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Abstract

Pancreatic cancer (PC) is one of the most lethal cancers, with frequent local therapy resistance and 

dismal 5-year survival rate. To date, surgical resection remains to be the only treatment option 

offering potential cure. Unfortunately, at diagnosis, the majority of patients demonstrate varying 

levels of vascular infiltration, which can contraindicate surgical resection. Patients unsuitable for 

immediate resection are further divided into locally advanced (LA) and borderline resectable (BR), 

with different treatment goals and therapeutic designs. Accurate definition of resectability is thus 

critical for PC patients, yet the existing methods to determine resectability rely on descriptive 

abutment to surrounding vessels rather than quantitative geometric characterization. Here, we aim 

to introduce a novel intra-subject object-space support-vector-machine (OsSVM) method to 

quantitatively characterize the degree of vascular involvement -- the main factor determining the 

PC resectability. Intra-subject OsSVMs were applied on 107 contrast CT scans (56 LA, BR and 26 

resectable (RE) PC cases) for optimized tumor-vessel separations. Nine metrics derived from 

OsSVM margins were calculated as indicators of the overall vascular infiltration. The combined 

sets of matrics selected by the elastic net yielded high classification capability between LA and 

BR (AUC=0.95), as well as BR and RE (AUC=0.98). The proposed OsSVM method may provide 

an improved quantitative imaging guideline to refine the PC resectability grading system.
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1 Introduction

Pancreatic cancer (PC) is one of the most malignant cancers, with a collective median 

survival of 4–6 months and a 5-year survival rate as low as 5% [1, 2]. Currently, surgical 

resection remains to be the only potentially curable treatment, which increases the 5-year 

survival rate to 12–20%, compared to <1% for unresectable cases [3]. However, at the time 

of diagnosis, only an estimated 10% - 20% of patients present with resectable disease. The 

majority of patients demonstrate varying levels of vascular infiltration, which can 

contraindicate surgical resection. Patients with tumor vasculature infiltration are further 

classified into borderline resectable (BR) and locally advanced (LA) PC, which are subject 

to different treatment goals and therapeutical regimens. As a result, differentiating patients 

with surgical potential from those with unresectable diseases is of paramount importance in 

patient management. However, there is a scarcity of standardized criteria for defining 

resectability.

The ambivalence in the existing clinical definition of resectability is in part attributed to the 

lack of consensus over multiple radiologic grading systems. The criteria of resectability have 

been evolving with the advances of surgical techniques. Tumors once considered locally 

advanced may now have surgical potential. For instance, any degree of involvement from 

superior mesenteric vein/ portal vein (SMV/PV) would have precluded the tumor from 

resection using criteria from decades ago [4], while the newer National Comprehensive 

Cancer Network (NCCN) and Alliance guidelines consider SMV/PV involvement up to 180° 

for surgical resection [5, 6]. Moreover, since the concept of resectability implies a subjective 

consensus between a specific surgeon and a radiologist, substantial inter-institutional 

variability exists [5].

The coarsely descriptive guideline in current radiologic grading systems is another barrier to 

implement standardized resectability definition [7, 8]. Current PC resectability definition 

categorized abutment of vessels derived from contrast-enhanced computerized tomography 

(CT). Targeting at only a few major vessels, such as PV, SMV, SMA (superior mesenteric 

artery), the crude criteria are unable to assess the overall vascular involvement and the wide 

spectrum of patients from deemed unresectable to resectable. As illustrated in Figure 1, 

while current criteria based on axial views (top row) have roughly divided the left 5 subjects 

as 3 LA and 2 BR, 3D renderings (middle row) show different levels of vascular 

involvement within each diagnostic group. In addition, the current classification of the vessel 

abutment (e.g.<180°, ≥180°) complicates the interpretation of patients falling into the 

categorical boundaries, thus is prone to inter-observer variabilities. Furthermore, for 

response assessment, there are large gaps between resectable (RE), BR and LA using current 

criteria, resulting in insensitive detection of tumor partial responses (i.e. tumors partially 

regressed, albeit failed to be downgraded below the BR/RE threshold). Therefore, to develop 

an objective grading system of resectability that is sensitive to the subtle variation of disease 

status, a quantitative measurement of vascular involvement is clearly needed.

In this study, we introduce a novel organ-space support vector machine (OsSVM) based 

method for PC resectability evaluation on contrast-CT. Our aim is two-fold: first, to 

quantitatively characterize the tumor-vessel relationship using intra-subject OsSVM derived 
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metrics; second, to validate the feasibility of using the derived metrics to classify PC groups 

with varying resectability (LA, BR, and RE).

