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Abstract: How to guarantee the data rate and latency requirement for an application with limited
energy is an open issue in wireless virtualized sensor networks. In this paper, we integrate the
wireless energy transfer technology into the wireless virtualized sensor network and focus on the
stochastic performance guarantee. Firstly, a joint task and resource allocation optimization problem
are formulated. In order to characterize the stochastic latency of data transmission, effective capacity
theory is resorted to study the relationship between network latency violation probability and the
transmission capability of each node. The performance under the FDMA mode and that under
the TDMA mode are first proved to be identical. We then propose a bisection search approach to
ascertain the optimal task allocation with the objective to minimize the application latency violation
probability. Furthermore, a one-dimensional searching scheme is proposed to find out the optimal
energy harvesting time in each time block. The effectiveness of the proposed scheme is finally
validated by extensive numerical simulations. Particularly, the proposed scheme is able to lower the
latency violation probability by 11.6 times and 4600 times while comparing with the proportional
task allocation scheme and the equal task allocation scheme, respectively.

Keywords: wireless virtualized sensor networks; wireless powered communications; effective capac-
ity; latency guarantee; task allocation

1. Introduction

The rapid evolution of communication and intelligent technologies is inviting all
human beings to the era of the Internet of everything, where unprecedented changes
will have a profound impact on every single aspect of our daily interactions [1–4]. As a
consequence, an exponentially increasing amount of data is needed to be sensed from
different areas, which brings a large burden to the wireless sensor networks (WSNs).
In this sense, virtualized WSN is proposed to manage the WSNs from different operators
centrally with the objective of resource utilization improvement [5]. However, similar to
the traditional WSNs, energy is one of the key factors bring performance bottlenecks to
the virtualized WSNs. In addition to tag identification [6], radio frequency (RF) energy
has been considered to be a stable energy source for wireless sensors. Moreover, wireless
powered communication has attracted attention from both academia and industria [7,8].
Hence, it is a promising idea to integrate the wireless energy transfer (WET) technology
into the virtualized WSNs, which is called wireless powered virtualized sensor networks.

Additionally, various types of Internet of Things applications are latency sensi-
tive [9,10], where sensors are required to send data under different application latency
requirements. Due to the time-varying wireless channel and large amount of sensing data,
how to guarantee the latency requirement for different applications is worth studying in
a WSN. Particularly, in a wireless powered virtualized sensor network, the data sensing
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task of an application is allocated to different sensor nodes with heterogeneous capabilities.
Hence, latency guarantee in such type of network is more complex. To the best of our
knowledge, a stochastic latency guarantee of wireless powered virtualized sensor networks
is still an open problem.

Motivated by this, this paper studies a joint task and resource allocation scheme
in a wireless powered virtualized sensor network under stochastic latency constraints.
Firstly, a framework is constructed to integrate virtualized WSN and WET together, based
on which an optimization problem is formulated with the objec tive of network latency
violation probability (LVP) minimization. Then, effective capacity theory is applied to
prove that identical latency performance can be guaranteed by the FDMA and TDMA
modes in the considered network. Thereafter, a bisection search algorithm is proposed to
determine the optimal task allocation scheme when system time configuration is given.
Furthermore, the optimal energy harvesting time is obtained by a one-dimensional search
scheme. Finally, insightful results are presented by numerical simulations. The main
contributions of this paper are as follows:

• A three-layer architecture for wireless powered virtualized sensor network is proposed.
Based on the proposed architecture, we prove that the FDMA mode can guarantee
identical latency performance to the TDMA mode, when each node is allocated equal
frequency resource or time resource.

• A joint task and resource allocation scheme is proposed to minimize the network
latency violation probability. It is highlighted that the complexity of the proposed
scheme is on a logarithmic level, which is applicable to the realistic engineering appli-
cation.

• Numerical analysis reveals that the data rate requirement of an application and the
number of sensor nodes both have linear or approximately linear impacts on the
optimal energy harvesting time. This can be useful to quickly find out the optimal
energy harvesting configuration in a practical network.

The remainder of this paper is organized as follows: Section 2 introduces the related
works. Section 3 proposes a wireless powered virtualized sensor network model and
communication model. The problem of the stochastic latency guarantee strategy based on
effective capacity theory is formulated in Section 4, and the optimal solution is obtained in
Section 5. In Section 6, we analyze the simulation results. Section 7 gives a discussion of
our work and finally concludes the paper in Section 8.

