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SUMMARY

Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains
an unsolved clinical challenge. Decoding the interconnections among different biological axes of plasticity
is crucial to understand themolecular origins of phenotypic heterogeneity. Here, we usemulti-modal tran-
scriptomic data—bulk, single-cell, and spatial transcriptomics—from breast cancer cell lines and primary
tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-
basal plasticity—two key processes that enable heterogeneity. We show that luminal breast cancer
strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithe-
lial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. Mathematical modeling of core
underlying gene regulatory networks representative of the crosstalk between the luminal-basal and
epithelial-mesenchymal axes elucidate mechanistic underpinnings of the observed associations from
transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mecha-
nism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and iden-
tify interventions to restrict it.

INTRODUCTION

Intra-tumoral heterogeneity in breast cancer remains a key obstacle in the effective management of the disease.1 A major determinant of

molecular heterogeneity in breast cancer is attributed to molecular subtype characteristics, which can be broadly classified as luminal or

basal.2 In addition, cancer cells can exhibit different interconvertible cellular states along varied axes of plasticity such as epithelial-mesen-

chymal transition (EMT), stemness, metabolic reprogramming, and immune evasion traits to create increased overall phenotypic heteroge-

neity.3–6 The extent of the crosstalk among these different axes, which is often mediated via feedback loops, can have major implications in

dependence and coordination between plasticity axes on each other as well as overall disease progression.7,8 Specifically, in breast cancer,

two mainstays of molecular heterogeneity that are often used interchangeably are the luminal-basal and epithelial-hybrid-mesenchymal

states.9 This assumed equivalence, based at least partly on gene set enrichment analysis, largely considers EMT as a binary process.10 How-

ever, it has now been extensively reported that EMT in breast cancer exists more as a spectrum of phenotypes residing along the epithelial-

mesenchymal axis.11–14 Therefore, the association of luminal-basal lineage characteristics and associated plasticity with a partial EMT (pEMT)

or hybrid epithelial/mesenchymal (E/M) plasticity remains largely unclear.15 Similarly, the extent to which associations between partial/full

EMT and luminal-basal plasticity in breast cancer are generalizable also remains to be elucidated.

Current therapeutic approaches often target specificmolecular subtypes of breast cancer.16,17 However, therapy-driven adaptive plasticity

and consequent phenotypic heterogeneity pose challenges in achieving durable responses.18 In addition, the clinical implications of under-

standing coupling between EMT and luminal-basal plasticity, and its impact on the estrogen receptor (ER) signaling, in breast cancer are sub-

stantial. Intra-tumor heterogeneity and phenotypic plasticity can impact treatment response and patient survival by altering the dependence

of breast cancer cells on a luminal program and ER signaling.8,15,19,20 Heterogeneity can also drive collective behavior by facilitating division of
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labor among different cancer cell subpopulations and consequently varying interactions with the surrounding microenvironment.21 Thus,

higher phenotypic heterogeneity can have both cell-autonomous and non-cell-autonomous contributions to population-level fitness. Gaining

insights into the underlying dynamics and mechanisms of breast cancer cell heterogeneity is critical to understanding plasticity-associated

therapy relapse.22,23

Here, we uncover the associations between epithelial-hybrid-mesenchymal cell state and the luminal-basal axis using multi-modal tran-

scriptomics (bulk, single-cell, and spatial transcriptomics) data from breast cancer cell lines and primary tumor samples. Our analysis demon-

strates that luminal cell lines and tumors strongly associate with an epithelial phenotype, but basal cell lines and tumors are not fully mesen-

chymal. Instead, basal breast cancer associates with pEMT phenotype as well as an enriched phenotypic heterogeneity along the EMT

spectrum. These patterns were also recapitulated in methylation profiles, indicating an epigenetic crosslinking between EMT and lineage

plasticity along the luminal-basal axis. Finally, we propose an underlying gene regulatory network including players mediating EMT and

luminal and basal differentiation axes. The emergent dynamics of this network could recapitulate the trends observed in transcriptomic

data, offering novel insights intomolecular underpinnings of basal breast cancer. Our integrative systems biology approach reveals hallmarks

of basal breast cancer heterogeneity (enrichment of hybrid E/M phenotypes and higher diversity in terms of EMT cell states) and proposes a

mechanistic computational model of crosstalk between EMT and lineage plasticity as a framework to test possible therapeutic interventions

to restrict intra-tumor heterogeneity.
RESULTS

Luminal gene expression signature is closely associatedwith an epithelial statewhereas basal gene expression is associated

with a pEMT state

Clinical and molecular classification of breast cancer has yielded key insights into breast cancer disease biology and has provided a much-

needed stratification of the disease for its effective management in a clinical setting.24 However, the activities of the various biological path-

ways/processes, including the level of activity of the various gene sets corresponding to the breast cancer subtypes, contributing to the overall

phenotypes exhibited by cancer cells can still be quite varied even within a well-stratified breast cancer subtype.25While such heterogeneities

can significantly impact the disease outcome, the origins and molecular underpinnings of said heterogeneities remain largely unexplored.

Hence, we sought to uncover associations relating to two key biological axes of plasticity—the extent to which breast cancer samples express

the luminal/basal gene expression programs and the extent to which the samples are epithelial/mesenchymal, whether we examine a partic-

ular subtype of breast cancer or consider the entire cohort of subtypes as a unified group.

