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Abstract: Digital images can be large in size and contain sensitive information that needs protection.
Compression using compressed sensing performs well, but the measurement matrix directly affects
the signal compression and reconstruction performance. The good cryptographic characteristics of
chaotic systems mean that using one to construct the measurement matrix has obvious advantages.
However, existing low-dimensional chaotic systems have low complexity and generate sequences
with poor randomness. Hence, a new six-dimensional non-degenerate discrete hyperchaotic system
with six positive Lyapunov exponents is proposed in this paper. Using this chaotic system to design
the measurement matrix can improve the performance of image compression and reconstruction. Be-
cause image encryption using compressed sensing cannot resist known- and chosen-plaintext attacks,
the chaotic system proposed in this paper is introduced into the compressed sensing encryption
framework. A scrambling algorithm and two-way diffusion algorithm for the plaintext are used to
encrypt the measured value matrix. The security of the encryption system is further improved by
generating the SHA-256 value of the original image to calculate the initial conditions of the chaotic
map. A simulation and performance analysis shows that the proposed image compression-encryption
scheme has high compression and reconstruction performance and the ability to resist known- and
chosen-plaintext attacks.

Keywords: non-degenerate chaotic system; compressed sensing; plaintext-related scrambling; two-
way diffusion

1. Introduction

As a main carrier of information transmission and storage, the digital image is widely
used in people’s lives and in many fields such as education, medical treatment, national
defense, and environmental monitoring [1]. If sensitive information is transmitted on an
insecure channel, it could be attacked and illegally stolen by criminals. Therefore, the
security of image information in transmission and storage has become a focus of attention
and research. It is found that traditional ciphers, such as the data encryption standard
(DES), international data encryption algorithm (IDEA) and advanced encryption stan-
dard (AES) are unfit for image encryption. Therefore, researchers have designed various
image encryption algorithms with different techniques. For example, Wu et al. [2] used
Sudoku matrices to secretly represent matrix elements and further developed new Sudoku-
associated two-dimensional parametric bijection for image scrambling. Zhou et al. [3]
proposed an optical multiple image encryption scheme based on discrete cosine transform
and nonlinear fractional Mellin transform. The scheme transformed the original image in
different spectra based on the use of the discrete cosine transform, and used the nonlinear
fractional Mellin transform to the composite spectrum composed of the spectrum of the
original (encrypted) image. Other researchers [4–6] designed new image encryption and
decryption schemes by using elements of the River–Shamir–Adleman (RSA) algorithm
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combined with bitwise binary operations, quaternary fractional-linear transformations,
and projective transformation. Experiments showed that these algorithms are effective for
images with clearly defined contours. In addition, there are image encryption schemes
using wave functions [7], S-boxes [8–10], deoxyrinonucleic acid (DNA) computing [11–13],
and others, and they all achieve good image security. A chaotic system is a type of nonlinear
system that has cryptographic characteristics such as pseudo-randomness and initial value
sensitivity. In recent years, many image encryption schemes based on chaotic systems
have been proposed [14–19]. Based on these, a meaningful plain image is converted into
a noise-like or texture-like cipher image, and the size of the cipher image is equal to that
of the plain image. However, these encryption algorithms focus on information security
and do not take into account the high image data redundancy, strong correlation between
pixels, and other characteristics of such images. With the advent of 5G, the amount of
data transmitted on networks will grow exponentially. To improve transmission speed
and reduce the amount of storage space, it will be necessary to compress images before
transmission or storage. Therefore, the aim of this study is to determine how to ensure
the security of image encryption while reducing the amount of both data transmission
and storage.

Compressed sensing (CS) theory [20,21] is a recent sampling theory that breaks the
limitation of the traditional Nyquist sampling theorem and can sample and compress
signals simultaneously. If the measurement matrix in the CS framework is regarded
as a key, the CS framework can be regarded as a symmetric cryptographic encryption
scheme [22]. In recent years, researchers have used CS in the field of image encryption,
using the computational security of the measurement matrix to synchronously encrypt and
compress the image. For example, [23] proposed an image encryption method based on the
combination of orthogonal coding and CS based on double-random phase coding, which
compresses all the images into random signals and diffuses them into smooth white noise.
In turn, Li et al. [24] proposed a multi-image encryption method based on lifting wavelet
transform (LWT), XOR operations, and compressed ghost imaging. In this scheme, the
use of line scan compressed ghost imaging improved the reconstruction speed and made
high-resolution image compression possible. These image compression and encryption
schemes use the whole measurement matrix as the key, which requires a large amount of
storage space and is a serious waste of resources.

To solve this problem, some researchers use chaotic mapping to design measure-
ment matrices [25–29]. The initial values and parameters of the chaotic maps are used
as keys, which greatly reduces the required storage space. For example, Zhou et al. [25]
proposed a method based on CS and the fractional Mellin transform. The author uses a
one-dimensional (1D) logistic chaotic map to generate two CS measurement matrices, then
measures them in two different directions, and finally uses a nonlinear fractional Mellin
transform to obtain the final ciphertext image. Ponuma et al. [26] proposed a new 1D
chaotic system, used the resulting chaotic sequence to generate the measurement matrix,
and then used the chaotic sequence to scramble and spread the measured values. [27]
Chai et al. proposed a visually secure image encryption method based on CS and chaotic
maps. In this method, the CS measurement matrix is constructed by oblique tent mapping,
where a 1D chaotic map is used to construct the measurement matrix. Because of the
low complexity of a low-dimensional chaotic map and its easily predicted trajectory, the
randomness of a chaotic sequence generated by this kind of chaotic map is poor. This
reduces the performance of image reconstruction and the security of the algorithm [30].

In contrast, high-dimensional chaotic maps, especially hyperchaotic maps, have more
variables, parameters, and positive Lyapunov exponents, which is more suitable for image
encryption. Therefore, some researchers have proposed encryption schemes that incorpo-
rate high-dimensional hyperchaotic systems. Wang et al. [31] proposed a scheme based
on tensor CS (TCS) to simultaneously compress and encrypt 3D image sequences. This
algorithm uses a non-autonomous Lorenz system to control the generation of three mea-
surement matrices of TCS. Reference [32] proposed an image compression and encryption
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scheme based on a modified Chen’s hyperchaotic system and 2D CS, in which Chen’s
hyperchaotic system constructs a partial Hadamard matrix for use as the measurement
matrix, which improves the performance of image compression and reconstruction.