2. Related Work

In order to operate multiple applications effectively, virtualization idea is introduced
to WSNs at node level or network level [5,11]. Virtualization technology can improve
the physical resource utilization of a WSN due to resource multiplexing among different
applications. However, the contention of multiple applications for network resources also
brings extra latency overhead to the WSNs. In the literature, related works about virtualized
WSNs usually focus on network metric optimization, such as traffic throughput, energy
efficiency, etc. In [12], an SDSense architecture was proposed to decompose the network
functions into slow and fast changing components. Under the SDSense architecture, all
the parameters of the sensors nodes could be reconfigured, such that the throughput of
the considered WSN was improved. To reduce the data backlogs in a single-hop WSN,
a uniforming random ordered policy (UROP) was proposed by Gul et al., where nearly
optimal traffic throughput was obtained over a finite time horizon [13]. In addition,
evolutionary game theory was applied to allocate data sensing load among different
sensor nodes under the data rate requirement constraint of a certain application [14].
In [15], the application sensing task assignment problem was studied to maximize the
overall energy consumption, where sensor nodes’ available energy and virtualization
overhead were taken into account. In [16], the authors focused on energy efficiency
maximization and then proposed a novel cyber-physical-social smart system. The authors
therein employed wireless network virtualization to enhance the diversity and the flexibility
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of the service operation and the system management, and proposed a robust energy-
efficient resource allocation scheme to outage probability requirements of controllers and
actuators. Works [12–16] have provided insightful results on performance optimization
in virtualized WSN. However, latency analysis is absent in those works. In order to find
out the optimal trade-off between quality of service (QoS) (e.g., reliability) and Quality
of Information (e.g., sensing accuracy), an offline embedding algorithm that searches
through all possible embedding was proposed in [17]. In this regard, the search time can
be controlled intuitively according to the application requirements.

Recently, RF energy harvesting is considered as a promising technology for wireless
power sensors that are energy limited [18]. In the literature, wireless powered sensor
networks have attracted attention from the academia. In [19], simultaneous wireless in-
formation and the power transfer (SWIPT) technique were introduced to a mobile WSN
where energy harvest by relay nodes can compensate their energy consumption on data
forwarding. A cross-layer resource allocation scheme was proposed to maximize the energy
efficiency under different scenarios. Aiming at improving energy efficiency for a TDMA
based wireless energy harvesting sensor network, Ref. [20] proposes a scheme to optimize
the system time allocation and transmission power configuration. In [21], an adaptive
multi-sensing (MS) framework was proposed, where each node was mounted with hetero-
geneous sensors to sense multiple cross-correlated slowly-varying parameters/signals. To
increase the energy efficiency, a network and node-level collaborations based multi-sensing
scheme was studied to deal with a formulated multi-objective optimization problem that
jointly takes sensing quality and network energy efficiency into account. Ref. [22] focused
on system sum throughput maximization of the considered sensor network, where two
scenarios were considered, i.e., multiantenna power station and the sensor nodes belong
to the same or different service operator(s). The authors therein proposed two different
schemes to optimize the system time and energy harvesting rate for the two scenarios,
respectively. Similar to works [12–16], works [19–22] also aimed to optimize the energy
efficiency or network throughput for a WSN. How to guarantee the application latency
was still unknown.

In other wireless networks, such as Internet of Vehicles and mobile cellular networks,
latency or delay analysis can be resorted to the effective capacity theory [23]. With consid-
eration of the time-varying channel gain, the maximum traffic rate that can be sustained by
a vehicle-to-vehicle (V2V) link was studied in [24], based on which, the latency violation
probability of the V2V link can be deduced. Additionally, the aggregate effective capacity
was derived for heterogeneous statistical QoS provisioning in a wireless powered sensor
network [25]. Particularly, the aggregate effective capacity was maximized by solving
the hybrid access point determined downlink energy assignment problem and the sensor
node determined uplink power control problem, where the optimal system time alloca-
tion, the downlink energy assignment, and uplink power transmission were obtained.
Meanwhile, network calculus is considered as a powerful tool in end-to-end performance
analysis of wireless communication networks [26]. In [27], a network calculus based
framework was constructed to guarantee the delay bound and the target reliability of each
application for industrial WSNs with consideration of low-power communications and the
harsh wireless environment. However, task allocation was not considered in [25–27].

In summary, how to allocate application tasks to the sensors under the latency require-
ment is still an open problem, which motivates this paper.

3. System Model
3.1. Network Model

In a wireless powered virtualized sensor network, the network service provider can
rent node resources to different applications through the network virtualization technique.
As depicted in Figure 1, the considered wireless powered virtualized sensor network
consists of three layers, i.e., the infrastructure layer, the network service layer, and the
application layer. More specifically, the infrastructure layer consists of a power station
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(PS), a base station (BS), and sensor nodes (SNs). The network service layer contains
multiple VSNs constructed by operator, and the nodes in a VSN can communicate with
each other. The application layer contains multiple applications that need data sensed from
the infrastructure layer under given latency requirements. When an application initiates a
request, the operator selects appropriate SNs, donated by SN = {SN1, SN2, · · · , SNK} to
form a VSN. The corresponding tasks are assigned to the physical nodes mapped by the
virtual nodes. Then, the application data request is completed by the K nodes cooperatively
under the given latency requirement.

Sensor node Power Station Base Station Application

The application layer

The network service layer

The infrastructure layer

residences government fire brigade

Figure 1. Network model of wireless powered virtualized sensor networks.

