through U40 (PCA method 6). The results of these analyses
and the relation to the results from the RDC fit will be
discussed in the Results below.

iv. Relaxation Time Simulations. The evaluation of the
solution relaxation times is based on two previously explored
techniques.6,7,55 Both methods involve the calculation of the
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two-time correlation function for the orientation of an atomic
bond located within a nonrigid Brownian rotator relative to a
fixed laboratory frame. The evaluation proceeds by introducing
an intervening reference frame associated with the principal axis
system (PAS) for the rotational diffusion tensor, which is time
dependent as a result of exchange between different structural
conformers. The correlation function then becomes dependent
on Wigner rotation matrices whose arguments are the Euler
angles that orient the rotational diffusion tensor of the molecule
relative to the laboratory frame. In turn, the Fokker−Planck
equation in three-dimensions allows the evaluation of the
transition probabilities from one set of Euler angle orientations
to another. The form of the Fokker−Planck equation, which
accounts for coupling between rotational diffusion and
conformational changes, is

∑

∑

β α β α

γ α

∂
∂

Ω⃗ |Ω⃗ = − ̂ ̂ Ω⃗ |Ω⃗

+ Ω⃗ |Ω⃗

β

γ
βγ

=

=

t
P t L D L P t

R P t

( , , , ) ( , , , )

( , , , )

i j
i ij j

N

0
, 1

3

0

1
0

conformers

(2)

where P(Ω⃗,β,t|Ω⃗0,α) is the probability that the molecule will
transition from a diffusion tensor-to-laboratory frame orienta-
tion of Ω⃗0 at time 0 and in a conformational state α to an
orientation of Ω⃗ and a conformational state β at time t, given
diffusion tensor elements of Dij

β in the conformational state β
and an exchange rate of Rβγ between conformational states β
and γ. This equation can also formally cover the case of
continuous transitions to new conformational states by allowing
the number of conformers to be infinite. However, in all cases
considered in the original references, and here as well, only
discrete jumps will be considered.
If the exchange rate is much slower than the rate of diffusion

and all other time scales of exchange processes, yet faster than
the relaxation rates themselves, the rotational diffusion problem
is effectively decoupled from conformational exchange. Under
these conditions, the SE model applies, and it is possible to
calculate the relaxation rates for the molecule as the weighted-
average over the relaxation rates for the individual conforma-
tional states of the molecule:6
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Expressions for the NOEs can also be derived by appropriate
weighting of the NOEs of individual conformational states. The
procedure to calculate the relaxation times for each conformer
are provided in the original reference.
Solution of eq 2 for the case of a general exchange rate (i.e.,

the GR model) between conformers involves considerably
more analytical and computational processing.7,55 We have
solved this problem for the case in which the eigenvectors of
the diffusion tensors of the exchanging conformers are
coincident at the moment of exchange (see Ryabov et al. for
general case56) and correlation functions have been pub-
lished.55 This general rate analysis also indicates that the slow
exchange regime occurs at time scales longer than about 1 μs.

For the carbons considered in this analysis, the rotating
frame z-relaxation time T1ρ was measured instead of T2.

4,30

Under the application of a weak spin-lock field and the
assumption of Lorentzian spectral densities, T1ρ contains the
same spectral density information as T2.

57 Therefore, for the
purposes of this paper we operate under this assumption and
simulate the T2 relaxation times.
The structure set and the corresponding populations

preselected by the RDC filter are the basis for simulations of
the relaxation times using eq 2. Eigenvalues and eigenvectors of
the rotational diffusion tensor are first calculated using the
public-domain program HYDRONMR.58 Then orientations of
the atomic bonds of the residues of interest are calculated with
respect to this axis system, i.e., the principal axis system of the
rotational diffusion tensor. The orientational parameters,
together with the diffusion tensor eigenvalues are input into
the two algorithms we have derived for simulations of the
relaxation times of nonrigidly rotating macromolecules: (a) the
“slow-exchange” formalism,6 describing the case where the
conformational jumps occur at a rate much slower than the rate
of overall rotational diffusion of the molecule, and (b) the
general rate formalism,7,55 where arbitrary rates of exchange are
allowed. The “slow-exchange” formalism, though merely a
limiting case of the general rate theory, has the advantage of
being significantly faster and easier to implement and so is
considered here.
The residues considered were A20, G21, A22, U40, C41,

U42, and G43 from the lower helical stem, U23, C24, and U25
from the bulge, and G26, A27, G28, C29, G36, U38, and C39
from the upper helical stem. In the current work, we have only
simulated the motions of the bases of these residues: the C6−
H6 bonds for the pyrimidines and the C8−H8 bonds for the
purines.
The parameters used in the simulation include the atomic

element radius (AER),58,59 the radius of the beads used in the
HYDRONMR calculation of the diffusion tensor, and the bond
lengths. The AER was chosen to be 2.3 Å and the bond lengths
for the carbon−hydrogen bonds for the aromatic bases were
chosen to be 1.1 Å, both choices having been justified in
previously published work.6 The viscosity was chosen to be
1.096 cP60 to correspond to the conditions of the solution
experiments (99.9% D2O at 25 °C).
We have also incorporated the two-site base motions inspired

by simulations of the solid-state NMR (ssNMR) data: the so-
called “base libration” occurs around a vector normal to the
plane of the base in the case of helical residues, whereas the
two-site motion is modeled to be around the glycosidic bond
for the bulge residues. We floated the values of the rates and
amplitudes of these two-site jumps relative to the ssNMR
models, which were found to be on a time scale much shorter
than that of the conformational exchange. For the slow
exchange simulations, these internal, local motional rates and
amplitudes were the only free parameters, whereas in the
general rate simulations we floated the conformational
exchange rates between the states. The fitting procedures
were carried out in a combination of grid-searches and MCMC
techniques.