In addition, during CS encryption, because of the linear sampling rule of CS, the
information of the plaintext image will be concentrated in each column of the encrypted
image, which increases the risk of energy leakage and the possibility that the cryptographic
algorithm can be cracked. This reduces the security of image encryption algorithms
based on a CS framework [33,34]. To improve security, some researchers add chaotic
encryption techniques to image encryption systems based on a CS framework. For instance,
Chen et al. [35] proposed a cryptographic algorithm based on CS, which uses a 3D cat
mapping to generate the measurement matrix. In addition, chaotic sequences are used in
the process of image scrambling and diffusion. The algorithm achieves good compression,
but the key in the secondary encryption algorithm is unrelated to the plaintext. Xie et al. [36]
proposed a 3D discrete hyperchaotic system to design the measurement matrix and then
quantify and Arnold scramble the measurement. Experimental results show that the
algorithm has good reconstruction ability, but the algorithm has low correlation with the
plaintext images and are vulnerable to known- and chosen-plaintext attacks.

To achieve higher compression ratio and increase the ability of the CS framework to
resist known- and chosen-plaintext attacks, this paper proposes a CS encryption scheme
based on the new 6D non-degenerate discrete hyperchaotic system. Our main contributions
are as follows: (1) a 6D discrete hyperchaotic system with six positive Lyapunov exponents
is designed, and the randomness of the generated chaotic sequence is analyzed and applied
in the whole scheme. (2) the scheme uses the initial conditions and the SHA-256 value
of the plaintext image to calculate the key, which increases the correlation between the
algorithm and the plaintext image and improves the scheme’s ability to resist known- and
chosen-plaintext attacks. (3) during CS measurement, the Arnold transform is introduced
to scramble the image’s sparse coefficient matrix. Next, the hyperchaotic map is used
to design the measurement matrix to improve the compression ratio and reconstruction
performance of the proposed scheme. (4) a plaintext-related scrambling algorithm and two-
way diffusion algorithm are developed to re-encrypt the measurement matrix generated
by the compressed sensor. The scrambling process of this algorithm is closely related to the
value of the current scrambling pixel, which increases the security of the CS framework. Ex-
perimental results and a security analysis show that the scheme has good compression and
reconstruction performance. Moreover, it resists known- and chosen-plaintext attacks well.

The rest of this study is organized as follows. In Section 2, a new hyperchaotic system
is designed and analyzed. In Section 3, some related knowledge is presented. In Section 4,
the image compression and encryption scheme based on 6D discrete hyperchaotic system
and CS is introduced in detail. Section 5 shows the experimental results of the proposed
scheme and outlines the security analysis. Finally, the last section concludes our work.

2. Proposed System and Its Analysis
2.1. Six-Dimensional Non-Degenerate Discrete Hyperchaotic System

A non-degenerate high-dimensional hyperchaotic system is a high-dimensional hyper-
chaotic system with the highest number of positive Lyapunov exponents possible. Under
the condition that the chaotic system is globally bounded, increases in both the number
and values of the positive Lyapunov exponents increase the complexity of the dynamic
behavior of the whole system. Because the structure of a low-dimensional chaotic system is
relatively simple, the positive Lyapunov exponent is not large enough, and degeneracy usu-
ally occurs. In contrast, the number of positive Lyapunov exponents of a non-degenerate
high-dimensional discrete hyperchaotic system is equal to the number of dimensions of the
system, and its dynamic behavior is more complex. The trajectory is more unpredictable,
and the generated chaotic sequence is more random.

The Jacobi matrix method is commonly used to calculate the Lyapunov exponent of
the dynamical system. The Lyapunov exponent is an important basis used to determine the
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existence of chaotic behavior in dynamical systems. In this study, we use the given positive
Lyapunov exponent to construct chaotic system with inverse solutions [37]. The Jacobi
matrix method means that the corresponding Lyapunov exponent of the high-dimensional
discrete dynamic system is obtained by using the high-dimensional discrete dynamic
system, whereas the inverse Jacobi matrix method is used to reconstruct the corresponding
high-dimensional discrete dynamic system with the known or Lyapunov exponent given
a priori. These two methods focus on the relationship between the Jacobi matrix and its
eigenvalues, and the similar matrix is the method used to reconstruct the Jacobi matrix
with the eigenvalues of the Jacobi matrix. In this study, a new 6D nondegenerate discrete
hyperchaotic system is designed with this method. The specific steps are listed below.

Consider a high-dimensional discrete chaotic system model,

Sn+1 = ASn, n ∈ N, Sn ∈ Rm (1)

1. The six eigenvalues of a given 6 × 6 Jacobi matrix are 3275, 362, 1356, 1013, 627, and
92, respectively. The corresponding rounded Lyapunov exponents are 8.09, 5.89, 7.21, 6.92,
6.44, and 4.52. The diagonal matrix is constructed as follows,

Λ =



8.09 0 0 0 0 0
0 5.89 0 0 0 0
0 0 7.21 0 0 0
0 0 0 6.92 0 0
0 0 0 0 6.44 0
0 0 0 0 0 4.52

 (2)

2. The nonsingular matrix q is set as,

q =



2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

 (3)

The inverse matrix q−1 is then obtained.
3. The rounded parameter matrix A is,

A = qΛq−1 =



9.44 −0.85 0.47 0.18 −0.30 −2.22
1.67 5.36 0.79 0.50 0.20 −1.90
1.48 −0.72 7.81 0.31 −0.17 −2.09
1.52 −0.68 0.64 7.27 −0.13 −2.05
1.59 −0.61 0.71 0.42 6.38 −1.98
1.86 −0.34 0.98 0.69 0.21 2.81

 (4)

Therefore, the dynamic Equations of the reconstructed 6D discrete hyperchaotic
system are as follows,

x1(i + 1) = (9.44x1(i)− 0.85x2(i) + 0.47x3(i) + 0.18x4(i)− 0.30x5(i)− 2.22x6(i))mod1
x2(i + 1) = (1.67x1(i) + 5.36x2(i) + 0.79x3(i) + 0.50x4(i) + 0.02x5(i)− 1.90x6(i))mod1
x3(i + 1) = (1.48x1(i)− 0.72x2(i) + 7.81x3(i) + 0.31x4(i)− 0.17x5(i)− 2.09x6(i))mod1
x4(i + 1) = (1.52x1(i)− 0.68x2(i) + 0.64x3(i) + 7.27x4(i)− 0.13x5(i)− 2.05x6(i))mod1
x5(i + 1) = (1.59x1(i)− 0.61x2(i) + 0.71x3(i) + 0.42x4(i) + 6.38x5(i)− 1.98x6(i))mod1
x6(i + 1) = (1.86x1(i)− 0.34x2(i) + 0.98x3(i) + 0.69x4(i) + 0.21x5(i) + 2.81x6(i))mod1

(5)