To uncover the associations between the luminal-basal phenotypes and the EMT status of breast cancer cells, we compared how these five

gene sets—luminal, basal, epithelial, mesenchymal, and pEMT—correlated with one another independently. We first calculated the single-

sample gene set enrichment analysis (ssGSEA) scores for corresponding gene expression signatures to quantify the activity of these five gene

sets. The epithelial and mesenchymal gene signatures (cell-line-specific and tumor-specific) were adapted from a previous pan-cancer anal-

ysis.26 We used a pEMT signature reported earlier27 to estimate the pEMT nature of the bulk samples. Furthermore, we also considered

breast-cancer-specific EMT gene sets to contrast differences between the pan-cancer EMT gene signatures and breast-cancer-specific

EMT signatures.We used three different breast-cancer-specific gene sets—EMT_up (mesenchymal), EMT_down (Epithelial), and EMT_partial

(pEMT) to assess the activity of these pathways in our transcriptomic data analysis.28 The luminal and basal nature of breast cancer samples

was assessed using a previously curated set of 15 luminal- and basal-specific genes each.29 There was minimal overlap between the genes

included in these signatures as summarized in the upset plots (Figure 1A).

We calculate the activity of each of the abovementioned gene expression signatures using ssGSEA in a set of 80 breast-cancer-specific

datasets (Table S3) that span different experimental setups and clinical samples. The objective of this analysis is to uncover associations, if

any, that hold between the luminal-basal nature and the EM nature of breast cancer samples across diverse datasets. We observed that in

36 datasets the correlations between luminal and epithelial signatures were significant and positive (r > 0.3, p < 0.05) while only four datasets

showed a significant negative trend (r < �0.3, p < 0.05) (Figure 1B, i). Such a skew toward the positive side was minimal for the correlations

between the basal and the mesenchymal signatures (11 vs. 7, respectively) (Figure 1B, ii). We obtained similar results when we compared

EMT_down breast-cancer-specific signature with the luminal signature across the 80 datasets (40 vs. 6, respectively) (Figure 1C, i). A minimal

skew in the number of datasets was seen when we compared EMT_up and the basal gene expression signatures (10 vs. 5, respectively) (Fig-

ure 1C, ii). These results collectively indicate that the positive association between the luminal and epithelial signatures is more common

across breast cancer samples both in vitro and in vivo as compared to those between the basal and mesenchymal signatures.

To determine if the association between the epithelial and luminal programs can provide additional power to stratify breast cancer pa-

tients, we compared the prognostic capacity of an epithelial-mesenchymal gene set with the epithelial-luminal gene set in the TCGA breast

cancer cohort. Using the epithelial-mesenchymal signatures, we observed that patients with highmesenchymal (EPI�MES+) tumors showed a

worse prognosis (hazard ratio [HR] = 1.5, p < 0.05) (Figure S1A, i). The groups of patients with tumors belonging to mixed epithelial and

mesenchymal characteristics (EPI+MES+ and EPI�MES�) were not well segregated from the reference group. However, when we performed

the analysis with our epithelial-luminal classification, we found that with respect to the reference distribution of patients, i.e., patients with high

epithelial and high luminal tumors (EPI+LUM+), all the other groups showed significant differences in survival (Figure S1A, ii). Patients with

tumors showing low luminal and/or epithelial signatures (EPI+LUM�, EPI�LUM+, EPI�LUM�) had worse prognosis. Collectively, these re-

sults indicate a positive correlation between the luminal and epithelial programs that can be used to potentially stratify patients into prog-

nostic survival groups.
2 iScience 27, 110116, July 19, 2024



Figure 1. Associations between luminal-epithelial and basal-pEMT programs in breast cancer

(A) Upset plots showing the extent of overlap between the gene sets used. Luminal-basal gene sets from Nair et al. (2022) and pEMT gene set from Puram et al.

(2017) are compared against (i) Tan et al. (2013) cell-line-specific epithelial and mesenchymal gene sets, (ii) Tan et al. (2013) tumor-specific epithelial and

mesenchymal gene sets, and (iii) Knutsen et al. (2023), EMT_up, EMT_down, and EMT_partial gene sets.

(B) Meta analysis of 80 breast-cancer-specific datasets showing volcano plots of correlation coefficient values for (i) epithelial-luminal and (ii) basal-mesenchymal

programs for gene signatures from Tan et al. (2013).

(C) Meta analysis of 80 breast-cancer-specific datasets showing volcano plots of correlation coefficient values for (i) EMT_down-Luminal and (ii) Basal-EMT_up

programs for gene signatures from Knutsen et al. (2023).

(D) Meta analysis of 80 breast-cancer-specific datasets showing volcano plots of correlations for (i) pEMT (Puram et al. 2017) and (ii) EMT_partial (Knutsen et al.

2023) and basal programs. Pearson’s correlation coefficients and the corresponding p values are shown.