2 Methods

2.1 Subjects and Data

Under Institutional Review Board (IRB) approval, 92 PC patients aged 31–90 years (mean: 

65.4, std:11.6) were retrospectively solicited from our institutional database between 2011 to 

2018. The CT imaging analysis was carried out in accordance with the minimal risk policy 

defined by the IRB. The selection criteria are as follows: 1) having undergone diagnostic 

contrast CT scan at our facility; 2) clinical diagnosis of resectability (LA, BR or RE). 3) RE 

patients underwent margin-negative resection. Fifteen of the 92 patients with the initially 

unresectable disease were downstaged to RE after neoadjuvant treatment. They were then 

treated as independent subjects in this analysis, increasing the total of PC cases to 107 (56 

LA, 25 BR, and 26 RE). Each patient underwent an abdominal contrast CT scan with 100 cc 

iodixanol, 350mg I/ml contrast injection. Multiple CT scanners were used including Optima 

580, HiSpeed NX/i, LightSpeed VCT (General Electric HealthCare, Massachusetts, U.S.); 

and Gemini (Philips Healthcare, Amsterdam, Netherlands). Hepatic phase scans were 

obtained approximately 60 seconds after the contrast agent injection. Most of the CT images 

have spatial resolution of 1.26mm × 1.26mm × 2.5mm, with pixel spacing ranging from 1–

1.26 mm and slice thickness ranging from 2.5–5 mm. Quality assurance was routinely 

performed on all CT scanners to maintain consistent inter-scanner calibration through time.

2.2 Data preprocessing

The processing pipeline is illustrated in Figure 2. On the contrast CT, tumor boundaries and 

surrounding vessels were manually delineated by a radiation oncologist (>5 years of 

experience). Vessels were segmented mainly on axial slices spanning the tumor superior-

inferior extension, with 10 mm margin on both ends. The intra-rater reliability (intersection 

over union) score was 0.89 for tumor and 0.93 for vessels, among four participants at two 

different time points spanning eight weeks.

Segmentation of tumors and surrounding vessels were converted to the individual-wise 

volume of interest (VOI). To reduce the inter-subject variation, VOIs were first resampled to 

the same dimension (1×1×1mm) and then transformed to the corresponding center of mass. 

A bounding box extending 10mm outside the tumor boundaries was further applied to 

include vessels that adjacent to the tumor. The harmonized VOIs were used to build 

statistical tumor-vessel relationship models in the following steps.

2.3 Hyperplane and critical points

A radial basis function (RBF) kernel SVM classifier [9, 10] was used to define the intricate 

tumor-vessel relationship by separating the two structures according to their anatomical 

locations. Specifically, with points xi in the VOI and the corresponding class yi (1 for tumor, 

−1 for the vessel), we aim to find the decision surface that separates the two structures with 

the maximized margin. The decision surface is termed a hyperplane in SVM. To find the 
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optimal hyperplane, it is computationally efficient to solve for the Lagrangian dual 

formation with the constraints such that:

maxLD αi ∑i αi − 1
2 ∑i ∑jαi ⋅ αj ⋅ yi ⋅ yj ⋅ K xi ⋅ xj

s . t .
∑

i
yiαi = 0

0 ≤ αi ≤ C .

(1)

where K is an RBF kernel (with kernel scale γ) that transforms the linearly inseparable data 

into a higher dimensional space, C is a box constraint which trades off the fit of solutions 

with the simplicity of the hyperplane. The non-zero Lagrange multipliers (α) from the 

optimizing process play a critical role in determining the location of the hyperplane and 

correspond to the support vectors.

Different from traditional SVM analysis that seeks a single model for the whole patient 

cohort, here we aim to build a patient-specific model and then compare the levels of 

misclassification among different PC groups. Same hyper-parameter settings were used for 

individual patient models to afford fair inter-subject comparisons. Using randomly selected 

10 RE cases as a test set, γ = 4 and C=10 were set to achieve a reasonable runtime and low 

misclassification rate in the RE cases (Figure 3).

2.4 Margins of critical points

Resectability is analogous to the separability between the class tumor and the class vessel, 
which can be determined by the margins of the critical points (support vectors). The 

classification margin, a confidence measure of the separation, is defined as:

mi = 2yif xi (2)

where xi is an observation, yi ∊ {−1, 1} is the corresponding true label, and f(xi) is the 

predicted score from the above SVM model. A larger m value represents a higher 

classification confidence of the observation. The magnitude and distribution of m from the 

critical points corresponding to the class vessel characterize the extent of vascular invasion. 