3.2. Communication Model

The detailed infrastructure layer model is depicted in Figure 2. The total network
bandwidth is denoted by Btot. The system time is divided into several time blocks with
equal duration T. Each time block contains both the downlink energy harvesting (EH)
process and the uplink data transmission (DT) process. In the EH process, the PS transmits
RF signals to all SNs with a duration of τhT. In the DT process with duration τtT, each
SN uses the harvested energy to transmit the sensing data to the BS cooperatively through
FDMA or TDMA modes. Here, the DT duration and bandwidth for SNk are denoted by τt

k
and Bk, respectively. Specifically, in FDMA mode, the bandwidth are equally allocated to
each node while the DT time of each node is equal to τtT, i.e.,

Bk =
Btot

K
, τt

k = τt. (1)
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In TDMA mode, each node can share the whole bandwidth while the DT time is
equally allocated to each node, i.e.,

Bk = Btot, τt
k =

τt

K
. (2)

Base Station

1SN

2SN

kSN

KSN

kg
kh

hT for EH hT for DT by FDMA or TDMA

EH link DT link

Power Station

 

Figure 2. Communication model of the sensor node.

Both uplink and downlink channels are assumed to be quasi-static flat fading. We use
gk to represent the channel gain due to small-scale fading between PS and SNk, and hk to
represent the one between SNk and BS. The values of gk and hk remain unchanged during
a time block while the values in different time blocks follow identically and independently
distribution (i.i.d).

4. General Optimization Framework

Denote the transmission power of the PS by p0; ignoring the influence of background
noise on energy collection, the received RF energy of SNk in the i-th time block holds as:

PRF
k (i) = p0gk(i)lh

k , (3)

where lh
k is the path loss between PS and SNk, which depends on the distance between the

PS and SNk.
The harvested RF energy needs to be converted into DC energy before it can be using

by SNs. In order to better characterize the realistic RF energy conversion circuit, this paper
adopts a nonlinear energy conversion model. In this model, the rate of DC energy collected
by SNk in the i-th time block can be obtained as:

PDC
k (i) = πk

1− e−vk PRF
k (i)

1 + e−vk(PRF
k (i)−γk)

, (4)

where parameters πk, vk, and γk describe the nonlinear characteristics in the process of
converting RF energy into DC energy due to the limitation of circuit hardware. Specifically,
πk represents the maximum energy conversion rate, and vk and γk denote the circuit
sensitivity and current leakage, respectively. The specific values can be obtained by fitting
the relevant data of the actual energy conversion circuit [28,29]. The energy harvested by
SNk holds as:

Pk(i) = PDC
k (i)τhT, (5)
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The harvested energy is assumed to used up for uplink DT, i.e., the transmission
power holds as:

pk(i) =
Pk(i)
τt

kT
=

PDC
k (i)τh

τt
k

. (6)

According to Shannon’s theorem, the date transmission rate in the i-th time block
holds as:

Rk(i) = Bklog2(1 +
pk(i)hk(i)lt

k
N0Bk

), (7)

where lt
k represents the path loss between SNk and BS, N0 denotes the power spectral

density of white Gaussian noise. Because the service process {Rk(i), i = 1, 2 · · · } is not
related between time slots, the effective capacity of SNk can be expressed as [30]:

Ck(θk) = −
1

θkT
ln E[e−θkτt

kTBklog2(1+
pk(i)hk(i)l

t
k

N0Bk
)
], (8)

where E[·] denotes an expectation function, θk denotes the latency exponent of SNk. In [30],
it is proved that Ck(θk) is monotonically decreasing with θk, i.e.,{

Ck(θk = 0) = E[Bklog2(1 +
pk(i)hk(i)lt

k
N0Bk

)],
Ck(θk = ∞) = 0.

(9)

In other words, when θk = 0, the network does not need to guarantee the LVP.
Additionally, a tighter LVP requires larger θk. Specifically, for a delay requirement Dmax
which is the maximum data latency tolerance for an application, the LVP of the k-th SN
holds as:

Pr{Dk > Dmax} = Pr{Qk > 0}e−θkCk(θk)Dmax , (10)

where Pr{Qk > 0} denotes the probability that the buffer Qk of the k-th SN is nonempty
in the steady state. For a system, the busy period is more worthy of being focused on,
thus we assume Pr{Qk > 0} = 1. In addition, according to the effective capacity theory,
the maximum traffic rate of k-th SN that can be supported holds as λk = C(θk).

Let λ denote the data rate requirement of the application. It is interesting to inves-
tigate how to guarantee the minimum LVP for such application through optimizing the
network parameters such as EH duration, DT duration, and task allocation. Furthermore,
the network LVP, i.e., Pr{D > Dmax}, is equal to the maximum LVP of the cooperative SNs.
Hence, the optimization problem can be expressed as P1:

min max
λ,τh,τt

Pr{Dk > Dmax}, k ∈ {1, 2, · · · , K}

s.t. C1 : λ1 + λ2 + · · ·+ λK ≥ λ
C2 : pk(i) ≤ pmax

k , ∀i
C3 : τh + τt ≤ 1
C4 : λk = Ck(θk)

(11)

where C1 ensures the source rate required by the application. Constraint C2 means the
transmission power of a SN should be controlled within a maximum level. Constraint C3
means that the sum of EH duration and DT duration cannot exceed the duration of a time
block. Constraint C4 reveals the relationship between the maximum sustained traffic rate
and the effective capacity for a node.