The remainder functions in (5) ensure the boundedness of the system. Because the
6D discrete system (5) has no quadratic and higher-order terms, its Jacobi matrix J is a
coefficient matrix. Because the coefficient variable matrix A is a rounded approximation,
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the six Lyapunov exponents in the 6D discrete system (5) need to be checked again. After
calculation, the six Lyapunov exponents of system (5) are: LE1 = 4.5003, LE2 = 8.0696,
LE3 = 5.9094, LE4 = 6.4502, LE5 = 7.2205, and LE6 = 6.9200, which are very close to the
preset values in step 1. When a chaotic system has more than one positive Lyapunov
exponent, the chaotic dynamic behavior of the chaotic system is more complex, and it
can be called a hyperchaotic system [38]. This 6D discrete chaotic system (5) has six
positive Lyapunov exponents, which is the maximum number, so it is a non-degenerate
hyperchaotic system. The chaotic attractor phase diagrams of 6D chaotic map are shown
in Figure 1 for iterative variables x1(0) = 0.31, x2(0) = 0.42, x3(0) = 0.23, x4(0) = 0.54,
x5(0) = 0.15, and x6(0) = 0.66, and 1000 iterations. To calculate these diagrams, 64-bit
MATLAB software and double floating-point representation were used.
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Figure 1. Phase diagrams of chaotic attractors. (a) x1(i)− x2(i); (b) x3(i)− x4(i); (c) x5(i)− x6(i); (d) x1(i)− x2(i)− x3(i);
and (e) x4(i)− x5(i)− x6(i).

The chaotic characteristics of the system can be represented by the trajectories of
the chaotic attractors in phase space. As Figure 1 shows, the 6D hyperchaotic system
has more complex phase space and better dynamic characteristics; the chaotic sequence
is also more random. Because the Jacobi matrix of the 6D non-degenerate hyperchaotic
system (5) is independent of the output chaotic sequence, the map can obtain a chaotic
state for most initial values. In addition, the 6D hyperchaotic system can output six
different pseudorandom sequences at the same time, so using the hyperchaotic system in
CS compression and encryption can improve the reconstructed image and the security of
the compression/encryption scheme.

2.2. Approximate Entropy Analysis

Approximate entropy (ApEn) measures the probability of generating new patterns
in the time series when the dimension changes. The greater the probability of generating
new patterns, the more complex the series, and the greater the corresponding approximate
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entropy [39,40]. In the simulation experiment in this section, we use the method of [41]
to calculate the approximate entropy. The specific algorithm for approximate entropy is
as follows:

1. Suppose the initial data is the sequence x(1), x(2), . . . , x(N), and then divide them
into m D vectors.

X(i) = [x(i), x(i + 1), . . . , x(i + m− 1)] (6)

in which i = 1, 2, 3, . . . , N −m + 1.
2. The distance between x(i) and x(j) is defined as:

d(i, j) = max
k=1−m−1

[|x(i + k)− x(j + k)|] (7)

3. Setting a threshold value r(r > 0), for each i, we can obtain the statistics of d(i, j).

Cm
i (r) =

1
N −m + 1

Sum{d(i, j) < r} (8)

4. The mean of logarithm of Cm
i (r) is written as ϕm(r) and can be calculated by

ϕm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
i (r) (9)

5. Changing dimension and repeating step 1 to step 4, we can obtain the approximate entropy

ApEn(m, r) = lim
N→∞

[
ϕm(r)− ϕm+1(r)

]
(10)

However, in practical terms, the length of the data sequence is bounded. Therefore,
the approximate entropy algorithm is changed into

ApEn(m, r, N) = ϕm(r)− ϕm+1(r) (11)

Pincus [42] found that there exists a minimal dependency between ApEn and N when
m = 2 and r ∈ [0.1SD(x), 0.2SD(x)], where SD(x) is the standard deviation of x. In general,
a more complex the time series has a larger approximate entropy. The complexity of the
output time series of several hyperchaotic systems and the new 6D chaotic map were
evaluated using approximate entropy, and the results are shown in Table 1. These results
show that under the same parameters, the output time series of the scheme proposed in
this paper has higher complexity.

Table 1. ApEn results of different chaotic sequences.

Hyperchaotic System Input Parameters ApEn

Lorenz N = 2000, m = 2, r = 0.2 SD 0.6608

Chen N = 2000, m = 2, r = 0.2 SD 0.8171

Ref. [43] N = 2000, m = 2, r = 0.2 SD 1.3698

Ours N = 2000, m = 2, r = 0.2 SD 1.9814

2.3. NIST Test

To check whether a sequence meets the security standard of information encryption, it
is necessary to test the randomness of the sequence. At present, most such tests are based
on the testing software and standards provided by the National Institute of Standards and

Technology (NIST) [44]. In this study, SP800-22 was selected to test the randomness of
the output sequence of the 6D discrete hyperchaotic system. The pseudo-randomness of
the sequence is determined by the P value. If the P value is less than 0.01, it means that the
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tested sequence looks completely non-random. In the experiment, 1000 different random
sequences with a length of 106 were tested. Table 2 shows the NIST test results.

Table 2. NIST test results.

Randomness Test
P-Value

Passing Rate
x1 x2 x3 x4 x5 x6

Frequency 0.6171 0.7856 0.5864 0.8540 0.2428 0.6833 992/1000
Block Frequency (m = 128) 0.8351 0.6974 0.6662 0.4928 0.7466 0.9059 996/1000

Runs 0.2119 0.4752 0.0252 0.3281 0.1740 0.4390 998/1000
Longest Run of One’s 0.1186 0.7177 0.4391 0.2148 0.4522 0.7123 991/1000

Matrix Rank 0.5887 0.0755 0.0323 0.3321 0.2269 0.0520 992/1000
FFT 0.3098 0.6424 0.3675 0.2701 0.5232 0.7768 996/1000

Non-Overlapping Template (m = 10) 0.5837 0.5488 0.4926 0.6498 0.4611 0.1333 997/1000
Overlapping Template (m = 10) 0.2357 0.7061 0.6839 0.2893 0.7191 0.9533 992/1000

Universal 0.6438 0.1190 0.3546 0.5336 0.0976 0.1152 996/1000
Linear Complexity (m = 1000) 0.4632 0.2193 0.3235 0.3964 0.1824 0.6857 994/1000

Serial test
P_value1 0.2547 0.7748 0.0215 0.7236 0.0951 0.1991 997/1000
P_value2 0.2369 0.7315 0.6471 0.2807 0.4727 0.1073 992/1000

Approximate Entropy (m = 3) 0.1768 0.4481 0.5260 0.1330 0.5561 0.7177 996/1000

Cumulative Sums test
Forward 0.5267 0.1637 0.3939 0.2647 0.5815 0.6057 995/1000
Reverse 0.6054 0.0977 0.2861 0.1585 0.2784 0.4893 993/1000

Random Excursions 0.3556 0.5075 0.5326 0.2780 0.7651 0.6296 997/1000
Random Excursions Variant 0.5673 0.5386 0.4412 0.4818 0.3967 0.7104 993/1000

The test results show that for the six chaotic sequences generated by the 6D discrete
chaotic system, the average passing rate of the P value exceeds 99%, and the passing rate is
within an acceptable range, which indicates that the test sequence has good randomness.
Therefore, the 6D discrete chaotic system is suitable for encryption algorithms [45].