3. RESULTS
A. RDC Filter of the Structural Ensembles. Five

structures provided the best χ2 values to fit the RDC data, as
obtained by iteratively searching through the bins and updating
the choices of bins and relative populations. They are shown in
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Figure 4, and key characteristics are summarized in Table 1. For
simplicity, the structures will be referred to by their respective

bend angles. Thus, the highest population structure will be
called the “45° structure”, the second highest populate structure
as the “61° structure”, and so on.
The χ2 for the best-fit set of structures was 11 460 for a set of

48 RDCs, with 9 degrees of freedom (5 bin choices and 4
probabilities), for a reduced χr

2 = 302 (=11460/(48 − 9 − 1)),
whereas the Pearson’s correlation coefficient was 0.72. It is to
be noted that the χ2 represent unweighted values; i.e., the
discrepancies between the experimental and simulation RDC
values are not inversely weighted with the error bars of the
RDC values (which have not been calculated). This assumption
is equivalent to assuming that the error on all measurements is
1 Hz, which is likely to be a considerable underestimation of
the true error bars. The comparison between experiment and
simulation is shown in Figure 5. In the figure, the RDCs from
different bond types are clustered together for each residue. We
further attempted an MCMC fit procedure with the possibility
of 6, 7, or 8 structures but were unable to improve upon the fit.
It is possible that this fit may be improved by the continuation

of the MCMC procedure to a greater numbers of iterations, but
the PCA analysis reported in the following section provides
further corroboration that the model found by RDC fitting
represents the conformational landscape of the molecule well.
Plotting the calculated RDCs against the experimental values

(Figure 6), we found that the trend, on average, is toward an
underestimation of the RDCs by the simulations. The dashed
blue line in Figure 6 is the best-fit line to the data and has a
slope of 0.4 and a y-intercept of −3.9. An underestimation of
the RDCs may arise from using a smaller degree of alignment in
the simulations than in the actual experimental situation. One
possible source of this discrepancy may be the current
assumption of a simple steric model for the alignment of the
molecule by PEG/hexanol. Recent work61 has proposed that
there are subtleties in the alignment process, including the
possible contributions of complex alignment medium topology
and electrostatic alignment, that are not incorporated in
simulations using only the basic steric version of the PALES
algorithm.
This result is a cautionary statement in the application of

simple steric models in the simulation of potentially complex
alignment media. We attempted to fit RDC data collected in
glucopone/hexanol mixtures and in Pf1 filamentous bacter-
iophage media and found that the models selected were
different (two or three of the structures chosen were the same
compared to the PEG/hexanol model). One obvious reason for
this was the availability of RDC data for different bonds in the
different media. However, there is potentially a fundamental
difference in the alignment properties of the media as well. For
example, the Pf1 Phage medium is negatively charged62 and,
thus, as may be the case with PEG/hexanol as well, the
alignment has an electrostatic component. This must be taken
into account more carefully in future analyses.

Figure 4. Five structures obtained by the RDC-filtering procedure to represent the ensemble of Tar conformation that describes the experimental
data, together with their interhelical Euler angles and population percentages.

Table 1. Twist of Upper Helix Relative to Lower Helix (α),
Interhelical Bend Angle (β), Twist of Upper Helix around Its
Own Helical Axis (γ) (Figure 3)

structure α (deg) β (deg) γ (deg) % relative population

1 185 45 191 29
2 185 61 189 27
3 282 115 194 26
4 67 76 326 13
5 244 132 116 5
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To further discern the causes of the discrepancy in the fit, we
looked at all helical RDC values that contributed to a deviation
of magnitude 10 or greater and found a set of 18 RDCs: 8
correspond to C1′−H1′ furanose ring bonds, 2 to C4′−H4′
furanose ring bonds, and the remaining 6 to C6H6/C8H8 base
bonds, occurring in 12 helical residues in both the upper and
lower stems as well as among all four nucleotide types. Removal
of these RDCs gave χ2 = 802 and χr

2 = 40. The large deviations
observed for furanose ring bonds indicate the existence of
additional motions localized to the furanose rings, as has been
reported for DNA,5 that have not been accounted for using the
current set of 500 structures. These motions involve an
exchange between the C2′-endo and C3′-endo conformations,
and on the time scale of the RDCs these motions may be
averaged out to produce an intermediate conformation. It is
likely that the furanose ring samples these conformations even
for the residues stacked in a helical configuration. A similar

argument holds for those base bonds that show a large
discrepancy in RDC values: there may be additional vibrations
in the base orientations that are not adequately sampled by the
500 structures.
We also compared the five structures selected above to the

set of 20 lowest energy TAR RNA structures recently generated
on the basis of NOE data47 that have not been constrained by
RDC data. Upon calculating helical axes and orientations in the
same manner as for the 500 FARFAR structures in this
manuscript, we find that 11 out of 20 of the structures,
including 3 out of the 5 structures that best fit the NOE data,
occur within the same 10° bend angle bin as the highest
population structure from the RDC fit described above. Thus,
we believe that our approach identifies a predominant
conformation set.
To test the robustness of the search algorithm, we performed