5. Stochastic Latency Guarantee

In order to dealing with problem P1, we are interested in the difference of performance
guarantee between the FDMA mode and TDMA mode. Surprisingly, if time and frequency
resources are allocated equally to each SN, we can prove that the LVP performance of such
two modes are identical, which is summarized in the following.
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Theorem 1. The network LVP with FMDA mode is equal to the one with TDMA mode.

Proof. According to Equations (1), (6), and (8), we have the effective capacity for the FDMA
mode as:

CFDMA
k (θk) = −

1
θkT

ln E[e−θkτt
kTBklog2(1+

pkhk ltk
N0Bk

)
]

= − 1
θkT

ln E[e
−θkτtT Btot

K log2(1+K
PDC

k τhhk ltk
τt N0Btot

)
]

. (12)

According to Equations (2), (6) and (8), we have the effective capacity for the TDMA
mode as:

CTDMA
k (θk) = −

1
θkT

ln E[e−θkτt
kTBklog2(1+

pkhk ltk
N0Bk

)
]

= − 1
θkT

ln E[e
−θk

τt
K TBtotlog2(1+K

PDC
k τhhk ltk
τt N0Btot

)
]

. (13)

Comparing Equations (12) and (13), we have CFDMA
k (θk) = CTDMA

k (θk). According to
Equation (10), the LVP based on FDMA is equal to that based on TDMA for any SN when
other parameters are fixed. As a result, the network LVPs based on such two modes are
identical, which proves Theorem 1.

Based on Theorem 1, the solutions of problem P1 under the FDMA and TDMAs are
identical. Additionally, the effective capacity of each SN is related to latency exponent
θk, which further affects the LVP performance according to Equation (10). The following
theorem will reveal the relationship between the LVP performance and θk.

Theorem 2. The LVP of a node decreases as the latency exponent θk increases.

Proof. According to Equations (8) and (10), we have

Pr{Dk > Dmax}

= e
−θk(− 1

θk T ln E[e
−θkτt

k TBk log2(1+
pk(i)hk(i)l

t
k

N0Bk
)
])Dmax

= e
1
T ln E[e

−θkτt
k TBk log2(1+

pk(i)hk(i)l
t
k

N0Bk
)
]Dmax

. (14)

It is easily verified that the LVP of SNk decreases as θk increases, which completes the
proof of Theorem 2.

Based on Theorem 2, smaller θk can guarantee lower LVP performance for a SN. How-
ever, as mentioned before, smaller θk results in smaller effective capacity, which further
decreases the sustained source rate for a SN. Hence, a trade-off between the LVP perfor-
mance and the sustained source rate should be taken into account. In detail, for an arbitrary
cooperative node SNa with data rate requirement λa, according to constraint C4 in Problem
P1 and Equation (8), we can obtain the optimal θa by solving the following equation:

f1(θa) = −
1

θaT
ln E[e−θaτt

aTBalog2(1+
pa(i)ha(i)lta

N0Ba )
]− λa. (15)

As λa is fixed and Ca(θa) decreases with θa, f1(θa) is a decreasing function θa. Conse-
quently, Equation (15) can be solved by the resorting bisection searching approach, which is
summarized in the following. Note that, for a fixed calculation precision εθ , the calculation
complexity of Algorithm 1 holds as O(log2(

1
εθ
)).

According to Equation (11), problem P1 is a min-max problem. Hence, the relationship
among the LVP of each SN should be addressed. The following theorem illustrates how
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to balance the LVP of each SN to obtain the optimal task allocation when system time
allocation is given.

Algorithm 1 Find optimal θ∗a

1: Input: λa, θmin
a = 0 and θmax

a = 1, precision εθ

2: Output: θ∗a
3: Compute f1(θ

min
a ), f1(θ

max
a ) by Equation (15).

4: while ( f1(θ
min
a ) f1(θ

max
a ) < 0&&(θmax

a − θmin
a ) > εθ) do

5: Set middle point θmid
a = (θmin

a + θmax
a )

/
2.

6: Compute f1(θ
mid
a ) by Equation (15).

7: if ( f1(θ
mid
a ) > 0) then

8: θmin
a = θmid

a .
9: else

10: θmax
a = θmid

a .
11: end if
12: Compute f1(θ

min
a ), f1(θ

max
a ) by Equation (15).

13: end while
14: θ∗a = (θmin

a + θmax
a )/2.