3. CS and Arnold Scrambling
3.1. CS

CS [46,47], or compressed sampling, is a novel signal acquisition theory originally
proposed by Donoho, Candes, and Tao. According to CS theory, as long as the signal is
compressible or sparse in a certain transform domain, the transformed high-dimensional
signal can be projected onto a low-dimensional space with an observation matrix indepen-
dent of the transform basis. As a result, the original signal can be reconstructed with high
probability from this small number of projections by solving an optimization problem.

Suppose a measurement matrix Φ that is M× N(M << N) in size is used to measure
a 1D signal X of length N by CS; that is,

y = Φx (12)

In this way, an 1D observation value y of length M can be obtained, and the linear
projection observation value y contains the information needed to reconstruct signal X. For
the case where the signal X itself is not sparse, it can be expressed under a set of orthogonal
sparse N × N bases Ψ as follows:

x = Ψs (13)

When the number of nonzero coefficients K << N in vector s, vector s is called
K-sparse. The sampling process of CS is expressed as follows:

y = ΦΨs = Θs (14)

where Θ = ΦΨ is the sensing matrix.
When vector s is sufficiently sparse and the size of sensing matrix Θ and the measured

value satisfies certain conditions, sparse coefficient vector s of the original signal can be
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recovered accurately by solving an optimization problem. That is, by solving the minimized
p-norm problem expressed as follows [48]:

ˆ
s = argmin‖s‖1 s.t. y = Θs (15)

where ‖ · ‖1 denotes the l1-norm. The l1-norm minimization problem is a convex optimiza-
tion problem, which is equivalent to solving a linear programming problem to recover

K-sparse signal
ˆ
s and then restoring the original signal using sparse representation

ˆ
x = Ψ

ˆ
s.

Some greedy pursuit algorithms such as orthogonal matching pursuit (OMP), matching
pursuit, and convex optimization can be used to solve the above Equations.

3.2. Arnold Scrambling

In the process of CS, after the plaintext image is decomposed using a sparse basis, the
two-dimensional coefficient matrix is obtained. Zhang et al. [49] proved that scrambling
the coefficient matrix of the plaintext image under the sparse base and then measuring the
CS can effectively relax the limited isometric performance, of the measurement matrix and
improve the quality of the reconstructed image. In this paper, the Arnold transform is used
to scramble the sparse coefficient matrix.

The Arnold transform is periodic, that is, after many iterations of the transform, the in-
put image will return to its original state. Using the Arnold transform to scramble the sparse
coefficient matrix, as the number of iterations increases, the position of non-zero elements
in the coefficient matrix will be fully disturbed to achieve the aim of uniform sparsity.

4. Image Encryption and Decryption Schemes

The main aims of image compression/encryption scheme proposed in this paper are
to improve the performance of image compression reconstruction and encryption secu-
rity. Therefore, the measurement matrix is designed using a 6D non-degenerate discrete
hyperchaotic system to improve the chaotic performance and the Arnold transform is
added to the CS process. To improve the ability to resist known- and chosen-plaintext
attacks, the measured value matrix is quantified and encrypted, and the scrambling al-
gorithm and bi-directional diffusion algorithm for the plaintext are developed using the
hyperchaotic system.

The proposed CS compression/encryption scheme consists of two main processes, CS
compression sampling and measurement quantization encryption, as shown in Figure 2.
The specific steps are discussed in detail in the following sections.
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4.1. CS Compression Sampling Process
4.1.1. Key Generation

The secure hashing algorithm SHA-256 is used to obtain the 256-bit hash value of the
image. The SHA-256 hash value H of a plaintext image is divided into 32 8-bit groups and
converted into decimal numbers, so H can be expressed as H = h1, h2, h3, . . . , h32, where hi
is a decimal number in the range [0, 255]. The initial values and parameters of the chaotic
system are as follows:

x1(0) = mod((x1
′(0) + (mod(h1 + h2 + h3 + h4 + h5, 256))/256), 1)

x2(0) = mod((x2
′(0) + (mod(h6 + h7 + h8 + h9 + h10, 256))/256), 1)

x3(0) = mod((x3
′(0) + (mod(h11 + h12 + h13 + h14 + h15, 256))/256), 1)

x4(0) = mod((x4
′(0) + (mod(h16 + h17 + h18 + h19 + h20, 256))/256), 1)

x5(0) = mod((x5
′(0) + (mod(h21 + h22 + h23 + h24 + h25, 256))/256), 1)

x6(0) = mod((x6
′(0) + (mod(h26 + h27 + h28 + h29 + h30, 256))/256), 1)

r1 = r1
′ + h31

r2 = r2
′ + h32

(16)

where {x1
′(0), x2

′(0), x3
′(0), x4

′(0), x5
′(0), x6

′(0)} denotes the preset initial values
and parameters, {r1

′, r2
′} is the pre-iteration number of the chaotic system, and the

value interval is [0, 255]. In this way, the chaotic system’s key sets are keys
K = {x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), r1, r2}.

4.1.2. Construction and Optimization of the Chaotic Measurement Matrix

In the measurement process of CS, the element of measurement value y is obtained
by multiplying the row vector of the measurement matrix by x. If the row vectors of the
measurement matrix are independent of each other, the correlation among the elements
of measured value y is reduced accordingly, thus improving the performance of CS recon-
struction. Hence, in the scheme proposed in this paper, we orthogonalize the rows of the
designed measurement matrix before using it for the CS. The construction and optimization
of the measurement matrix consist of the following steps:

1. Given initial values {x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)}, execute r1 + r2 + MN
iterations of the hyperchaotic system governed by (1) to obtain six chaotic sequences
{x1(i)}, {x2(i)}, {x3(i)}, {x4(i)}, {x5(i)}, and {x6(i)}.

2. Obtain a new chaotic sequence {Ci}MN−1
i=0 according to

{Ci}MN−1
i=0 = mod(x1(i) + x2(i) + x3(i) + x4(i) + x5(i) + x6(i), 1) (17)

3. Construct measurement matrix Φ column-by-column using chaotic sequence
{Ci}MN−1

i=0 . Matrix Φ0 is expressed as follows:

Φ0 =


C0 CM · · · CMN−M
C1 CM+1 · · · CMN−M+1
...

...
. . .

...
CM−1 C2M−1 · · · CMN−1

 (18)

4. Express matrix Φ0 as Φ0 =
(
α1

T , α2
T , . . . , αM

T)T in the form of row vectors. Let
β1 = α1, and use the following formula to normalize the row vectors:

βr = αr −
r−1

∑
i=1

〈βi, αr〉
〈βi, βi〉

βi r = 2, 3, . . . , M (19)

ηj =
β j

‖β j‖
j = 1, 2, . . . , M (20)
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where 〈α, β〉 denotes the inner product of vector α and β, and ‖β‖ denotes the 2-norm
of vector β. Finally, measurement matrix Φ =

(
η1

T , η2
T , . . . , ηM

T)T after orthogonal
normalization is obtained.