two simulations of fitting a reduced data set upon the random
removal of (a) 10 RDCs and (b) 15 RDCs (different RDCs
were deleted in each of these two cases). Removing the first set
of 10 resulted in the selection of the same 5 conformers as from
the full set, along with a sixth new structure with a population
of 4%. The populations of the 5 full-set best-fit structures were
slightly different (maximum change of 12%). Removal of 15
RDCs reproduced 4 out of the 5 full-set best-fit structures, and
two new conformers with populations of 7% and 5%. The
maximum change in population among the 4 best-fit structures
was 7% in this case. These results indicate that the choice of
structures is robust to a reduction in the size of the
experimental data set.
Jumps between the five conformers shown in Figure 4

require a combination of bending and twisting about either the
lower or the upper helices. Among the entire set of energy-
minimized structures, there was an observed correlation
between the α and γ angles, as has been reported
previously.45,63,64 These correlations may be reflected even in
the jumps among this set of five structures, representing a free

Figure 5. Comparison of the experimental RDCs (red triangles) with the RDCs generated by the best-fit simulation parameters (blue circles) for the
helical residues in HIV-1 TAR RNA. The residues associated with the RDC values are labeled as well. The values shown include those for backbone
(C5′−C5′, C5′−H5″), furanose (C1′−H1′, C4′−H4′), glycosidic (C1′−N1 for pyrimidines, C1′−N9 for purines), and base (C5−C6 and C6−H6
for pyrimidines, C8−H8 for purines) bonds.

Figure 6. Plot of calculated RDC values vs experimental RDC values
for the best-fit set of structures and populations. The dashed blue line
is a linear fit to the data, and the solid red line is the ideal case where
the calculated and experimental values match perfectly.
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energy landscape where the exchanges between minima involve
coupled shifts in Euler angle values.
B. PCA Clusters. We carried out a series of PCAs to (a)

identify the choice of torsion angles that best captures
interhelical motions, (b) corroborate the RDC-filtered set by
overlaying the five chosen structures on the clusters obtained
from the PCA of choice, and (c) identify jump matrix elements
for the exchanges between the five RDC-filtered structures in
the dynamics calculation.
Given the lack of clear clustering results from PCA method 1,

which incorporates all backbone torsion angles in the bulge and
hinge, we examined whether torsion angles on one side of the
helical joint would suffice to describe the interhelical
reorientation (PCA method 2, incorporating the backbone
torsion angle suites between U38 and U40). When this was
done, only the first two principal components (PCs)
contributed significantly, accounting for 75% of the fluctuations
in the molecule (Figure 7). Furthermore, these two PCs were
the only ones with a multimodal probability distribution across
the 500 structures. This non-single-Gaussian distribution
signals the presence of conformational clusters in energy
minima separated by significant free energy barriers.12,41 The
map of these two PCs is shown in Figure 7A and shows the
presence of three to four major conformational clusters. The
large red dots superimposed on the 2D plot correspond to the
five structures selected from the RDC filtering procedure. Parts
B and C of Figure 7 show the population distribution
histograms for PC 1 and PC 2, respectively. Again, the
positions of the five structures from the RDC filter are
indicated by red arrows.
Three points are noteworthy. First, the five structures chosen

as the best-fit set match up well with the main conformational
clusters obtained from this PCA, suggesting that our RDC-
filtered set has captured the relevant information about the
major conformational clusters of the molecule. Second,

structures with similar interhelical bend angles have similar
values of each of the principal components. The principal
component values of the two structures with bend angles of
115° and 132° occur in close proximity to each other. The
same is true of the pair of structures with bend angles of 61°
and 76° (it is true, however, that the 45° structure does not
differ significantly from the 61° structure; the PCA suggests
that there is a free energy barrier that separates even these two
neighboring structures). This is important because other PCA
methods (described below) separate structures with similar
interhelical orientations, possibly due to the presence of
additional degrees of freedom that do not contribute
significantly to interhelical reorientation. Finally, the sums of
the probabilities of the best-fit structures within each cluster are
similar to each other: the 45° bend structure has a population
of 29%, the 61° and 76° structures have a joint population of
40%, and the 115° and 132° structures have a joint population
of 31%. Because the histogram heights do not correlate well
with the nearly uniform probability distribution, we fit the jump
rates numerically, as described below.
Subsequent attempts at testing the robustness of our cluster

analysis yielded further interesting results. PCA method 3 (U38
through C41) showed a marked difference in clustering of the
structures. Three PCs contributed significantly, yielding about
70% of the total fluctuations, with all three now being
multimodal. However, the five structures do not all seem to
fall within major clusters. Moreover, the 61° and 76° structures
no longer fall within the same cluster, nor do the structures
with bend angles of 115° and 132°. This occurs because of the
intervention of the torsion angles associated with U40. When
the helical parameters of the 500 structures were searched,
about 37% of the structures U40 did not form a canonical
Watson−Crick pairing with A22, indicating considerable
conformational variability of this residue, at least within the
physical picture generated by the energy-minimization