In this study, several margin-derived metrics were developed/adopted to quantify 

misclassification of each individual OsSVM model. The margin-derived metrics are 

described as follows.

First, deeply penetrating vessel points, or points with lower classification confidence, impact 

the resectability more than the less invasive points. Thus, Pvi was defined to heavily penalize 

the deeply embedded vessel points in the estimation of overall vascular invasion:

Pvi = ∑i
1

e mi − 2 (3)

It would also be of clinical interest to determine the maximum vascular penetration level so 

that vessels with a small portion deeply invaded by the tumor can be differentiated from the 
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vessels with a large portion with shallow tumor infiltration, despite their similar Pvi values. 

Given the anatomies of the pancreatic tumors and major surrounding vessels, separation 

hyperplanes were mainly oriented in the inferior-superior direction (Figure. 2 (b)), or Z 
direction. The maximum penetration was calculated as:

Pmax = max
zu ∈ z

{∑ xi ∈ SV v:xiz = zu mi} (4)

In addition to Pvi and Pmax, the average and variance of critical point margins (Pmean and 
Pvar) were also used as two intuitive indicators of the margin distribution. In addition, since 

the histogram is also effective in interpreting data distribution, such as the asymmetry and 

outliers [11], five commonly used histogram-based metrics were included in the analysis: 

mean (Hmean), variance (Hvar), skewness (Hskew), kurtosis (Hkurt), and energy (Hener)). Note 

that the referred histograms were calculated based on the distribution of margins, which are 

different from image intensity based histograms commonly used in radiomic features [12, 

13].

2.5 Statistical analysis

Between-group student t-tests were first employed for each metric independently to evaluate 

their corresponding classification capacity differentiating LA and BR. The classification 

power was further tested using logistic regression followed by receiver operating 

characteristic (ROC) analyses.

To test if a combination of multiple metrics would further increase classification power, 

regularized logistic regression via the elastic net (EN) was used to narrow down a selection 

of features [14]. Specifically, using:

argmin
β

{ 1
N ∑i = 1

N L β, X, Y − λ[ 1 − α
β 22
2 + α β 1]} (5)

where X is the input feature set, Y is the corresponding group label set (0 for LA, 1 for BR), 

β is the regression coefficient, and λ is a regularization parameter. The size of β is penalized 

by EN based on a weighting of the L1- and L2-norms, where L1-norm encourages feature 

sparsity and L2-norm encourages feature grouping. The weighting coefficient α is selected 

as 0.5. The model was validated through 8-fold cross-validation with one standard deviation. 

The classification power of metrics selected by EN was then evaluated by ROC analysis.

The same analyses were also applied to discriminate RE from BR, as well as RE from all 

unresectable cases (UnRE, LA + BR).

3 Results

3.1 Metric distributions and Group comparisons

Figure. 4 shows the box plots of all 9 OsSVM derived metrics. The mean Pvi, Pmax, Pvar, 

Hvar, and Hskew of LA, BR, and RE decrease following the order of tumor involvement. On 

the other hand, the mean Pmean, Hmean, Hkurt, and Hener showed the opposite trends, 
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indicating increasing confidence of tumor-vessel separation from LA to RE. The correlation 

between one of OsSVM derived metrics and resectability is shown in Figure. 1, where Pvi 

decreases monotonously with increasing resectability. The corresponding pair-wise group 

comparisons are displayed in Table. 1. All metrics significantly (p<0.05) differentiate 

between LA and BR, BR and RE, as well as UnRE and RE.

3.2 Univariate and multivariate regressions

ROC analyses of the OsSVM derived metrics are shown in Table. 2 and Figure. 5. Not 

surprisingly, by penalizing the penetrating vascular points, Pmax and Pvi were the 2 most 

sensitive classifiers for LA and BR (Figure. 5 (a)), yielding AUCs of 0.91 and 0.89, 

respectively. Based on 8-fold cross-validation, five of the nine metrics (Pmax, Pvi, Pmean, 

Hskew, and Hkurt) were selected by the elastic net as significant features (Table. 2). The 

classification accuracy combining the five features outperformed any single feature, 

achieving AUC of 0.95.

For the classification of BR and RE, all metrics except Pvi yield AUCs greater than 0.96, 

indicating a clear differentiation of tumor vessel infiltration between the two groups using 

OsSVM model. Four metrics (Pmax, Pvar, Pmean, and Hener) were selected by the elastic net 

as significant features. The combined metrics further improved the AUC to 0.98. By 

merging LA and BR to be a single UnRE group, consistently better AUC performance than 

the classification of BR and RE was observed likely due to larger sample size. In the merged 

case to differentiate RE from UnRE, six metrics (Pmax, Pvi, Pvar, Pmean, Hener, and Hvar) 

were selected by the elastic net resulting nearly perfect AUC.