15: END

Theorem 3. When optimal task allocation is obtained as {λ1, ..., λK}, then, for ∀m, n ∈ {1, 2, · · · , K}
(m 6= n), there always holds:

Pr{Dn > Dmax} = Pr{Dm > Dmax}.

Proof. We prove Theorem 3 with a contradiction approach. Assume that, when optimal
task allocation is obtained, there still exist the maximum LVP Pr{Dm > Dmax} for SNm
and the minimum LVP Pr{Dn > Dmax} for SNn, where m, n ∈ {1, 2, · · · , K} and Pr{Dm >
Dmax} > Pr{Dn > Dmax}, i.e., the assumed optimal task allocation solution is obtained
under Pr{Dm > Dmax}. In this case, the corresponding source rate for such two nodes are
denoted by λm and λn, respectively. In addition, the corresponding latency exponents for
SNm and SNn at this time are denoted by θm and θn, respectively. According to Theorem 2,
there holds θm < θn. As the effective capacity decreases with the latency exponent, we have
λm > λn.

Let λm
′ = λm − ∆λ, λn

′ = λn + ∆λ. We have θm < θm
′ and θn > θn

′. Furthermore,
when ∆λ→ 0+, the constraint conditions in P1 are still satisfied. According to Theorem 2,
we can obtain that

Pr{Dm > Dmax} > Pr{Dm
′ > Dmax}

> Pr{Dn
′ > Dmax} > Pr{Dn > Dmax}

.

Hence, the network LVP can be further reduced to Pr{Dm
′ > Dmax}, which brings

the contradiction. Therefore, when optimal task allocation is obtained, the LVP of each SN
should be equal to each other, which completes the proof.

In order to quickly ascertain the task allocation for each SN, the following corollary
is given.

Corollary 1. When the source rate of a SN is allocated as λa, the source rate for the other nodes
SNk can be obtained by solving the following equation:

∆ Pr(a) = ∆ Pr(k), (16)
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where

∆ Pr(k) = E[e−θkτt
kTBklog2(1+

pk(i)hk(i)l
t
k

N0Bk
)
]. (17)

Note that ∆ Pr(k) is related to θk; hence, we can construct a function as follows:

f2(θk) = E[e−θkτt
kTBklog2(1+

pk(i)hk(i)l
t
k

N0Bk
)
]− ∆ Pr(a). (18)

It is easily verified that f2(θk) is a decreasing function of θk. Hence, the solution θ∗k
of f2(θk) = 0 can be obtained by a bisection search approach. Furthermore, the corre-
sponding source rate λ∗k can be calculated by λ∗k = C(θ∗k ). The method for task allocation
is summarized in Algorithm 2. The computation complexity of Algorithm 2 holds as
O((K− 1) log2(

1
εθ
)).

Algorithm 2 Task allocation scheme

1: Input: ∆ Pr(a), precision εθ , θmin
k = 0 and θmax

k = 1
2: Output: λ∗k , (k = {1, 2, 3, · · · , K}&&k! = a)
3: for (k = {1, 2, 3, · · · , K}&&k! = a) do
4: Compute f2(θ

min
k ), f2(θ

max
k ) by Equation (18).

5: while ( f2(θ
min
k ) f2(θ

max
k ) < 0&&(θmax

k − θmin
k ) > εθ) do

6: Set middle point θmid
k = (θmin

k + θmax
k )

/
2.

7: Compute f2(θ
mid
k ) by Equation (18).

8: if ( f2(θ
mid
k ) > 0) then

9: θmin
k = θmid

k .
10: else
11: θmax

k = θmid
k .

12: end if
13: Compute f2(θ

min
k ), f2(θ

max
k ) by Equation (18).

14: end while
15: θ∗k = (θmin

k + θmax
k )/2.

16: Compute λ∗k by C4 in Equation (11).
17: end for
18: END

According to Theorems 2 and 3, λk and θk can be obtained when system time allocation
is given. In the subsequence, a optimal system time allocation condition is given.

Theorem 4. To guarantee the minimum network LVP, the system time should be used up for energy
harvesting and data transmission in each time block, i.e.,

τh + τt = 1. (19)

Proof. Assume that {τh*, τt*} can guarantee the minimum LVP with τh* + τt* < T. Ac-
cordingly, we can construct another time allocation solution {τ̃h, τ̃t} which satisfying
τ̃h = τh* + ∆τh > τh* and τ̃t = τt*, where ∆τh = 1 − (τh* + τt*), i.e., τ̃h + τ̃t = 1.

In this case, the LVP is denoted by
∼
Pr. It is easy to verify that {τ̃h, τ̃t} still satisfies all

the constraints of problem P1, so it is a feasible solution. Additionally, when τ̃h > τh*,
each cooperative SN can harvest more energy, which implies that higher transmission
power can be provided in the DT process. Hence, the effective capacity of SNs can be
enhanced, which further reduces the network LVP. As a result, there is a contradiction and
the system time should be used up for each time block.
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Based on a similar idea of Theorem 4, we can also prove that, in order to guarantee
the minimum LVP with τh* + τt* < T, there holds:

λ = λ1 + λ2 + · · ·+ λK.