4.1.3. Image Sparsification and Sparse Coefficient Matrix Scrambling

A plaintext image P with size N × N is sparsified using the discrete wavelet trans-
form. The sparse coefficient matrix, denoted as SCM1, is obtained using the following
transformation process:

SCM1 = Ψ× P×Ψ′ (21)

where Ψ represents the orthogonal wavelet matrix and Ψ′ represents the transpose of Ψ.
The Arnold transform is then used to scramble the elements of coefficient matrix SCM1 to
obtain SCM2.

4.1.4. Compression Sampling

Measurement matrix Φ is used to measure coefficient matrix SCM2 column by column,
and the measured value matrix C0 with a size of M × N is obtained. At this time, the
amount of data in C0 is significantly less than that of the original image, which is convenient
for the subsequent encryption process.

4.2. Measurement Quantization Encryption
4.2.1. Measurement Matrix Quantization

The value of the output matrix after CS measurement generally extends beyond the
grayscale range of [0, 255]. Therefore, it must be quantized before encryption. This is
essentially a linear scaling and rounding of the measured value, limiting it to the range of
[0, 255]. The quantization process is expressed as follows:

P0 = f loor
(

255× (C0 −min)
max−min

)
(22)

where f loor(x) represents the maximum integer value that is not greater than x and min and
max are the minimum and maximum elements, respectively, of measurement matrix C0.

4.2.2. Generation of the Cryptographic Matrix

Four cryptographic matrices are generated using the proposed 6D discrete hyper-
chaotic system. Using the same chaotic sequence used in Section 4.1.2 improves the
utilization rate of the hyperchaotic sequences and the overall efficiency of the algorithm.
The steps are as follows:

1. The initial values {x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)} in key K are used to iterate
the 6D discrete hyperchaotic system r1 + r2 times. Next, the system continues to
iterate MN times to obtain six chaotic sequences, which are recorded as {x1(i)},
{x2(i)}, {x3(i)}, {x4(i)}, {x5(i)}, and {x6(i)}, where i = 1, 2, . . . , MN.

2. The following Equations are used to generate cryptographic matrices X, Y, Z, and W
in turn:

X(m, n) = f loor(mod((x1((m− 1)× N + n) + x2((m− 1)× N + n) + x3((m− 1)× N + n))× 1015, 256))
Y(m, n) = f loor(mod((x2((m− 1)× N + n) + x3((m− 1)× N + n) + x4((m− 1)× N + n))× 1015, 256))
Z(m, n) = f loor(mod((x3((m− 1)× N + n) + x4((m− 1)× N + n) + x5((m− 1)× N + n))× 1015, 256))
W(m, n) = f loor(mod((x4((m− 1)× N + n) + x5((m− 1)× N + n) + x6((m− 1)× N + n))× 1015, 256))

(23)

where m = 1, 2, . . . , M,n = 1, 2, . . . N. Matrices X and Y are used for diffusion and
matrices Z and W are used for scrambling.

4.2.3. Forward Diffusion

Measurement matrix P0 is transformed into matrix A by forward diffusion. The
specific steps are as follows:
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1. The first row of measurement matrix P0 is diffused from left to right as follows:{
A(1, 1) = (P0(1, 1) + X(1, 1) + r1)mod256
A(1, j) = (P0(1, j) + A(1, j− 1) + X(1, j))mod256 j = 2, 3, . . . N

(24)

2. The first column of measurement matrix P0 is diffused from top to bottom as follows:

A(i, 1) = (P0(i, 1) + A(i− 1, 1) + X(i, 1))mod256 i = 2, 3, . . . M (25)

3. Measurement matrix P0 is diffused in the first round along the diagonal direction
as follows:

A(i, j) = (P0(i, j) + A(i− 1, j) + A(i, j− 1) + X(i, j))mod256 i = 2, 3, . . . M, j = 2, 3, . . . , N (26)

After the above diffusion operation, matrix A is obtained.

4.2.4. Plaintext-Related Scrambling

Cryptographic matrices Z and W are used to calculate the permutation position
coordinates A(m, n) of matrix A(i, j), and then switch the positions of A(i, j) and A(m, n).
The steps for scrambling are as follows:

1. Calculate the sums of the row and column of A(i, j) (excluding element A(i, j)),
respectively denoted as Sumrow(i), Sumcol(j), that is,{

Sumrow(i) = sum(A(i, 1 to N))− A(i, j)
Sumcol(j) = sum(A(1 to M, j))− A(i, j)

(27)

2. Permutation coordinate A(m, n) of matrix A(i, j) is calculated as follows:{
m = (Z(i, j) + Sumrow(i))modM
n = (W(i, j) + Sumcol(j))modN

(28)

3. If the calculation is m = i or n = j, the permutation position coordinates of the
element are recalculated according to{

m = (i2modM) + 1
n = (j2modN) + 1

(29)

Using the above steps, the first row of matrix A is scrambled, then the first column of
matrix A is scrambled, and then the elements of matrix A are scrambled in order from left
to right and from top to bottom. The scrambled matrix is denoted as B.

4.2.5. Backward Diffusion

Matrix B is transformed into matrix C1, which is the cipher-text image, by backward
diffusion. The steps are as follows:

1. Diffuse the last row of matrix B from right to left using the following expression:{
C1(M, N) = (B(M, N) + Y(M, N) + r2)mod256
C1(M, j) = (B(M, j) + C1(M, j + 1) + Y(M, j))mod256 j = N − 1, . . . , 2, 1

(30)

2. Diffuse the last column of matrix B from the bottom up as follows:

C1(i, N) = (B(i, N) + C1(i + 1, N) + Y(i, N))mod256 i = M− 1, . . . , 2, 1 (31)

3. Matrix B is diffused in the second round along the inverse diagonal direction by

C1(i, j) = (B(i, j) + C1(i + 1, j) + C1(i, j + 1) + Y(i, j))mod256 i = M− 1, . . . , 2, 1, j = N − 1, . . . , 2, 1 (32)
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After the above operation, cipher-text image C1 is obtained.

4.3. Image Decompression and Decryption Process

The decompression and decryption process is the reverse of the compression and
encryption process. The steps are summarized as follows:

1. Six key streams are obtained by iterating the new 6D discrete hyperchaotic system
with key K, and then four cryptographic matrices are obtained.

2. The received cipher-text image is processed using the inverse operations of backward
diffusion, scrambling and forward diffusion, and quantized measured value matrix
P0 is obtained.

3. Recovered measurement C0 is obtained by inverse quantization of quantized mea-
surement matrix P0 according to

C0 =
P0 × (max−min)

255
+ min (33)

4. Key K is used to iterate the new 6D discrete hyperchaotic system and obtain chaos
measurement matrix Φ.

5. Restored measurement matrix C0 is reconstructed using the OMP algorithm, and re-
stored sparse coefficient matrix SCM2 scrambled by the Arnold transform is obtained.