4 Discussion

Defining resectability is essentially a problem of interpreting the relative spatial 

relationships of two image objects: the tumor and the vessels. Among the existing tools, 

force histograms (F-histograms) are state-of-the-art descriptors to interpret directional 

relations, such as ‘among’, ‘between’, and ‘surround’ [15, 16]. The fuzzy model has been 

further developed to quantify the semantic directional description so that the degree to which 

a target object is in a certain direction with respect to a reference object can be evaluated 

[17, 18]. While playing a vital role in interpreting images with simple shapes, F-histograms 

or fuzzy models inadequately integrate the topological and distance information of objects in 

spatial relation reasoning, thus cannot model complicated spatial relationships in medical 

images, especially with the presence of blood vessels.

For complex spatial configurations, Clément et. al characterized the degree of imbrication in 

2D retinal images using an advanced circular histogram algorithm [19]. However, the 

imbrication metric may not accurately describe PC resectability because the spacing 

between the image objects was not integrated into the calculation. Toesca DA et. al provided 

a 0–10 score criterion based on the maximum circumferential degree and length of solid 

tumor contact in CT images [20]. With a decision tree derived cut-off in 294 patients, this 

finer scoring system achieved an accuracy of 97% in R0 resection prediction. However, the 

semi-quantitative criterion still relied on unidimensional measurements on a limited of major 

peripancreatic vessels, and thus lack overall estimation of the whole perivascular 
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involvement. To extract more insights over the whole 3D tumor volume, Van der Putten et. al 

had tried to use radiomic features, drawn from intensities and spatial arrangement of voxels, 

to predict resectability. Specifically, from 90 radiomic features, he used the Relieff feature 

selection to narrow down a set of 9 features in 50 patients and achieved a sensitivity of 93% 

and a specificity of 67% in resectable versus unresectable classification [21]. While 

providing additional insights about tumor heterogeneity, the application of radiomics in PC 

resectability is limited by the unclear interpretability of the radiomic features and the 

imbalance between number of features and sample size [22].

We took a different approach in this study. Mimicking the goal of surgical resection, we used 

OsSVM classifiers to create a hyperplane that maximally separates the tumor and vessels. 

The resultant misclassification correlates to the level of vascular infiltration. The margin 

calculation based on critical points is consistent with the actual clinical condition that only 

the portion of vessels adjacent to the resection margin matters. The efficacy of the OsSVM 

model is highlighted in Figure 1, where the inter-subject differences spanning the wide 

spectrum from LA to RE is quantitatively correlated to one of the OsSVM metrics. As an 

example, two cases presenting similar appearance in the axial slices (LA3 and BR1) could 

have been miss-classified based on the current NCCN guidelines but they were continuously 

placed on the resectability spectrum based on the Pvi values. Therefore, our method is 

innovative in quantitatively describing the complex tumor/vessel relationships for finer 

categorization of PC resectability.

Our current work has two limitations. First, the OsSVM model was built based on manual 

segmentation. While careful quality control was implemented, delineation variabilities 

cannot be completely avoided. The uncertainties may be amplified by the fact that multiple 

CT scanners/protocols were used in this retrospective study. However, this effect is expected 

to be small due to consistent image quality calibration procedures implemented at our 

institution. With the advances of deep learning, automated contouring algorithms emerged to 

maintain high segmentation accuracy against multi-institutional, multi-protocol dataset [23]. 

Therefore, automated segmentation techniques shall be integrated into our future pipeline to 

increase the robustness against segmentation variability. Second, we equally treated all 

vessels in the OsSVM model. While this strategy helps avoid model overfitting, in surgical 

resection, the importance of surrounding vessels varies. For instance, it is more dangerous to 

damage celiac axis than other small veins. In future studies, we will prioritize the vessels 

according to their importance based on a larger patient sample.