Figure 7. Principal component analysis of the torsion angle “suites” along the hinge (residues U38 through U40). (A) Principal components 1 and 2
for the 500 structures, represented by blue dots, with the positions of the five best-fit structures marked explicitly by red dots, and further encircled
for clarity. (B) Histogram of the first principal component (corresponding to the largest eigenvalue of the covariance matrix), with the positions of
the five best-fit structures marked explicitly by red arrows. (C) Histogram of the second principal component (corresponding to the next-to-largest
eigenvalue of the covariance matrix), with the positions of the five best-fit structures marked explicitly by red arrows.
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ensemble. To test this hypothesis, we extended the PCA up to
U42 (PCA method 4) on the lower stem and up to C37 on the
upper stem (PCA method 5). Both these methods gave very
similar clustering to method 3, with three significant PCs. We
interpret this observation as confirmation that, after the
inclusion of U40, the remaining residues behave fairly rigidly
and do not change the results of the PCA. As a final
confirmation of this conclusion, we carried out a PCA including
only torsion angles from C37 to U40 (PCA method 6). The
clustering results for this PCA proved to be the same as for
PCA method 2.
Given the change in clustering associated with the inclusion

of the U40 degrees of freedom, we utilized the results of PCA
method 2 to set up the rate matrix for the relaxation time
simulations. In general, for N conformers, the number of
combinations of pairwise rate constants that need to be fit is
NC2. Given the clustering suggested by the PCA, we reduce the
fit problem from 10 (=5C2 for the five RDC filter structures) to
five parameters in the following manner. For pairs of structures
that occur within the same cluster in the two PC distributions,
we allow for only one distinct exchange rate between both
members of the pair in that cluster and any structure in another
cluster. In addition, there is also one intracluster exchange rate
for each cluster. Thus, the rates used in the fitting process were
for the following exchanges:

° ↔ ° ° ° ↔ ° °

° ↔ ° ° ° ↔ ° °

° ↔ °

(1){45 } {61 , 76 }, (2){45 } {115 , 132 },

(3){61 } {76 }, (4){61 , 76 } {115 , 132 },

and (5){115 } {132 }

These exchange processes are shown graphically in Figure 8.
The assumption in this parameter reduction is that all the
structures within a cluster are separated from other clusters by
similar free energy barriers.

C. Calculation of Solution Relaxation Times. The RDC-
filtered conformer set of five structures, together with the
relative probabilities, were used to calculate the T1, T2 and
NOE values. We used two different approaches to calculate the
C6−H6 (pyrimidine) and C8−H8 (purine) relaxation times:
(a) the slow exchange method, where the assumption is that
the exchanges occur at an infinitely slow rate (compared to the
rotational correlation time), and (b) the general rate method,
where we fit the relaxation times by allowing the exchange rates
to vary arbitrarily.
i. Slow Exchange Method. The general rate analysis has

shown7 that the slow exchange regime in TAR RNA effectively
occurs for time scales longer than about 1 μs. Thus, the results

of this subsection assume conformational exchanges occur on a
scale longer than 1 μs. As a starting point for the fitting process,
we use rates and jump amplitudes for the base librations close
to those obtained to fit the solid-state NMR data of the
uridines,4,6,7 and changed both the rates and amplitudes in
small increments to improve on the χ2. Using the fit to the T1
values as a benchmark, we found that it suffices to fit only two
base-libration rates, one for the upper helix residues and one for
the lower helix residues. This simulation model was inspired by
the results of the two solid-state NMR analyses. The
exceptions, however, are the parameters for U40 and U42 in
the lower helix. We obtain a significantly better fit by using the
rates and jump amplitudes for the upper helix for these two
residues, indicating that these residues are more similar in local
base motion to the upper helix. We found that there were
several nearly degenerate minima or best-fit “windows” in the
χ2 plot for the local motion parameters, with the upper and
lower helical parameters behaving independently. The rates in
these “windows” vary between ∼107 s−1 and ∼109 s−1, whereas
the amplitudes are less than 20°.
We did attempt simulations of additional models of base-

libration such as a treatment of the rates of purines and
pyrimidines independently, and the assumption of a constant
rate across the entire molecule. The model described above was
the best among the three considered. There is always the
possibility that more complex models of base libration rates
may fit the data better; for example, we may treat the libration
rate of each individual residue as an independent parameter, or
choose the purines and pyrimidines in the lower helix as
independent from the purines and pyrimidines, respectively.
However, this would increase the number of free parameters in
the problem, and we chose the above model as a balance
between an arbitrary increase in free parameters and an attempt
at a physically realistic representation.
The following representative values of the local motion

parameters simulate the relaxation times well:

(a) upper helix, U40 and U42 base-libration rate = 4.6 × 107

s−1

(b) upper helix, U40 and U42 base-libration jump amplitude
= 13.7°

(c) lower helix (without U40 and U42) base-libration rate =
6.6 × 108 s−1

(d) lower helix (without U40 and U42) base-libration jump
amplitude = 9.8°

The match between the experimental and simulation
relaxation T1 and T2 values is shown in Figure 9. For
quantitative comparison, we calculated the root-mean-square
deviation (RMSD) across the 14 helical T1 values to obtain an
RMSD of 5.3 ms. The corresponding RMSD for T2
comparisons was 1.5 ms.
The error bars shown in Figure 9 describe the statistical error

in the measurements. However, the potential systematic error,
not quantified by the authors,30 is larger. Yet, even at this level
of uncertainty there is a consistent difference between the best-
fit local jump amplitudes for the upper and lower helices, with
the lower helix amplitudes being larger on average (this is not
reflected in the parameter set shown above but is true for the
best-fit windows in general).
Thus, the solution relaxation times can be fit to an RMSD

close to the statistical error in the experiments by assuming a
slow exchange rate (i.e., slower than 106 s−1) between the five
structural configurations of TAR RNA shown in Figure 4 with