(E) Pair plot showing the comparison of the Pearson correlation coefficients between the (i) basal-mesenchymal vs. basal-pEMT and (ii) basal-EMT_partial and

basal-EMT_up programs. Paired t test has been performed and the T statistic and p value have been reported.
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Given the unclear nature of association of basal nature with either the epithelial or mesenchymal markers signatures exclusively, we postu-

lated that the basal signature may be correlated with a pEMT signature. We used the pEMT signature reported previously27 as well as the

breast-cancer-specific EMT_partial gene set to estimate the pEMT nature of the bulk samples by calculating ssGSEA scores. In ourmeta-anal-

ysis of 80 datasets (acrossmany breast cancer subtypes), we observed that the basal signature was positively correlatedwith the pEMT state in

21 of them (r > 0.3, p < 0.05) but negatively correlated in only three of them (r < �0.3, p < 0.05) (Figure 1D, i). This skew toward a positive

correlation is greater than the one observed for the basal-mesenchymal pair (Figure 1B, ii). Similar results were obtained when we used a

breast-cancer-specific pEMT signature, EMT_partial, to compare with the basal nature of the samples (30 vs. 2, respectively) (Figure 1D,

ii). These results indicate that irrespective of the clinical/molecular subtype of breast cancer samples/cell lines, there exists a

positive association between the basal nature and the pEMT nature of samples. We also compared the Pearson’s correlation coefficients
iScience 27, 110116, July 19, 2024 3



Figure 2. Epigenetic underpinnings of epithelial-mesenchymal phenotypes in luminal and basal breast cancer cell lines

(A) Scatterplots for ssGSEA scores of (i) epithelial-mesenchymal and (ii) luminal-basal programs in breast cancer cell lines. Pearson’s correlation coefficient values

and corresponding p values arementioned. (iii) Heatmap showing the extent of methylation of CpG islands in the promoters of epithelial (pink) andmesenchymal

(purple) genes for different breast cancer cell lines belonging to luminal (red), basal A (blue), and basal B (green) subtypes.
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Figure 2. Continued

(B) Scatterplots showing the position of luminal, basal (CD44 low), and basal (CD44 high) cell lines on the two-dimensional (left) epithelial-mesenchymal and (right)

luminal-basal plane.

(C) Boxplots showing expression of (i) basal, (ii) mesenchymal, and (iii) pEMT gene expression programs across four different cell lines.

(D) (i) Bar plots showing the percentage of H3K27ac activation marks in different breast cancer cell lines. (ii) Bar plots showing the percentage of enriched

promoters of epithelial inactivation marks and the mesenchymal activation marks across the CD44 high and low subpopulations in basal breast cancer cell lines.
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of basal-pEMT/basal-EMT_partial set with those of basal-mesenchymal/basal-EMT_up set in a pairedmanner and found a significant increase

in basal-pEMT correlation (T = 2.9, p < 0.01 and T = 4.0, p < 0.001, respectively) (Figure 1E). The overall trends for association between the

luminal-basal pathways and the EMpathways also hold for the specific cases of breast-cancer-specific cell lines (CCLE) as well as TCGA-BRCA

patient samples (Figures S1B‒S1D and S2A‒S2E and Table S2). These results collectively suggest that at a bulk transcriptomic level, breast

cancer samples show a stronger association of basal breast cancer with a pEMT signature instead of a mesenchymal one.

These trends are further supported by recent experimental observations that luminal progenitors, the proposed cell of origin of basal-like

tumors, undergo a pEMTat onset of tumorigenesis.30Moreover,mammary basal epithelial cells have been shown to exhibit a pEMT state, i.e.,

coexpressing typical epithelial and mesenchymal markers—ZEB1 and OVOL2, respectively.31 Furthermore, genetically engineered mouse

models, patient-derived xenografts, and patient samples of triple-negative breast cancer cells demonstrated large populations of hybrid

E/M cells in vivo that lead to invasion.32 Together, these observations underscore the association of basal breast cancer cell state with a

pEMT phenotype.
Epigenetic status of epithelial and mesenchymal genes underlies associations between the luminal-epithelial and basal-

pEMT programs

Having shown the close association of a luminal program with an epithelial state and that of basal program with a pEMT state at a bulk tran-

scriptomic level, we wished to interrogate whether these associations may have an epigenetic basis. Thus, we analyzed genome-widemethyl-

ation data of CCLE breast cancer cell lines (GSE42944) and compared it with the corresponding gene expression data. We observed that

the cell lines that were primarily classified into three groups—Luminal, Basal A, and Basal B33—were distinctly positioned on the two-dimen-

sional EMT plane (Figure 2A, i). The luminal subtype of cell lines clustered toward the high epithelial, lowmesenchymal part of the plane (Fig-

ure 2A, i), suggesting a strong association with the epithelial characteristics. Conversely, the Basal B cell lines are positioned diametrically

opposite, aligning with the mesenchymal end. The Basal A subtype, however, occupied intermediate regions of the EMT plane, indicating

a mixed epithelial-mesenchymal profile. Consistent with our previous observations, the basal score of the cell lines was negatively associated

(r = �0.34, p < 0.05) with their luminal score (Figure 2A, ii) while being positively associated with the pEMT score (Figure S3A).