In all, problem P1 can be transferred to problem P2 as follows:

min
λ,τh,τt

Pr{Dk > Dmax}, k ∈ {1, 2, · · · , K}

s.t. C1 : λ1 + λ2 + · · ·+ λK = λ
C2 : pk(i) ≤ pmax

k , ∀i
C3 : τh + τt = 1
C4 : λk = Ck(θk)
C5 : Pr{Dk > Dmax} = Pr{Da > Dmax}

(20)

In Algorithms 1 and 2, task allocation for one node, i.e., SNa is needed. Hence,
we can fixed the system allocation and find out λa firstly. Note that Pr{Da > Dmax} is
monotonically decreasing with λa and Ca(θa) is monotonically decreasing with θa, and
there is a unique solution of λ for problem P2. Hence, the bisection search approach can be
applied again. Furthermore, as the statistical channel information is different among all the
SNs, according to Equation (8), an SN with poorer channel information guarantees lower
effective capacity, which leads to a lower sustained source rate. In order to reduce the
computation complexity of task allocation, we can choose the node with poorest statistical
channel information as SNa. In this case, the upper bound of the bisection search can be
just λ

K . The following algorithm summarizes how to find out λa. It is easily verified that
the computation complexity of Algorithm 3 lies in O(K log2(

λ
ελ
) log2(

1
εθ
)).

Algorithm 3 Find optimal λ∗a

1: Input: τh, p0, N0, W, gk, hk, πk, vk, γk, Dmax, K, T, λ, λmin
a = 0 and λmax

a = λ
K , precision

ελ.
2: Output: λ∗a
3: Compute λmid

a = λmax
a +λmin

a
2 .

4: Apply Algorithm 1 to find out θmin.
5: Apply Algorithm 2 to find out λmid.
6: while |∑ λmid−λ| > ελ do
7: if ∑ λmid−λ > 0 then
8: λmax

a = λmid
a .

9: else
10: λmin

a = λmid
a .

11: end if
12: λmid

a = λmax
a +λmin

a
2 .

13: Apply Algorithm 1 to find out θmin.
14: Apply Algorithm 2 to find out λmid.
15: end while
16: λ∗a = (λmin

a + λmax
a )/2.

17: END

According to Constraint 4 of problem P2, the optimal system time can be further
obtained through one-dimensional search. Therefore, problem P2 can be solved. The proce-
dure for solving the P2 is summarized in Algorithm 4. In all, the computation complexity
of the proposed joint task and resource allocation scheme holds as O( K

ετ
log2(

λ
ελ
) log2(

1
εθ
)).
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Algorithm 4 System time allocation scheme

1: Input: Dmax, precision ετ

2: Output: τh*, τt*, min Pr{D > Dmax}
3: for all τh do
4: switch TD mode do
5: case: TDMA
6: τt

k = (1− τh)/K.
7: Bk = W.
8: case: FDMA
9: τt

k = 1− τh.
10: Bk = W/K.
11: end switch
12: Apply Algorithm 3 to find out optimal λa for τh.
13: Compute Pr{D > Dmax} according to Equation (10) and Constraint 4 of problem P2.
14: end for
15: Find out min Pr{D > Dmax} and the corresponding τh*, τt*.
16: END

In summary, a schematic diagram is presented to introduce our proposed scheme and
the relationships between different algorithms, as depicted in Figure 3.

Start

Input the number of SNs, 

the latency and data rate 

requirements of an 

application, and the 

precision parameters.

Initialize time proportion for  

energy harvesting 

?

Use Algorithm 1 to find out 

the optimal  latency exponent    

for                           

 Select an arbitrary        and 

initialize its allocated rate as

Use Algorithm 2 to find out the 

optimal task allocation     for all 

the SNs   

Update the 

value of       

?

Update the 

value of       

Find out the minimum  latency 

violation probability

Output the 

corresponding optimal 

task allocation and 

system time allocation.

h

a


aSN

aSN

Yes

No

No

Yes

End

h

Algorithm 3

Algorithm 4
*
λ a



*

*| | precision  − λ

h 1 

Figure 3. The schematic diagram of the overall scheme.
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6. Numerical Results

In this section, numerical results are presented and discussed. If not otherwise high-
lighted, the various involved parameters and the adopted analysis scenarios are as follows.
The transmission power of the PS is set to p0 = 40 dBm (i.e., 10 W). The length of each
time block is set to T = 10 ms. The total bandwidth of the network is set to Btot = 20 MHz.
The power spectral density of the background noise N0 = −130 dBm/Hz. The data rate
and the latency requirements of the application are set to λ = 2 Mbps and Dmax = 100 ms,
respectively. The number of the SNs is set to K = 5. For any 1 ≤ k ≤ K, the energy har-
vesting parameters are set as πk = 0.01 mW, νk = 47.083× 103 and γk = 0.0029 mW [31].
In addition, the channel gain due to small-scaling fading between each node and PS and
that between each node and BS are both assumed to follow Rayleigh distribution with
mean 1. The distance between each node and the PS and that between each node and the
BS are all set to ρk = 10 m. Additionally, the path loss is assumed to be lh

k = lt
k = ρ−2

k
with 30 dB power attenuation at a reference distance of 1 m. More intuitively, the fixed
parameters are listed in Table 1.