Figure 8. Exchange between clusters inferred from the PCA, together
with the five rates used in the jump matrix for the relaxation time
simulations.
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populations determined by RDC filtering and further
corroborated by principal component analysis. The model
assumed base-libration rates that range between 107 and 109

s−1, and libration-rate-dependent jump amplitudes less than
about 20°. The solid-state NMR parameters for the local base-
libration parameters fall within the windows described above,
consistent with the notion that solid-state experiments are able
to capture the solution-state local motions accurately.
ii. General Rate Method. Although the slow exchange

method provides an approximate scale for exchange processes,
the general rate method could further resolve the values of the
exchange rates between conformers. For ease of comparison,
we used the local base motion rates and jump amplitudes from
the slow-exchange fit, whose results were shown in Figure 9.
Although several combinations of 5 PCA-inspired rates were
found that could be fit to the 14 helical T1 and 14 helical T2
values with comparable RMSD’s, in all cases the inter- and
intracluster exchange rates were on the order of 104−105 s−1,

which confirms the validity of the slow exchange approx-
imation. For example, the set of inter- and intracluster exchange
rates in Table 2 yield the base relaxation times shown in Figure
10 with an RMSD for T1 values of 5.2 ms and an RMSD for T2
values of 1.4 ms. Interestingly, there is no clear distinction
between the intercluster and intracluster rates, as may be
expected from a significant difference in the free energy
barriers.
To summarize, if we fix the local motion parameters to the

best-fit set obtained using the slow-exchange method but float
the conformational exchange rate parameters, we obtain a slight
improvement in the quality of the fit. Best fits to experimental
relaxations using general rate theory are achieved with inter-
and intracluster exchange rates on the order of 104−105 s−1,
thus justifying the slow exchange approximation of the prior
section. We did not float both local motion parameters and
conformational exchange parameters simultaneously, but it is
reasonable to assume that the results will be similar, especially

Figure 9. Relaxation time simulations for the C6−H6 (pyrimidine) and C8−H8 (purine) bonds using the slow exchange method, and comparisons
of residuals (discrepancies relative to experimental values) to statistical error bars: (A) T1 simulations (blue circles) compared to the experimental T1
values (red triangles); (B) T2 simulations (blue circles) compared to the experimental T2 values (red triangles); (C) Difference between simulation
T1 and experimental T1 values, together with the statistical error bars on experimental data (red dashed lines) at ±3.2 ms; and (C) Difference
between simulation T2 and experimental T2 values, together with the statistical error bars on experimental data (red dashed lines) at ±0.5 ms.

Table 2. Intercluster (k12, k13, k23) and Intracluster (k2, k3) Exchange Rates As Defined in Figure 8 Used To Produce Relaxation
Time Simulations in Figure 10a

k23 k12 k23 k3 k2

° ↔ ° °{45 } {61 , 76 } ° ↔ ° °{45 } {115 , 132 } ° ° ↔ ° °{61 , 76 } {115 , 132 } ° ↔ °{61 } {76 } ° ↔ °{115 } {132 }
1.2 × 104 s−1 4.0 × 104 s−1 6.1 × 104 s−1 3.4 × 104 s−1 4.6 × 105 s−1

aLocal base motion parameters are the same as for Figure 9.
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when we constrain the scale of the local base motion
parameters to those observed under solid-state conditions.
iii. Bulge Residues. In addition to helical residues, we also

simulated the relaxation times for the bulge residues using the
slow exchange and general rate algorithms. In Table 3, we
present relaxation time simulations assuming exchange between
the conformations shown in Figure 4 using the slow exchange
and general rate algorithms. The base rotation rate is selected as
5 × 108 s−1 and the amplitude as 15° (to yield good matches to
the T1 values). For the general rate simulations, inter- and
intracluster exchange rates shown in Table 2 were assumed.
We obtain simulated T1 values that are within 2% of

experimental data, but simulated and experimental T2 values for
U23 deviate by about 16%; for C24, the relative deviation is
even greater. This is likely due to the fact that the T2 relaxation
time has a spectral density component (the J(0) term) that
makes this observable sensitive to motions much slower than

the Larmor frequencies of carbon-13 and protons (which are
on the order of nanoseconds). The fact that we have been
unable to capture the T2 values may indicate that there are
additional slower motions of these relatively underconstrained
residues that are missing from the conformer set we have
selected.
Although we have been able to successfully match most of

the solution relaxation times to almost within the statistical
error bars using the RDC-filtered conformer set, we must
address the basic question, are the relaxation times sensitive to
motions occurring at rates on the order of microseconds or
slower? Though the T1 time has no spectral density
dependence slower than a time scale of a nanosecond, the T2
are determined by slower motions as well and their expressions
contain a dependence on the J(0) spectral density. More
importantly, the slow exchange and general rate methods
depend on the fact that the time scales of rotational diffusion of

Figure 10. Relaxation time simulations for the C6−H6 (pyrimidine) and C8−H8 (purine) bonds using the general rate method with inter- and
intracluster exchange rates from Table 2, and using the same local base motion parameters as for Figure 9: (A) T1 simulations (blue circles)
compared to the experimental T1 values (red triangles); (B) T2 simulations (blue circles) compared to the experimental T2 values (red triangles);
(C) difference between simulation T1 and experimental T1 values, together with the statistical error bars on experimental data (red dashed lines) at
±3.2 ms; (C) difference between simulated and experimental T2 values, together with the statistical error bars on experimental data (red dashed
lines) at ±0.5 ms.