We next quantified themethylation level for each gene from the epithelial and themesenchymal gene sets across all cell lines belonging to

the three subtypes. We observed that the luminal cell lines were extensively methylated in promoters of mesenchymal genes and had lower

methylation levels on epithelial genes (Figure 2A, iii). The converse was true for the Basal B subtype of breast cancer cells. The Basal A subtype

of breast cancer cells that was intermediate in terms of their EMT status exhibited lower levels ofmethylation in both the epithelial andmesen-

chymal genes (Figure 2A, iii). This indicates that although the Basal B subtype of breast cancer cells had mostly silenced epithelial genes, the

Basal A subtype of cells have both epithelial and mesenchymal genes active that may explain the pEMT-like phenotype observed. Further-

more, the basal cell lines (Basal A and Basal B taken together) exhibited higher levels of methylation of the ESR1 gene (encoding for Estrogen

receptor [ER]) (Figure S3B, i), a key gene contributing to luminal behavior (Figure S3B, ii) compared to the more luminal cell lines. On the con-

trary, basal cell lines had lower methylation levels in genes belonging to the pEMT signature (Figure S3B, iii) and the ones belonging to basal

signature (Figure S3B, iv).

Previous analysis has demonstrated that an isogenic cell line can have different subpopulations in terms of its EMT nature such as EpCAM-

hi and EpCAM-lo subpopulations in PMC-42LA cells or cells with varying CD24 and/or CD44 levels in multiple breast cancer cell lines.34–36

Thus, we focused on heterogeneity within a cell line in terms of their epithelial-mesenchymal nature and their luminal-basal characteristics.

We analyzed RNA sequencing (RNA-seq) data from four representative cell lines belonging to luminal and basal subtypes of breast cancer

(two luminal—MCF7 and ZR-75; two basal—HCC38 and HMLER) (GSE184647). The luminal cell lines were CD44-low; thus, no CD44-high sub-

group was observed in them, but basal cell lines harbored distinct CD44-low and CD44-high subpopulations.37 We observed that luminal cell

lines were clustered on the high epithelial, lowmesenchymal section of the two-dimensional EMT spectrum, whereas the CD44-high subpop-

ulations of basal cell lines were clustered toward the low epithelial, high mesenchymal end of it (Figure 2B, left). Intriguingly, the CD44 low

basal subpopulations were clustered in the medium epithelial, mediummesenchymal region, indicative of a pEMT state (Figure 2B, left). We

also observed that on the combined EMT and luminal-basal plane, the luminal cell lines were clustered together in the high epithelial, high

luminal region, whereas the basal cell lines showed a larger spread, with the CD44-high subpopulations being more mesenchymal, but not

necessarily more basal than their CD44-low counterparts as assessed by ssGSEA scores of the corresponding gene signatures (Figure 2B,

right). We observed that HMLER cells were more basal compared to HCC38, i.e., basal nature was better explained by the cell line rather

than CD44 (Figure 2B, right).

We also noted that luminal cell lines had lower ssGSEA scores for basal, mesenchymal, and pEMT gene signatures as compared to basal

cell lines (Figure 2C). Intriguingly, both the basal cell lines had distinct ssGSEA scores of basal gene set activity but comparable ssGSEA scores

for mesenchymal signature. The pEMT signature was better able to capture the trends of the basal signature compared to that of the
iScience 27, 110116, July 19, 2024 5
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mesenchymal signature (Figure 2C). This trend strengthens our observations that the pEMT signature is a better predictor of basal nature

compared to that of a mesenchymal signature. Finally, we probed the MINT-CHIP data for these samples and found that the promoters

of epithelial genes were specifically higher in H3K27ac (activation) marks for luminal cell lines compared to basal cell lines (Figure 2D, i).

Furthermore, in HMLER, the CD44-low sub-population had consistently lower levels of activation marks (H3K27Ac) on mesenchymal genes

as well as lower levels of suppressive marks (H3K27me3) on the epithelial genes (Figure 2D, ii). This pattern offers a potential explanation

for the association of basal subtype with a pEMT state. Recent data from mammary stem cell subpopulations revealed higher accessibility

and enrichment of P63 DNA-bindingmotifs in basal cells and that of ELF5 DNA-bindingmotif in luminal progenitors.38 Given the established

role of NP63 in driving a pEMT program13,39,40 and that of ELF5 in inhibiting EMT,41–43 these observations together support the possibility of

an epigenetic control in the association of basal breast cancer with hybrid E/M phenotype(s).

Spatial transcriptomics reveals intra-patient variability in EMT phenotypes in basal subtypes of breast cancer

After demonstrating a higher heterogeneity of basal breast cancer cell lines along the EMT spectrum in vitro, we sought to investigate the

same in breast cancer patients. Thus, we analyzed publicly available spatial transcriptomics datasets of breast tissue sections44 to infer the

patterns of spatial heterogeneity in associated luminal-epithelial and basal-mesenchymal/pEMT status, using therapeutically relevant

markers of gene expression. Firstly, we observed that among the n = 6 patients for whom spatial transcriptomics data were available, the

ER+ breast cancer patients had distinctively higher levels of luminal nature but downregulated basal scores (Figure 3A). On the contrary,

the basal breast cancer patients, while showing reduced levels of luminal nature, were quite heterogeneous for basal signature expression

(Figure 3A). The overall correlation for the epithelial-mesenchymal score pair was strongly negative (r =�0.85, p< 0.01)—while the ER+ breast

cancer patients clustered toward the high epithelial, lowmesenchymal portion of the plane, TNBCpatients were highly variable and scattered

across the spectrum (Figure S4A).