Table 1. Parameter settings.

Parameters Value

the transmission power of the PS (p0) 40 dBm (10 W)
the length of each time block (T) 10 ms

the total bandwidth (Btot) 20 MHz
the power spectral density of the noise (N0) −130 dBm/Hz

the application data rate requirement (λ) 2 Mbps
the application latency requirement (Dmax) 100 ms

the number of the SNs (K) 2–10
the maximum energy conversion rate (πk) 0.01 mW

the circuit sensitivity (νk) 47.083× 103

the current leakage (γk) 0.0029 mW
the mean of Rayleigh distribution 1

the path loss between PS and SNk in 1m (lh
k ) 30 dB

the path loss between SNk and BS in 1m (lt
k) 30 dB

precision ετ 0.01
precision ελ 103 bps
precision εθ 10−7

According to Algorithms 1–4, the precision of analytical results as well as the compu-
tation complexity of the proposed resource allocation scheme both depend on the precision
parameters ετ , ελ, and εθ . Specifically, the lower values ετ , ελ, and εθ hold, the higher preci-
sion can be guaranteed for the analytical results. However, the computation complexity of
the proposed scheme will increase. Hence, we first determine appropriate parameters for
the subsequent numerical analysis. Figure 4 depicts the impacts of precision parameters on
the network LVP. Note that, when we aim to find out the appropriate value for one type of
the precision parameter, we set the other two types of precision parameters to a sufficiently
low value (e.g., ελ = 1 bps). It is observed that the analytical results can be convergent for
each type of precision parameter. According to Figure 4, we set the precision parameters
as ετ = 0.01, ελ = 1 bps and εθ = 10−7, respectively. Based on such configuration, a good
trade-off between the analytical precision and the computation complexity can be achieved.
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Figure 4. Impact of precision parameters on the numerical results.

Figure 5 depicts the relationship between network LVP and energy harvesting propor-
tion under different data rate requirements. It is found that the network LVP first decreases
with τh and then increases after reaching a certain valve, which implies that there is an
optimal energy harvesting time solution for any case. The reason is that, when τh is small,
the cooperative SNs need more energy to support their transmissions. Hence, the network
LVP is improved as τh increases. However, when τh is large enough, increasing τh leads to
shorter time to transmit data, which degrades the network LVP. In addition, the network
LVP increases with application data rate requirements, since a higher source data rate is
needed for each SN. In particular, when λ is small enough, it is verified that a wireless link
can also guarantee an ultra-high reliable transmission for time-sensitive application—while,
for the optimal energy harvesting time proportion and the application data rate require-
ment, we find that there is a linear relationship between them. This phenomenon is verified
by the subfigure of Figure 5. The observation can help us to quickly choose the optimal
energy harvesting time for other applications, which further reduces the complexity of the
proposed scheme.
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Figure 5. The relationship between network LVP and energy harvesting proportion under different
data rate requirements.

Figure 6 depicts relationship between network LVP and energy harvesting proportion
under different positions of SNs. For the SNs with heterogeneous positions, the distance be-
tween them and the PS and that between them and the BS are both set to {8, 9, 10, 11, 12}m,
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which guarantees the average distance as 10 m. It is observed that optimal system time
configuration also exists when the positions of the SNs are different. Interestingly, when
the application data rate is fixed, the optimal energy harvesting time proportion under
the scenario with heterogeneous node positions is equal to that under the scenario with
identical node positions. Another insightful phenomenon is observed in which the network
LVP with heterogeneous node positions outperforms that with identical node positions
when other conditions are fixed. This implies that a node closer to the PS and BS can
sustain a higher source data rate and guarantees higher performance gain compared with
the performance degradation brought by the further SN.
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Figure 6. The relationship between network LVP and energy harvesting proportion under different
positions of SNs.

In Figure 7, we compare the LVP performance of the proposed scheme with two
baseline schemes. In the scheme of proportional task allocation, the sensing data rate of a
task is determined according to the channel capacity of a sensor node; it holds there as

λk =
E[Rk(i)]

∑K
a=1 E[Ra(i)]

λ. (21)

The intuition of such scheme is that the higher data rate is allocated to the node
with a better channel state. In the scheme of equal task allocation, the sensing data rate
is allocated to each node equally. In addition, the system configuration is the same as
Figure 6. It is observed that the proposed scheme guarantees the lowest LVP while the
performance of the scheme of equal task allocation is much worse than that of the other
two schemes. Moreover, the optimal energy harvesting time is different under those three
schemes. Therefore, the effectiveness of the proposed scheme is validated.