Table 3. Relaxation Times for the Bulge C6−H6 (Pyrimidine) and C8−H8 (Purine) Bonds Simulated Using Both the Slow
Exchange and General Rate Methods

residue
experimental T1 (in

ms)
experimental T2 (in

ms)
slow exchange T1 (in

ms)
slow exchange T2 (in

ms)
general rate T1 (in

ms)
general rate T2 (in

ms)

U23 328.3 29.1 322.5 24.3 321.9 24.3
C24 320.8 35.2 321.5 24.4 320.8 24.4
U25 no experimental values: assumed similar to C24 312.0 25.3 311.5 25.4
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many molecules (including the TAR RNA considered here)
overlap with the time scales to which both T1 and T2 are
sensitive. Thus, two different conformers, with slightly different
diffusion tensors will have different characteristic relaxation
times when calculated separately. Even the slow exchange
averaging process will result in a unique linear combination of
relaxation rates that becomes discernible when enough data
points are compared. The general rate theory loses some
sensitivity to dynamics for rates much slower than a
microsecond, but our least-squares simulations for relaxation
times have shown that there is still discernible information to
be gained at these time scales.

4. DISCUSSION
In this manuscript, we introduce a methodology based on
energy-minimized structures that ties together structural and
dynamic data, as well as solid-state and solution NMR, to build
a dynamic trajectory for the HIV-1 TAR RNA to atomic-level
detail. The protocol uses (a) solid-state NMR data to acquire
information about local motions of the bases, (b) solution
NMR RDC data to identify conformational states and their
relative populations, (c) PCA analyses to identify degrees of
freedom relevant to the overall reconfiguration of the molecule,
as well as to corroborate the clustering of structures and choose
parameters for the dynamics analysis, and (d) solution NMR
relaxation time simulation techniques previously developed to
simulate experimental data and fit the jump rates between the
molecular conformers. The experimental data utilized covers a
wide spectrum of motional time scales, from the picosecond
scale for solution relaxation times and micro- to nanosecond
times derived from solid-state NMR line shapes to the
submillisecond time scale investigated with RDCs. The method
reproduces relaxation data at multiple helical residues within
the molecule using only five structures out of a set of just 500
possible conformers.
The advantage of this approach lies in the coverage of

multiple time scales, including long time scales that are difficult
to sample with MD, and the ease with which energy-minimized
conformers may be obtained for small-to-midsized molecules
using public-access software like the Rosetta suite of
programs.65 The use of these structures inverts the problem
of dynamics relative to MD methods: instead of starting with an
initial structure and running the clock forward from t = 0, we
filter out long-lived structures using experimental data and
interconnect them in a stochastic trajectory. Thus, the results
from such a technique would prove valuable to corroborate
MD-based simulations, and the protocol could provide a less
computationally intensive alternative to extended molecular
dynamic simulations.
We have been able to simulate relaxation times of most of the

helical residues in the molecule with limited conformational
sampling from an already small set of structures. The success in
matching the experimental data indicates that, to gain an
understanding of the gross motional properties of RNA, it is
sufficient to sample the limited phase space of the particular
structural motifs that constitute the molecule. This protocol
was designed to derive a geometric picture of interhelical
reorientation based on the limited conformational space
available to the torsion angles in and around the bulge and
hinge regions. The assumption that the helices are rigid and the
requirement to close the loop formed by the single stranded
bulge, adjacent helical base-pairs and the hinge backbone
should restrict conformational possibilities for the entire

molecule. Steric hindrances and limitations on the “stretch-
ability” of the single-stranded region would further impose
constraints on molecular reorientation.45,63,64 In practice, we
found that parameter space for the reorientation of one helix
relative to the other was expanded by the possibility of one of
the bulge adjacent base pairs opening up. Among the energy-
minimized structures, a significant number had a missing A22-
U40 base pair. The U40 base often forms a stabilizing
interaction with U25 instead and, among the full set of 500
structures, sometimes with U23 and C24 as well. We allowed
these possibilities to occur in our sample set to reflect
fluctuations in the residue orientations, as well as the impacts
of these fluctuations on overall molecular conformation. Thus,
we believe that models generated using well-vetted potential
energy functions can identify sites where new intramolecular
bonding and conformational variability might occur.
Furthermore, we made a conscious choice to characterize the

structural bins by their Euler angles. This choice of parameters
has been made previously33,66 to enhance reproducibility and
comparability to other analyses of the molecule. Such a
parametrization represents the core ingredient of most
molecular analyses: reduction of the dimensions of the problem
to render it tractable. Molecular studies often aim to distill out a
few degrees of freedom that are implicated in determining
either the structure or dynamics of the system, and many
different techniques (Ramachandran plots,67 phenomenological
models,4,5 PCA analyses12,42) are directed toward identifying a
minimal set of relevant coordinates.