We observed spatial heterogeneity in epithelial and luminal scores in ER+ tumors (Figure 3B, i and ii) but the signatures relating to basal,

mesenchymal, and pEMT phenotypes were largely absent (Figures S4B and S4C). More specifically, we observed that even though different

areas within the tumor displayed a similar extent of luminal signature, they had varied epithelial scores (arrows shown in Figure 4B, i and ii).

This observation is particularly important in the context of our survival analysis highlighting that EPI+LUM� or EPI�LUM+ phenotype shows

significantly worse survival compared to EPI+LUM+ (Figure S1A, ii). We speculated that patients having a higher proportion of EPI+LUM� or

EPI�LUM+ phenotypes would likely have a poorer prognosis in comparison to patients who show homogeneous levels of EPI+LUM+ phe-

notypes. We also investigated the spatial activity patterns of ER-driven genes that are generally found to be concordant with luminal and

epithelial cell states.45,46 We observed that similar to luminal and epithelial scoring patterns, spatial transcriptomic slides had heterogeneous

activity levels of ER response genes and E2F targets (a proxy for cell-cycle activity) (Figures 3B, iii and iv, and S4C). Such patterns of hetero-

geneity can dramatically impact sensitivity to anti-ER drugs47 as these pathways are the primary target of currently used targeted therapies.

Thus, the degree of underlying heterogeneity of these molecular programs may limit the efficacy and evolution of resistance in ER+ breast

cancer.

Next, we analyzed spatial transcriptomics data from breast cancer patients classified to have basal disease. In one such patient sample, we

noticed amore heterogeneous expression of luminal and basal scores across the tissue samples as compared to a previously analyzed case of

luminal disease. We observed that the areas of normal breast tissue were high for luminal, epithelial, and ER response gene set scores

(Figures 3C, i–iii, top left tissue section). However, the tissue slices of the tumor were significantly more enriched in basal scores (Figure 3C,

iv), with marked variability in terms of their epithelial and mesenchymal natures (Figures 3C, ii and v, and S4D). This trend supports our results

showing higher diversity in tumor epithelial-hybrid-mesenchymal states among basal tumors as compared to a luminal breast cancer case.

Further, the concordance between the basal and the pEMT signature (Figure 3C, compare iv with vi) was higher compared to that between

the basal and mesenchymal signature (Figure 3C, compare iv with v), with the pEMT signature being a proper subset of the spatial sections

enriched for the basal signature of the tissue sections. Finally, we quantified the overall activity of the luminal-basal nature, epithelial-mesen-

chymal nature, and the pEMT nature of the six patients for which spatial transcriptomics data were available. We observed qualitatively that

while TNBCpatients had a higher net basal score, the EM score and the pEMT scores were variable across the six patients. On the other hand,

the samples from ER+ patients were relatively more luminal as well as more epithelial in the two patients for which data were available (Fig-

ure S4E). Collectively, these results may explain the earlier observed bulk expression patterns where pEMT signatures correlatedmore closely

with the basal signature compared to a mesenchymal signature.

Basal breast cancer cell lines and tumor samples have higher phenotypic heterogeneity in terms of EMT

Next, we focused on pinpointing molecular underpinnings that may explain the association of the basal signature with the pEMT program.

This association can be explained primarily by two scenarios: (1) the basal subtype is primarily composed of cells that are pEMT or (2) the basal

subtype is composed of separate populations of cells that are epithelial and mesenchymal, resulting in a higher pEMT signature.

To gain a more comprehensive understanding of subtype-specific heterogeneity with respect to EMT status, we analyzed single-cell RNA-

seq of 32 breast cancer cell lines spanning all the clinical subtypes (GSE173634).48 A previous study32 showed that CDH1+VIM+ TNBC cells

were enriched during invasion and had higher colony-forming ability. Thus, we classified this single-cell data based on gene expression values

of CDH1 and VIM. The distribution of the difference between the imputed expression values of VIM and CDH1 showed multiple peaks (Fig-

ure 4A, i). The extreme peaks were labeled as epithelial and mesenchymal, whereas the intermediate ones were labeled as hybrid pheno-

types. We observed that all cells belonging to luminal A and luminal B cell lines were epithelial in nature. However, the basal cell lines
6 iScience 27, 110116, July 19, 2024



Figure 3. Spatial transcriptomic analysis of estrogen-receptor-positive and triple-negative breast cancer patients

(A) Scatterplot showing the position of the estrogen-receptor-positive (ER+) and triple-negative breast cancer (TNBC) patients on a two-dimensional luminal-

basal plane. Each point in the plane is based on the gene expression values for a specific spot on the spatial transcriptomic datasets.

(B) Spatial transcriptomic slides from an ER+ breast cancer patient colored by the activity scores of (i) luminal, (ii) epithelial, (iii) hallmark estrogen response, and (iv)

hallmark E2F target genes. Red represents a higher activity score, and blue represents a lower activity score. The arrows point to areas of specific interest based

on differences in heterogeneity of the different biological pathways.