6. The inverse Arnold transformation is performed on coefficient matrix SCM2 to obtain
restored sparse coefficient matrix SCM1.

7. To obtain the restored original image P of size N× N, a sparse inverse transformation
is performed on SCM1 according to

P = Ψ′ × SCM1 ×Ψ (34)

5. Simulation and Performance Analysis

To illustrate the performance of the proposed scheme, simulation results and a per-
formance analysis are presented in this section. In this study, MATLAB R2016a was
used for the simulation experiments. Because the difference in the pixel distributions
of different images will affect the compression performance and encryption results of
the algorithm, we use different grayscale images of size 256×256 for the simulation tests
such as Lena, Cameraman, Goldhill, and Clock. The compression ratio of the images
was set to 50%, the discrete wavelet transform was used to sparsify the image, and the
OMP algorithm was used to reconstruct the image. The initial values and parameter set-
tings of the 6D discrete hyperchaotic system were as follows: x1

′(0) = 0.276025076998578,
x2
′(0) = 0.585267750979743, x3

′(0) = 0.547215529963803, x4
′(0) = 0.489764395788231,

x5
′(0) = 0.694828622975817, x6

′(0) = 0.840717255983663, r1
′ = 41, and r2

′ = 136. The
parameters of the Arnold transformation were set to p = 3, q = 5, and n = 10.

The simulation results are shown in Figure 3. The first to fourth columns represent
the original images, the encrypted images based on CS, the final encrypted images, and the
decrypted reconstructed images. From the perspective of the final encryption results, no
meaningful information can be obtained from the ciphertext image in the third column.
The compression and reconstruction results show that the size of the ciphertext image
is only half that of the original image, which greatly reduces the image file size, storage
space, and transmission bandwidth required for transmission. Moreover, as the fourth
column shows, the reconstructed images are visually very similar to the corresponding
original images.
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These results demonstrate the encryption results and compression performance of the
scheme well. To comprehensively evaluate the compression performance and encryption
security of the proposed scheme, a detailed analysis was carried out to evaluate the com-
pression performance, statistical properties, key space, key sensitivity, plaintext sensitivity,
and information entropy. The results are presented in the folowing sections.

5.1. Image Decompression and Decryption Process

Figure 4 compares the original and reconstructed images for different compression
ratios. The compression ratios from the second to fourth columns are 25%, 50%, and
75%. The figure shows that when the compression ratio is 75%, the difference between
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the reconstructed image and the original image is very small. As the compression ratio
decreases, the quality of the reconstructed image gradually decreases, but even when
the compression ratio is 25%, the main information of the original image can still be
distinguished in the reconstructed image.
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By evaluating the PSNR and SSIM of the reconstructed image under different com-
pression ratios, the reconstruction quality of the image can be better understood. PSNR is
the most widely used image objective evaluation index. PSNR is usually used to judge the
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quality of the decrypted image [50]. A larger PSNR value indicates a smaller the difference
between the two images and a higher reconstruction accuracy. PSNR is defined as follows:

PSNR= 10lg
255× 255(

1
M×N

) M
∑

i=1

N
∑

j=1
(X(i, j)−Y(i, j))2

. (35)

SSIM is also a commonly used image quality evaluation index. It measures image
similarity with respect to three factors: brightness, contrast, and structure [51]. The value
range of SSIM is [0, 1], and a larger value indicates a smaller image distortion. SSIM is
defined as follows:

SSIM =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) , (36)

where µx and µy are the means of the plaintext and ciphertext images, respectively; σx and
σy are their variances, and σxy is their covariance. Here, c1 = (k1L)2, c2 = (k2L)2, k1 = 0.01,
k2 = 0.03, and L = 255.

It can be seen from Figure 5 that as the compression ratio of the ciphertext image
increases, the SSIM and PSNR values of the reconstructed image also increase. Moreover,
the PSNR values of the reconstructed image are all above 30 dB, even at a compression
rate of 30% for the four images tested. PSNR values over 30 dB indicate that the compres-
sion/encryption scheme proposed in this article achieves a very high compression rate
and good reconstruction results. In addition, when the compression rate is fixed, different
images have different PSNR and SSIM values, so the compression ratio can be flexibly set
for different types of images according to requirements.
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The following analysis compares the compression/encryption scheme proposed in this
article with other hyperchaotic system-based schemes. As an example, Table 3 shows the
PSNR values of Lena images reconstructed with different schemes when the compression
ratio is 0.75.

Table 3. PSNRs (dB) of different compression/encryption schemes.

Image CR Ours Ref. [52] Ref. [16] Ref. [36]

Lena 0.75 36.21 29.56 29.22 33.25
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It can be seen from Table 3 that of the compression/encryption schemes are based on
different hyperchaotic systems, the PSNR values of the image recovered by the compres-
sion/encryption scheme based on the proposed 6D hyperchaotic system is relatively large,
indicating that it has good compression and reconstruction performance.

5.2. Statistical Analysis
5.2.1. Correlation Analysis

The correlation between adjacent pixels is a very important performance indicator for
evaluating image encryption schemes. Because of the characteristics of image data, there is
a strong correlation between adjacent pixels in an image, so the correlation coefficient of
plaintext images is usually very high. An effective image encryption scheme should mini-
mize the correlation of ciphertext images, thereby improving its ability to resist statistical
attacks [53]. The closer the correlation coefficient of adjacent pixels is to 0, the better the
encryption results. The correlation coefficient is calculated as follows:

cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y))

E(x) = 1
N

N
∑

i=1
xi

D(x) = 1
N

N
∑

i=1
(xi − E(x))2

rxy = cov(x,y)√
D(x)D(y)

(37)

In (37), x and y are the pixel values of the adjacent pixels of the image to be tested,
N is the number of selected pixels, and E(x) and E(y) are the average values of all x and
y. In addition, D(x) is the variance, cov(x, y) is the covariance, and rxy is the correlation
coefficient. In this experiment, we used Lena, Cameraman, Peppers, and Clock, with a size
of 256 × 256, as the plaintext images. To calculate the correlation coefficient, 10,000 pairs
of pixels were randomly selected from the plaintext image and ciphertext images in the
horizontal, vertical, and diagonal directions. The calculation results are shown in Table 4.

Table 4. Correlation coefficients of adjacent pixels in different images.