A. Assumptions in the Protocol. The methodology relies
on the assumption that energy-minimized structures sufficiently
populate the available conformational space, i.e., on the
assumption of ergodicity. If ergodic behavior holds, then a
sufficiently representative characterization of the energy
landscape of the phase space will allow a calculation of the
requisite time averages of observables. In the case of the TAR
RNA, the structural motif (helix−bulge−helix) is fairly simple,
and it is possible to cover a large region of the interhelical
orientation space with a relatively small number of structures.
For more complex structural motifs, it would be necessary to
generate a sample set that covers both the space of molecular
reorientations and the range of conformations of local residues
relative to a fixed large-scale molecular orientation. Even in the
current work, it is possible that we have under-sampled the full
range of conformations available to the bulged loop. A richer
sample of both interhelical orientations and orientations of
bulge residues relative to particular interhelical orientations may
improve the RDC fit.
A second assumption is that the slow exchange (SE) and

general rate (GR) methods assume coincidence of the diffusion
tensors at the moment of exchange. This is not a significant
problem for conformers that are not significantly different, but
it could pose problems for conformers that are widely separated
in conformational space. We have not attempted to quantify the
actual deviation in relaxation times on account of this
assumption. This issue could be addressed in combination
with molecular dynamics simulations.
Finally, it bears mentioning that there is a 2-fold degeneracy

in the choice of the unit eigenvectors of the rotational diffusion
tensors, with the negative of a given choice of unit vector being
acceptable as the eigenvector as well. The choice of
eigenvectors does not change the results for the slow exchange
formalism (the expressions are invariant to such changes) but
does impact the general rate theory expressions. For example,
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keeping the z-axis the same, the two choices of a right-handed
coordinate system vary by 180° and would artificially introduce
such an extra jump into the calculations. The means of
consistently dealing with such a jump is to track the diffusion
tensors as a function of changes in the shape of the molecule,
either visually or geometrically and ensure that there is no
additional change in the diffusion tensor orientations due to
axis inversions. In our particular case, we tested our calculations
by artificially inverting the orientation of the diffusion tensors of
some of the structures and found very small changes in the
relaxation times as a result: a change of at most ∼0.25 ms in T1
and at most ∼0.02 ms in T2. These changes would not
significantly impact the conclusions of this manuscript and a
detailed analysis is omitted here.
B. Comparison with Previous Results. We examined the

five structures selected from the RDC-filter in light of unbound
TAR RNA structures generated using NOE constraints (but
not RDC constraints) by one of the authors.47 These 20
energy-minimized structures, termed the TAR2013 series, have
β angles in the range 38−59°, but the five lowest energy
structures cover a smaller range of 45−53°. This range
corresponds well to the bend angle of highest population
structure we have obtained (i.e., β = 45°). In fact, the lowest
energy TAR2013 structure has an α value of 202° and a γ value
of 225°, similar to the “45° structure” in our current analysis.
We previously published two studies where the new methods

developed to simulate relaxation times6,7,55 were applied to U38
relaxation data and used to select regions of interhelical
motional parameter space that fit the data. The models
consisted of two-site jumps between the lowest energy
structure of 1ANR and structures artificially modified from
that structure to reflect changes in interhelical orientation. The
closest approximation to a two-site jump in this manuscript is
found by considering only exchanges between pairs of
conformers within the three most populated structures (the
45° structure, the 61° structure, and the 115° structure, which
are almost equal in population). The exchange between the 45°
and the 61° structures involves a bend angle modification of
16°, and a twist angle about the upper helix of 2°. Cross-
checking this parameter set against the results of applying the
general rate theory,7,55 we find that the U38 data was fit by a
two-site jump model with a twist of 0° and bend angle between
5° and 12° (among other possible models). Thus, the 45° and
61° structures fit the profiles of two structures selected
previously on the basis of the U38 data alone. Exchanges
between either of these structures and the 115° structure,
however, are of a magnitude not simulated in the previous
studies.
We can also make a few basic comparisons to the results of

Dayie et al.,43 even though the authors consider the HIV-2
TAR RNA, as both molecules consist of a helix−bulge−helix
motif. Given our focus on the C6 and C8 atoms in the current
work, we first observe a similarity in the fact that in the
relaxation data used in this work (from Bardaro et al.30) the
helical residues seem to have similar 13C (C6 and C8) T1
relaxation times, a fact observed in the work of Dayie et al. as
well. However, the U23 13C T1ρ is nearly half the value of the
corresponding U25 time in Dayie et al., whereas Bardaro et al.
report values much closer in magnitude. Also, the magnitudes
of the T1 and T1ρ relaxation times in the two papers are
different. We mention these facts to bring up three relevant
considerations in interpreting the results of the two different
sets of experiments: (a) the obvious difference made by the

presence of only two residues in the bulge in HIV-2 RNA
versus three in the HIV-1 RNA; (b) the fact that the relaxation
times of Dayie et al. include a component from the C5−C6
dipolar coupling for pyrimidines, whereas this coupling is
explicitly suppressed in Bardaro et al. (see Shajani and
Varani68); (c) the use of a model-free analysis in Dayie et al.
versus the SE and GR methods used herein. Notwithstanding
these caveats, the common results we can extract are that both
papers observe significant flexibility in the U23 and U25
residues and rigid, slow motions in the helices.