(C) Spatial transcriptomic slides from a TNBC breast cancer patient colored by the activity scores of (i) luminal, (ii) epithelial, (iii) hallmark estrogen response, (iv)

basal, (v) mesenchymal, and (vi) pEMT gene sets. Red represents a higher activity score, and blue represents a lower activity score. The arrows point to areas of

specific interest based on differences in heterogeneity of the different biological pathways.
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had varied heterogeneity patterns along EMT axis. The TNBC type A cells were found to be either epithelial or hybrid E/M in nature, whereas

the TNBC type B ones belonged to epithelial, hybrid E/M, and mesenchymal states (Figure 4A, ii and iii). Interestingly, the HER2 subtype of

breast cancer was largely epithelial in nature but the basal-like cell lineMCF12Awas predominantly in a hybrid E/M state (Figure 4A, ii and iii).

Similar results were obtained when gene-set-based scoring of epithelial and mesenchymal pathways were employed to characterize the EM

status of the cells instead of CDH1 and VIM (Figure S5). These results indicate that although the luminal subtype is constituted primarily from

an epithelial phenotype, the basal subtypes are more heterogeneous in terms of their E/M status and more likely to harbor a more pEMT cell

state.

We analyzed the top 20 transcription factors (TFs) that correlated with each of the four signatures: luminal, basal, epithelial, and

mesenchymal (in GSE173634). Among the 20 TFs correlating with luminal and epithelial, 13 TFs were common, but among the 20 TFs

correlating with mesenchymal and basal, only two TFs were common. These analyses suggest that the transcriptional programs that

regulate luminal and epithelial states overlap while basal and mesenchymal states are regulated by distinct TFs. A hierarchically

clustered pairwise correlation map of the top TFs revealed antagonism between the luminal-epithelial and basal-mesenchymal

group of TFs (Figure 4B). Furthermore, the basal and the mesenchymal transcription factors clustered separately with each other, indicative

of the weak coupling between these two biological axes in contrast to the stronger associations of the luminal and epithelial TFs

(Figure 4B).
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Figure 4. Heterogeneity patterns in single-cell analysis of breast cancer cell lines and patient-derived cells

(A) (i) Kernel density estimate of VIM-CDH1 levels for cells belonging to all breast cancer cell lines (GSE173634). Red lines split the distribution into epithelial,

mesenchymal, and intermediate/hybrid states, based on difference in VIM and CDH1 levels. (ii) Composition of different subtypes of breast cancer cell lines

in terms of classified epithelial, mesenchymal, and hybrid states. (iii) Composition of different cell lines belonging to subtypes of breast cancer cell lines in

terms of classified epithelial, mesenchymal, and hybrid states.

(B) Gene-gene pairwise correlation heatmap showing top 20 transcription factors correlated with the luminal, basal, epithelial, andmesenchymal signatures each

in GSE173634.

(C) Immunofluorescence imaging of representative breast cancer cell lines showing E-cadherin and vimentin levels.

(D) (i) Scatterplot showing the distribution of single-cell RNA-seq data of breast cancer cell lines on the two-dimensional epithelial-mesenchymal status and

luminal-basal status (GSE173634). x axis represents the epithelial-mesenchymal score (mesenchymal score–epithelial score); y axis represents the luminal-

basal score (basal score–luminal score). (ii) Scatterplot showing the distribution of breast cancer cells from ER+ and TNBC patient samples on the two-

dimensional epithelial-mesenchymal status and luminal-basal status (GSE176078). x axis represents the epithelial-mesenchymal score (mesenchymal score–

epithelial score); y axis represents the luminal-basal score (basal score–luminal score).

(E) Schematic showing the extent of heterogeneity and mapping of epithelial to mesenchymal transition status of luminal and basal breast cancer cases.
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Next, we probedwhether these trends observed in RNA-seqdata analysis could be recapitulated experimentally as well. Thus, we took five

representative cell lines—two belonging to luminal subtype (MCF7 and ZR-75-1) and three belonging to basal subtype (HCC1937, MDA-MB-

468, andMDA-MB-231). Each of these cell lines were probed for E-cadherin and vimentin levels though immune-fluorescence experiments. It

was observed that the luminal cell lines of MCF7 and ZR-75-1 were exclusively high for E-cadherin, whereas they have very little to no expres-

sion of vimentin (Figure 4C, i and ii), indicating that the luminal cell lines were largely epithelial in nature. On the other hand, basal cell lines

such as MDA-MB-468 and HCC1937 exhibited a mix of epithelial (high specifically for E-cadherin) and hybrid E/M phenotypes (coexpression

of E-cadherin and vimentin in the same cells) (Figure 4C, iii and iv). Finally, MDA-MB-231 showed largely mesenchymal cells (low E-cadherin,

high vimentin) with a few cells coexpressing E-cadherin and vimentin (Figure 4C, v). The experimental results thus support our observations

from bulk, single-cell, and spatial transcriptomic data.

We next projected single-cell RNA-seq from both breast cancer cell lines and primary tumors on a two-dimensional plane, where the x axis

indicates EMT status (defined as difference in ssGSEA scores of mesenchymal and epithelial gene sets) and the y axis denotes a difference

between the ssGSEA scores of luminal and basal gene sets. For the 32 breast cancer cell lines (GSE173634), the trend between luminal-basal

transition and EMT was non-linear; while a majority of the samples with high luminal scores clustered close to the epithelial end of the EMT

axis, the basal-high samples spanned the entire EMT (Figure 4D, i). Similar patterns were observed from projection of single-cell RNA-seq

data from tumor cells isolated from ER+ and TNBC patients (GSE176078)44 into this two-dimensional space (Figure 4D, ii). These results

collectively indicate that luminal cell lines (and ER + tumors) were more restricted or homogeneous in terms of their EMT state and exhibited

predominantly an epithelial state, while the basal breast cancer cell lines (and TNBC tumors) were not only more likely to exhibit a pEMT

phenotype but also more heterogeneous in terms of their EMT status (Figure 5E).