Direction
Lena Cameraman Peppers Clock

Plaintext Ciphertext Plaintext Ciphertext Plaintext Ciphertext Plaintext Ciphertext

Horizontal 0.9701 −0.0023 0.9545 −0.0064 0.9625 0.0044 0.9741 0.0017
Vertical 0.9432 0.0051 0.9352 0.0141 0.9533 −0.0056 0.9579 −0.0149

Diagonal 0.9169 0.0124 0.9068 0.0016 0.9258 0.0098 0.9424 −0.0068

The data in Table 4 show that the correlation coefficients of adjacent pixels in the
plaintext image are all close to 1 in all three directions, whereas the corresponding correla-
tion coefficients in the encrypted image are all close to 0, which indicate that the adjacent
pixels of the ciphertext image have almost no correlation between adjacent pixels. Hence,
the encryption algorithm proposed in this paper can effectively reduce the correlation
between the adjacent pixels of encrypted images. As a result, attackers cannot obtain useful
information from encrypted images through statistical attacks.

To compare the correlation between adjacent pixels of the image before and after
encryption more intuitively, we use the Lena image as an example and plot the correlation
of their adjacent pixels in the horizontal, vertical, and diagonal directions in Figure 6. This
figure shows the pixel distributions of the Lena image before and after encryption, and
it can be seen that the pixel distributions follow a certain rule. After encryption by the
proposed encryption algorithm, the distribution of the adjacent pixels of the ciphertext
image becomes uniform, and the correlation is substantially reduced. Table 5 shows the
correlation results of adjacent pixels in different directions for each evaluated scheme.
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When compared with existing methods [29,54], the proposed encryption scheme yields
images with weaker correlation in the horizontal and vertical directions.
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Table 5. Correlation coefficients of the encrypted Lena image compressed using different algorithms.

Horizontal Vertical Diagonal

Lena 0.9701 0.9432 0.9169
Encrypted Lena −0.0023 0.0051 0.0124

Ref. [29] −0.0065 0.0073 0.0042
Ref. [55] 0.0597 −0.0766 0.0083

5.2.2. Histogram Analysis

The image histogram is often used to count the frequencies of each pixel value, and it
can intuitively display the distribution of all the image pixel values. To prevent an attacker
from obtaining useful statistical information from the ciphertext histogram, the encrypted
images corresponding to different plaintext images should have distributions similar to the
distribution of white noise. Figure 7 shows the simulation results of the histograms.

It can be seen from Figure 7 that the pixel value distributions of different plaintext
images have their own characteristics and their ciphertext image histograms are all ap-
proximately uniformly distributed. Moreover, the attacker cannot obtain any statistical
information from the ciphertext image. Therefore, the image compression/encryption
algorithm proposed in this paper can resist statistical analysis attacks.
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5.3. Information Entropy Analysis

Information entropy effectively measures the randomness of image information. Gen-
erally, higher image information entropy indicates higher uncertainty. For encrypted
images, a larger ciphertext image information entropy indicates better image encryption.
The information entropy is calculated as follows:

Hx = −
2N−1

∑
i=0

P(xi) log2 P(xi) (38)

where P(xi) represents the probability of the grayscale value xi and N represents the
number of bits of xi. For a grayscale random image with a gray level of 256, the theoretical
value of Hx is 8 [55]. Table 6 shows the information entropy of images encrypted using
different compression rates.

Table 6. Information entropy of plaintext and ciphertext images.

Compression Ratio
Image

Lena Cameraman Peppers Clock

Information
Entropy

0.25 7.9889 7.9892 7.9886 7.9878
0.5 7.9951 7.9953 7.9946 7.9943
0.75 7.9968 7.9966 7.9963 7.9965

Table 6 shows that the information entropy of each ciphertext image is very close
to the theoretical value even with different compression rates. Therefore, the compres-
sion/encryption scheme proposed in this paper can achieve image compression and encryp-
tion simultaneously, and the encrypted image has good randomness and sufficient security.

5.4. Key Space Analysis

The key space reflects the ability of the image encryption algorithm to resist brute
force attacks. A larger key space indicates that an algorithm will perform better under
brute force attacks. In cryptography, to ensure the security of the encryption system, the



Entropy 2021, 23, 291 19 of 25

key space must be larger than 2100 [56]. In the encryption scheme proposed in this paper,
the key is composed of the initial value of chaos and the number of initial iterations, that
is, Key = {x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), r1, r2}, with a total of eight parameters,
where {r1, r2} is a 9-bit integer with a value range of [0, 511]. According to the IEEE
floating-point standard [57], the precision of a double-precision number is about 10−15,
so our key space is up to Keytotal = (29)

2 × (1015)
6 ≈ 2318 in size. If the parameters and

iterations of the Arnold transform are also regarded as keys, our key space is even larger.
Therefore, the key space of the algorithm meets the standard for security and can resist
exhaustive attacks.

5.5. Key Sensitivity Analysis

Key sensitivity is an important indicator that evaluates the security performance of a
cryptographic system. In a good cryptographic system, using two groups of slightly differ-
ent keys to encrypt the same plaintext should produce two completely different ciphertext
images; similarly, for the same ciphertext image, if the key is only slightly different from
the correct key for decryption, the decrypted image should also be completely different.

5.5.1. Key Sensitivity Analysis of Encryption Process

In the key sensitivity analysis, a cipher image is obtained by encrypting Lena im-
age with a secret key x1(0) = 0.813939566318005, x2(0) = 0.734699782001722, x3(0) =
0.556216746791949, x4(0) = 0.914120914440195, x5(0) = 0.762839996440578, x6(0) =
0.656111356786732, r1 = 200, and r2 = 200. Taking x1(0) as an example, the key x1

′(0) is
obtained by introducing a tiny change (10−15), and the Lena image is encrypted with this
key. The results are shown in Figure 8.
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Figure 8 shows the difference between the corresponding cryptographic image and
the two cryptographic images obtained by encrypting the same image with the two sets of
keys. The results show that a small change in the key will lead to a completely different
encrypted image.

5.5.2. Key Sensitivity Analysis of the Decryption Process

To evaluate the key sensitivity of the decryption process, we used the above key to
encrypt the Lena image. Taking x1(0), x2(0) as an example, we decrypted the Lena image
by introducing a small change (10−15) to obtain key x1

′(0), x2
′(0). The result is shown

in Figure 9.
Figure 9 shows the decrypted images obtained by decryption using the correct key

and an incorrect key with minor changes. The results show that any slight change in the
decryption key will cause the decryption to fail.
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These simulation results demonstrate that the image compression/encryption algo-
rithm proposed in this paper has good key sensitivity.

5.6. Plaintext Sensitivity Analysis

In known- or chosen-plaintext attacks, the attacker uses the same key to encrypt two
images after making small changes to a certain plaintext image. By comparing the two
encrypted images, he or she can determine the difference between the plaintext image
and the encrypted image to crack the password system. To resist this type of attack,
the encryption system should have strong plaintext sensitivity, that is, two plaintext
images with small differences should have substantial differences after passing through
the encryption system.