C. Comparison with Extended MD Simulations. To
examine the extent to which our approach matches results
obtained by the MD approach, we compare our results to those
of Salmon et al.,18 where the authors describe the selection of
conformers from 8.2 μs MD simulations of the TAR RNA
using Pf1 phage-aligned RDC data sets. It was reported that the
best fit to RDC data is obtained with a set of 20 conformations
selected from the full MD ensemble. Though it is not possible
to compare the absolute values of the interhelical bend and
twist angles due to differing methods of characterizing the
helices and their relative orientations, we can compare the
spans of the angles reported for their ensemble to those in ours.
The bend angles in the Salmon et al. ensemble of 20 span 88°
(from 3° to 91°) whereas those in our ensemble span 87°, the
rotations of the upper helix about the lower helical axis span
191° in their ensemble whereas those in our set span 215°, and
the rotations of the upper helix about its own symmetry axis
span 224° in their ensemble and 210° in ours. Thus the span of
angles obtained by the two approaches are in excellent
agreement. Moreover, the full, prefilter ensembles in both
papers show correlations between the α and γ twist angles. A
more fine-grained comparison relates to the behavior of
individual residues. We have already mentioned that the A22-
U40 base pair is often found to be open among the full set of
500 structures. We also find that, among our five RDC-filtered
structures, four (the 45°, 76°, 115°, and 132° structures) lack a
A22-U40 base pair. However, the G26-C39 base pair is
maintained in all five of these structures. Salmon et al. find a
similar asymmetry between the A22-U40 base pair and the
G26-C39 base pairs in their RDC-selected ensemble, with the
former adopting a broader conformational distribution and the
latter being in an A-form helix-like conformation.
Differences are nonetheless observed with regards to the

bulge conformation. Salmon et al. report the occurrence of
three clusters within their RDC-selected ensemble: a 66%
population cluster with A22 stacked on U23, a 19% population
cluster with U23 flipped out, and a 15% cluster with paired
U25-U40 and unpaired U23 and C24. With regard to the third
cluster, nearly 30% of the 500 energy-minimized structures
used in our analysis show a U25-U40 pair, with three of the
RDC-filtered structures (the 45°, 76°, and 132° structures)
included in this list as well. The 115° structure simply lacks the
A22-U40 pair and does not have any alternative pairings of
either residue. Salmon et al. stated that the U25-U40 pair is
predicted to be the second most energetically favorable bulge
conformation in MC-fold. A visual inspection of our structures
shows the following behavior for the bulge:

(1) The 45° structure has U23 flipped into the interhelical
space but not stacked, C24 is flipped in but not stacked
and U25 is paired with U40.

(2) The 61° structure has U23 stacked on A22 and has C24
and U25 flipped out.
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(3) The 76° structure has U23 flipped out, C24 stacked with
U25, and U25 paired with U40.

(4) The 115° structure has U23 flipped out, C24 flipped in
and stacked close to U25, and U25 flipped in and stacked
only with C24.

(5) The 132° structure has U23 and C24 flipped in but not
stacked and has U25 paired with U40.

Thus, only one of the structures in our ensemble (the 61°
structure with a 27% population) has a significant A22-U23
stacking interaction and two have U23 flipped out (39% total
population), a clear deviation from the results of Salmon et al.,
suggesting that the conformational variability of this region is
more than can be captured by a small number of sampled
structures. A solution to this problem is to generate energy-
minimized structures where the interhelical orientation is fixed
(or nearly so) and the bulge flexibility is evaluated under the
constraint of fixed end points. Such an analysis would establish
the inherent conformational flexibility of the bulge.
D. Confirming Hydrodynamics Calculations. To cross-

check the results of the program HYDRONMR, we
recalculated the diffusion tensors using the program BEST,69

which tessellates the solvent-accessible surface of the molecule
and calculates the various diffusion properties using a finite
element analysis. The molecule was uniformly hydrated to a
hydration shell thickness of 1.1 Å.70 The eigenvalues of the
rotational diffusion tensors (in ascending order) of the two
programs are compared in Table 4.
We find that the diffusion tensor eigenvalues as found by

BEST were uniformly smaller than those found by
HYDRONMR, indicating that HYDRONMR underestimated
the hydration effect relative to BEST. The unit eigenvectors
were very similar between the two programs. We subsequently
calculated the relaxation times using the slow exchange
formalism and found a T1 shift of at most 18 ms and a T2
shift of at most 1.2 ms, corresponding to a shift of about 4% of
the experimental values for both relaxation times. This may
modify the choice of parameters described above, but we
believe that the impact will not be substantial.

5. CONCLUSIONS
We have carried out a characterization of the essential dynamics
of the TAR RNA molecule using techniques with time scale
sensitivities ranging from subnanosecond (solid-state and
solution relaxation times) to millisecond (RDCs). We have
been able to capture the long-time scale behavior of the
conformational exchange processes that characterize this
molecule and fit experimental relaxation times very well, with
exchanges between discrete conformers occurring at time scales
longer than 1 μs. The similarities of results of this method with
those of extended MD simulations provide independent
corroboration of our conformational analysis. Further computa-
tional explorations and sample-size increases will enhance the
results obtained by this methodology.
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