The enrichment of hybrid E/M phenotypes and/or higher heterogeneity along the EMT axis has been associated with worse survival in

many cancer types.27,49 Currently, no specific therapy targets either a hybrid E/M state or higher phenotypic heterogeneity, thus the enrich-

ment of these attributes may explain the underlying mechanistic basis for difficulty in targeting basal-like tumors and TNBC.
Mathematical modeling of gene regulatory networks captures phenotypic heterogeneity in breast cancer and pinpoints

determinants of luminal-basal plasticity

Having uncovered the complex associations between the lineage characteristics of breast cancer cells and the status of cells along the epithe-

lial-mesenchymal spectrum, we sought to understand the mechanistic underpinnings of these interconnected axes of plasticity. Specifically,

we asked how breast cancer cells undergoing EMT may drive lineage plasticity and vice versa. Thus, we first assembled a gene regulatory

network (GRN) based on experimental evidence (Table S4) to investigate the associations between the luminal-basal and epithelial-mesen-

chymal axes of cellular plasticity. This GRN is not inferred via statistical tools. It is expected to capture key factors involved in EMT and luminal-

basal plasticity and to be capable of recapitulating underlying phenotypic heterogeneity and observed associations between different bio-

logical axes.

This GRN consists of representative TFs and genes associated with luminal (ERa66, PGR, GATA3, and FOXA1),50–53 basal (SLUG and

DNP63),54,55 epithelial (CDH1 and miR-200), and mesenchymal (ZEB1, SLUG) phenotypes56 and regulatory interactions among them. We

also incorporated two additional players: (1) ERa36 as a marker for anti-ER therapy resistance57 and (2) NRF2 as a reported stabilizer of

the hybrid E/M state and also associated with drug resistance through its impact on cellular metabolism58–60 (Figure 5A). The creation of

this gene regulatory network establishes direct and indirect feedback regulations between the luminal-basal genes as well as the epithe-

lial-mesenchymal genes, which can give rise to emergent cellular phenotypes, thus coupling both these axes of plasticity. To understand

the emergent dynamics of this GRN, we used RACIPE,61 a computational framework to identify the possible phenotypic space for a given

GRN. RACIPE uses a set of coupled ordinary differential equations to simulate the dynamics of interconnected nodes (via regulatory links/

edges) in a GRN and outputs the different possible steady state values of all nodes in the network. The relative expression levels of different

genes/nodes constitute different cell states that can correspond to observed phenotypes in breast cancer cell-state heterogeneity.

We defined the following scores to better understand the association between EMT and luminal-basal plasticity: (1) luminal score as the

sum of normalized steady state values of ERa66, GATA3, PGR, and FOXA1; (2) basal score as the sum of normalized steady state values of

DNP63 and SLUG; (3) epithelial score as the sum of normalized steady state values of CDH1 and miR-200; (4) mesenchymal score as the

sum of normalized steady state values of ZEB1 and SLUG; and (5) resistance score as the difference between normalized steady state levels

of ERa36 and ERa66. We observed that the epithelial-mesenchymal score (= mesenchymal score–epithelial score) was multimodal in nature

with two hybrid states (referred to as epithelial-hybrid and mesenchymal-hybrid) in addition to the canonical epithelial and mesenchymal

states. The luminal-basal score (= basal score–luminal score) distribution was largely trimodal (Figure S6A). Thus, our GRNdynamics can reca-

pitulate the multiple hybrid E/M phenotypes that have been well reported experimentally,3,49 as well as a luminal-basal phenotype identified

recently in breast cancer.15,62

Upon projecting these simulated node values on a two-dimensional plane of luminal-basal and epithelial-mesenchymal axes, we could

recapitulate the non-linear relationship between the epithelial-mesenchymal axis and the luminal-basal axis (Figure 5B, i) as observed for

breast cancer cell lines (Figure 4D, i) and patient-derived tumor cell data (Figure 4D, ii) at a qualitative level. More specifically, we observed

that while the solutions corresponding to a luminal state are almost exclusively epithelial in nature, those that correspond to a basal-like state

could be epithelial, mesenchymal, or hybrid E/M (pEMT) on the epithelial-mesenchymal spectrum (Figure 5B, i). This observation suggests

that the GRN considered here can explain and reproduce the major associations noted in extensive multi-modal transcriptomic data

(bulk, single-cell, spatial) analysis across breast cancer cell lines and tumors.
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Figure 5. Gene regulatory network analysis for coupled luminal-basal and epithelial-mesenchymal plasticity

(A) Gene regulatory network showing the representative genes from luminal, basal, epithelial, and mesenchymal programs and the associated regulatory links

between them. Blue links represent activation, whereas red links represent inhibition.

(B) Simulated steady state solutions projected on a two-dimensional (i) epithelial-mesenchymal axis and luminal-basal axis, (ii) epithelial-mesenchymal axis and

resistance score, and (iii) luminal-basal axis and the resistance score.

(C) Number of common and unique receptors that were associated with luminal and basal cell type and respective tumor microenvironments.