In the compression/encryption scheme based on 6D discrete chaotic system proposed
in this paper, the SHA-256 function is used to calculate the hash value of the plaintext
image, and it is used as the initial value of the hyperchaotic system. When a plaintext
image pixel changes slightly, a completely different chaotic sequence will be output, which
leads to a completely different measurement matrix and cryptographic matrix for the
encryption phase. Similarly, when scrambling the plaintext, the position of each pixel after
scrambling is closely related to its pixel value, and if a bit of the pixel value changes, the
corresponding scrambled position will also change. The attacker is unable to derive the key
used by this algorithm from any encrypted image, so it is unable to decrypt the plaintext
image. Therefore, the compression/encryption scheme proposed in this paper can resist
both known- and chosen-plaintext attacks.

To evaluate the plaintext sensitivity of the encryption scheme proposed in this paper,
we quantitatively analyzed the difference between the ciphertext images of two slightly
different plaintext images. The main indicators to measure the difference between the two
images include the pixel change rate (NPCR) and the unified average change intensity
(UACI) [58]. The former reflects the ratio of the number of different pixels to the number
of all pixels, whereas the latter reflects the average ratio of the difference of all the corre-
sponding pixels to 255 in the two images. Typical values of NPCR and UACI are 99.61%
and 33.46%, respectively, and these metrics are calculated as follows:

D(i, j) =
{

0, C1(i, j) = C2(i, j)
1, C1(i, j) 6= C2(i, j)

NPCR(C1, C2) =
1

M×N

M
∑

i=1

N
∑

j=1
D(i, j)× 100%

UACI(C1, C2) =
1

M×N

M
∑

i=1

N
∑

j=1

|C1(i,j)−C2(i,j)|
255 × 100%

(39)

We choose the 256 × 256 Lena, Cameraman, Peppers, and Clock images as the ex-
perimental images. We randomly selected a pixel C1(i, j), changed its pixel value by an
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increment of 1 to obtain image C2(i, j). Using the same key to encrypt the two images, we
calculated the NPCR and UACI. The results are shown in Table 7.

Table 7. UACI and NPCR values obtained using the proposed algorithm.

Image NPCR (100%) UACI (100%)

Lena 99.6080 33.4561
Cameraman 99.6143 33.4589

Peppers 99.6106 33.4697
Clock 99.6071 33.4721

Table 7 shows that the calculated NPCR and UACI values are very close to the
ideal values, indicating that the encryption scheme proposed in this paper has strong
plaintext sensitivity.

5.7. Time Complexity Analysis

Except for security, time is also an index used to assess the performance of image
encryption algorithms. The experimental environment of this study included MATLAB
R2016a, Inter Core i5-3230M with a central processing unit (CPU) at a frequency of 2.6 GHz
with 8-GB random access memory (RAM) on Windows 10. The aim was to analyze the
encryption and decryption time of different images at different CRs. The experiment was
repeated 20 times, and the results of the above experiments were then averaged. The results
are shown in Table 8.

Table 8. Encryption and decryption time of the proposed scheme (in s).

CR Lena Cameraman Peppers Clock

Encryption time
0.25 0.4115 0.4125 0.3958 0.4064
0.5 0.5028 0.4959 0.4761 0.5030
0.75 0.6127 0.5933 0.6067 0.6169

Decryption time
0.25 3.5099 3.0761 3.1410 3.1358
0.5 6.4591 6.2996 6.3754 6.3499
0.75 10.5292 10.6391 10.4168 10.5386

The following can be observed from Table 8. (1) Different plaintext images have
minor effects on the encryption and decryption times. (2) For the same original image,
the encryption and decryption time at different compression ratios are different, and as
the CR increases, the decryption time also increases. The main reason is attributed to
the fact that in the CS reconstruction process used to solve the optimal solution, the time
needed to complete the process increases as the measurement matrix increases. In addition,
the SHA-256 algorithm was used to generate the hash value of a plaintext image and
further calculate the initial value of a chaotic system to improve the ability to resist the
chosen-plaintext attacks. However, owing to the structure of the algorithm and the large
number of iterations, the encryption speed is reduced. To address the efficiency problem of
the hash algorithm, relevant research has been conducted on adaptive chaotic maps [59–61],
including the use of an adaptive chaotic map to generate the hash function [59]. In this
scheme, the adaptive map is used as the compression function, whereas in the piecewise
adaptive maps, different adaptive coefficients can be flexibly used according to different
subdomains. The results from previous studies indicate that the hash function constructed
by the adaptive chaotic map can be used as one of the effective methods for solving the time
costs of an encryption system. In future research, we will consider different hash function
construction methods, and we will introduce them into the compression encryption system
proposed in this paper for in-depth research, considering the complexity of the entire
system while optimizing the time performance of this scheme.
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In summary, the encryption time of the scheme proposed in this study is shorter, and
the larger the compression rate, the longer the decryption time. Therefore, the algorithm
performs better at the smaller compression rate. Therefore, in practical applications, a
comprehensive selection of encryption time and CR should be made according to the actual
situation. The decryption speed of this scheme is slow. In the follow-up research, block
CS or other reconstruction algorithms can be considered to improve the encryption and
decryption speeds. Moreover, the encryption and decryption times depend on the CPU,
RAM size, operating system and programming language, and the efficiency of encryption
and decryption can be improved by optimizing the selection of the above parameters.

6. Conclusions

In this paper, a 6D non-degenerate discrete hyperchaotic system with six positive
Lyapunov exponents was proposed and used in a CS encryption framework. In addition,
a CS encryption scheme that can realize both image compression and encryption was
proposed. We also confirmed that the analysis and verification of the fact that the 6D
discrete hyperchaotic system proposed herein was feasible and can be used for image
encryption. In the encryption scheme, the Arnold transform is used to scramble the sparse
coefficients to obtain uniform sparsity. Then, the measurement matrix is designed and
optimized using the proposed 6D hyperchaotic system, and finally, the CS measurement
process is carried out. In the measured value encryption stage, the position of the scrambled
element is closely related to the value of the element, which has high plaintext and key
sensitivity, and can resist known- and chosen-plaintext attacks. In addition, the key
used in the chaotic system is generated by the SHA-256 value of the original image,
which greatly increases the ability of the algorithm to resist plaintext attacks. Simulation
experiments and analysis show that the CS encryption scheme proposed in this paper has
better compression and reconstruction performance as well as the ability to resist known-
and chosen-plaintext attacks.

However, the study had the following limitations:

(1) In practical applications, color images or high-resolution images may be more exten-
sively used. However, this scheme only realizes the compression and encryption of
grayscale images.

(2) The decryption time of this scheme is relatively long.
(3) The scheme only compresses and encrypts one image at a time.

Therefore, to overcome these limitations of the current scheme, future work will focus
on the:

(1) extension of the scheme to color images or high-resolution images,
(2) consideration using block compressed sensing or other reconstruction algorithms to

improve the speed of encryption and decryption, and
(3) simultaneous realization of the compression and encryption of multiple images.
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