5 Conclusion

In this study, we introduced a novel OsSVM method to quantify PC resectability based on 

contrast CT. We derived metrics that successfully classified LA, BR, and RE with high 

classification capacity. To the best of our knowledge, this is the first study to provide a 

quantitative definition of pancreatic tumor-vessel involvement by measuring the anatomical 

relationship of the two image objects. The proposed classifiers may provide an improved 

quantitative imaging guideline to refine the PC resectability grading system.
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Figure 1: 
Examples of patients with varying degrees of resectability and their corresponding 

resectability quantifications Pvi. The upper and middle rows show the axial views of the 

tumor vessel relationship (tumor, artery, and vein are marked in red, green and blue, 

respectively) and the corresponding 3D renderings of tumor (transparent blue) and vessels 

(transparent pink). The inter-subject differences spanning the wide spectrum from LA to RE 

had been quantitatively interpreted by Pvi shown in the bottom row. Note: the main vascular 

involvement presented in these subjects are arteries, thus veins were excluded in the 3D 

shape representation to yield better visualizations.
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Figure 2: 
Illustration of the pipeline quantifying vascular invasion using nonlinear OsSVM. (a) On 

contrast-CT images, the tumor and vessels are manually segmented and processed to create 

the intra-subject VOI. Tumor, artery, and vein are color-coded by red, green and blue, 

respectively. (b) A hyperplane is defined in VOI using OsSVM. (c) Support vectors from 

OsSVM are selected as critical points fed into the following analysis. (d) Classification 

confidence measurements (margins) are calculated for the critical points corresponding to 

the class vessel and used as indicators of vascular invasion. Points with margin value located 

in the blue area correspond to points with low classification confidence (critical points). (e) 

Metrics are developed based on the spatial distribution of margins (upper) and margin-

histograms (bottom).
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Figure 3: 
Illustration of the selection criteria of hyperparameters kernel scale (γ) and box constraint 

(C). A combination of γ = 4 and C = 10 resulted in a minimal of weighted R0 classification 

loss (misclassification rate) and runtime (s).
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Figure 4: 
Box plots revealing the distribution of 9 features in groups with varying degrees of 

resectability: LA, BR, and RE.
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Figure 5: 
ROC curves for the discrimination of LA and BR (a), BR and RE (b), as well as UnRE (LA 

+ BR) and RE (c).
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Table 1:

Summary of statistical group comparison results.

LA BR RE
LA/BRP BR/REP UnRE/REP

Mean Std Mean Std Mean Std

Pvi 3000.3 1256.0 1384.1 630.0 1047.7 548.0 <0.0001 0.0471 <0.0001

Pvar 0.2 0.1 0.1 0.1 0.0 0.0 <0.0001 <0.0001 <0.0001

Pmax 27.5 11.6 11.2 5.8 2.1 4.4 <0.0001 <0.0001 <0.0001

Pmean 1.8 0.1 1.9 0.1 2.0 0.0 <0.0001 <0.0001 <0.0001

Hskew
1 −5.2 1.5 −8.3 3.9 - - <0.0001 - -

Hkurt
1 32.1 18.3 89.7 84.5 - - <0.0001 - -

Hener 0.9 0.1 0.9 0.0 10.5 0.0 <0.0001 <0.0001 <0.0001

Hmean 7.7 0.1 7.9 0.1 27.6 0.0 0.0001 <0.0001 <0.0001

Hvar 1.4 0.7 0.8 0.6 169.3 0.2 0.0001 <0.0001 <0.0001

1
Due to the missing bins in RE cases, Hskew and Hkurt were excluded from RE related calculations.
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Table 2:

Summary of univariate and multivariate (EN) regression results for the discrimination of LA vs. BR, BR vs. 

RE, as well as UnRE vs. RE.

LA vs. BR BR vs. RE UnRE vs. RE

βu
1

pu
1 βEN

2 βu pu βEN βu pu βEN

Pvi −12.73 <0.0001 −3.34 −2.62 0.0558 - −12.02 <0.0001 −0.35

Pvar −6.27 0.0003 - −13.86 0.0008 −0.56 −29.16 <0.0001 −2.29

Pmax −15.66 <0.0001 −3.18 −9.15 0.0005 −0.85 −30.78 <0.0001 −3.03

Pmean 8.10 0.0002 0.64 18.27 0.0006 1.19 42.05 <0.0001 2.74

Hskew
3 −7.01 0.0004 −1.10 - - - - - -

Hkurt
3 9.98 0.0018 1.01 - - - - - -

Hener 7.06 0.0003 - 17.96 0.0008 1.00 40.42 0.0001 3.74

Hmean 6.47 0.0006 - 15.81 0.0010 - 35.94 <0.0001 -

Hvar −5.88 0.0007 - −13.69 0.0011 - −29.89 <0.0001 −0.12

1
Regression coefficients and p-values obtained from univariate logistic regression.

2
Regression coefficients for metrics selected from the elastic net (EN).

3
Due to the missing bins in RE cases, Hskew and Hkurt were excluded from RE related calculations.
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