The impact of the number of SNs on the network LVP and the energy harvesting
proportion is depicted in Figure 8. When other conditions are identical, more cooperative
SNs can guarantee lower network LVP. The reason is that each node needs to support a
lower source rate when the number of SNs increases. In addition, we also observe that the
optimal energy harvesting time proportion τh increases with the number of SNs. This is
because the source data rate requirement of each node decreases with the number of SNs.
As a result, less time is needed by each SN to transmit data, which naturally leaves more
time to harvest energy. Moreover, we are also interested in the relationship between the
optimal τh and the number of SNs. The subfigure shows that they follow an approximately
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linear relationship. Such observation can bring a useful guideline to determine how much
time should be allocated to harvest energy when the number of nodes varies.
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Figure 7. Performance comparison between the proposed scheme and the baseline schemes.
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Figure 8. The relationship between network LVP and energy harvesting proportion under a different
number of SNs.

Figure 9 illustrates the relationship between network LVP and application latency
requirement. It is found that the network LVP decreases as Dmax increases under when
the application data rate requirement and the number of SNs are fixed. This is because
that larger Dmax means a looser performance requirement needed to be guaranteed by the
network. Hence, the network LVP can be improved as shown in Equation (10).
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Figure 9. The relationship between network LVP and latency requirements.

Figure 10 depicts the minimum number requirements of nodes under different appli-
cation latency requirements. It is observed that the minimum number of requirements of
SNs increases as the application latency requirement becomes tighter. With the analysis
in this paper, the network operator can flexibly determine the number of SNs to serve an
application in terms of data rate and latency requirements.

Figure 10. The minimum number requirements of nodes under different application latency require-
ments.

Additionally, we are interested in the relationship between the network LVP and
energy efficiency since energy efficiency is also an important performance metric in WSNs.
More specifically, as the SNs can only be powered by the power station, the network energy
efficiency can be defined as

ee =
λT

p0τhTB
=

λ

p0τhBtot
. (22)
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As depicted in Figure 11, the network LVP is positively related to the network energy
efficiency when λ is fixed. The reason is that higher energy efficiency requires lower
transmission power of the power station, which degrades the network latency performance.
Hence, it is necessary to balance the requirements of network LVP and energy efficiency.
In addition to the network LVP (as shown in Figure 9), the network energy efficiency can
be improved through increasing the number of SNs when the total network resources are
fixed. Hence, multiplexing gain is validated under the proposed scheme.

0 0.5 1 1.5 2 2.5
Energy efficiency (bits/J/Hz)

10-6

10-5

10-4

10-3

10-2

10-1

100

L
at

en
cy

 v
io

la
tio

n 
pr

ob
ab

ili
ty

K=5
K=10
K=20

Figure 11. Relationship between latency violation probability and energy efficiency.

7. Discussion

From the numerical results and analysis, the relationship between the LVP and the
energy harvesting time configuration is revealed. In addition, the impacts of application
rate requirement, the delay requirement, and the number of the SNs on such relationship
are depicted. To be specific, the optimal energy harvesting time linearly or nearly linearly
varies with the application rate requirement and the number of the SNs. The higher
application requirement or the smaller number of SNs is, the less time is allocated to the
SNs to harvesting RF energy. The reason is that the SNs need more time to transmit data if
the traffic load on them are heavier. According to the linear phenomenon observed in this
paper, optimal energy harvesting time can be determined quickly. Therefore, the analysis
can be applied to the practical wireless powered virtualized sensor networks to perform
resource allocations.

Additionally, the proposed scheme can guarantee low LVP without strict resource
requirements, which confirms its ability for a reliability guarantee. Particularly, while
comparing with the proportional task allocation scheme and the equal task allocation
scheme, the proposed scheme lowers the latency violation probability to 11.6 times and
4600 times, respectively. This is because the proposed scheme takes the heterogeneous
transmission ability of each SN into account. As a result, the task rate allocated to each
SN can achieve our aim that the minimum individual latency violation provability is
minimized. Moreover, as discussed before, the computation complexity of the proposed
scheme is O( K

ετ
log2(

λ
ελ
) log2(

1
εθ
)). Therefore, the complexity increases linearly with the

number of SNs and increases logarithmically with the accuracy requirement, which is
controllable in practical networks.
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8. Conclusions

In this paper, a stochastic latency guarantee strategy was studied in the wireless pow-
ered virtualized sensor network. A cooperative sensing framework was constructed, and a
joint task and resource optimization problem was formulated. In addition, the network
latency violation probability under the FDMA mode and that under the TDMA mode were
proved to be identical. In addition, a bisection searching approach was proposed to find
out the optimal task allocation and a one-dimensional searching scheme was proposed to
find out the optimal energy harvesting time. Moreover, the proposed scheme was evalu-
ated under different scenarios. The analysis in this paper sheds new insights on task and
resource management, which can help the network operator to guarantee the application
requirements in terms of data rate and latency flexibly.
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