(D) Meta-analysis of 80 breast-cancer-specific datasets showing volcano plots of correlations for the TGFB1 gene and the mesenchymal program. Each dot

denotes a unique GSE ID (dataset). Pearson’s correlation coefficients and the corresponding p values are mentioned.

(E) Meta-analysis of 80 breast-cancer-specific datasets showing volcano plots of correlations for IL1B gene expression with (i) basal signature and (ii) the pEMT

program. Pearson’s correlation coefficients and corresponding p values are indicated.

(F) Simulation results showing the fraction of steady state solutions belonging to the different cell states in control and (i) IL1B overexpression (OE) and (ii) TGFB1

OE scenarios. (iii) Simulation results showing percentage change in each observed phenotype compared to the control scenario, in TGFB1 and IL1BOE scenarios.

* represents a statistically significant difference as assessed by a two-tailed Student’s t test (p-value <0.05). Data are represented asmean +/� standard deviation.
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Further, our simulation results highlight that themost epithelial cluster is predominantly low in resistance score, i.e., being sensitive to anti-

ER drugs such as tamoxifen. However, the other three clusters (epithelial-hybrid, mesenchymal-hybrid, and mesenchymal) had significantly

higher resistance scores (Figure 5B, ii). These model predictions are reminiscent of prior experimental observation that partial and/or full

EMT can drive resistance to tamoxifen and vice versa.8,63 We also observed that the luminal-basal status strongly correlated with the resis-

tance score, suggesting that lineage determination is a crucial factor for sensitivity to anti-ER drugs (Figure 5B, iii). We found that the two

hybrid E/M clusters had higher levels of NRF2 (Figure S6B), consistent with the reported literature.58,59,64 These results indicate that the

GRN considered here can sufficiently capture the observed associative trends in breast cancer and further correlate luminal-basal and epithe-

lial-mesenchymal trends to their corresponding sensitivity to anti-estrogen drugs such as tamoxifen.

Having simulated a GRN that couples the biological axes of lineage characteristics (luminal/basal), epithelial/mesenchymal status, and the

degree of sensitivity to the widely used anti-ER drugs, we wished to identify potential ligands and receptors that could drive a luminal to basal
10 iScience 27, 110116, July 19, 2024
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phenotypic switch, thus limiting the efficacy of the anti-ER drugs especially in the context of ER+ breast cancer. To do this, we analyzed a

single-cell patient atlas of seven ER+breast cancer patients and five TNBCpatients (GSE176078). Each of these samples had annotated tumor

cells as well as corresponding stromal and immune cell types. Thus, we used LIANA pipeline65 to score for top ligands and receptors for each

patient separately. Specifically, we identified the ligands and receptors that were specific to the target cell type pre-annotated to be luminal A

or basal subtype of cancer cells in ER+ and TNBC patients, respectively. We focused on ligands and receptors that were consistently ex-

pressed in all patient samples with at least 100 target breast cancer cells. We created separate lists for ligands and receptors for luminal

A and for basal breast cancer cells; for instance, the top receptors unique to luminal A tumor cells contained ESR1, MUC1, and ERBB3,

each of which has been associated with a luminal subtype.66,67 We observed substantial overlap between the ligand and receptors from

the basal and luminal cell types (Figure 5C), suggesting potential overlaps in signaling between luminal and basal cell types with the tumor

microenvironment.

Next, we focused on the list of common ligands, as they can potentially act on luminal cells and cause a transition to a basal-like pheno-

type. TGF-b1 was one such common ligand, which is a well-known driver of EMT in many carcinomas. To assess how likely a ligand is to

affect the luminal-basal phenotype of the cells, we performed meta-analysis of each of the common ligands in 80 bulk transcriptomics

datasets from breast cancer (Table S3). We found that TGFb1 was among the top genes that correlated positively with a more mesen-

chymal phenotype (Figure 5D). On the other hand, we found IL-1b to be one of the top genes to be correlated with a basal phenotype

(Figure 5E, i) as well as pEMT phenotype (Figure 5E, ii). Further, we interrogated whether our GRN could reproduce the plasticity patterns

that can be driven by transforming growth factor b1 (TGF-b1) or interleukin-1b (IL-1b). To do this, we extended our GRN (Table S4) to

include IL-1b as well as TGF-b and performed simulations to overexpress these nodes in silico. Our model predicted that IL-1b overexpres-

sion led to a significant increase in the population of the epithelial-hybrid and the mesenchymal-hybrid populations, with a concomitant

decrease in the frequency of epithelial and mesenchymal phenotypes (Figure 5F, i and iii). On the other hand, TGF-b1 overexpression

caused a marked increase in the frequency of mesenchymal phenotype and a simultaneous reduction in epithelial, epithelial-hybrid,

and mesenchymal-hybrid states (Figure 5F, ii and iii). There was also a significant increase in the proportion of the luminal-basal hybrid

phenotype (Figure 5F, ii and iii). Although both IL-1b and TGF-b1 cause a net decrease in the epithelial phenotype and increase the mesen-

chymal nature, their impact is quite distinct: IL-1b can enrich the hybrid E/M phenotypes that are basal in nature. This prediction is consis-

tent with recent experimental observations about the impact of IL-1b in vitro and in vivo: (1) IL-1b treatment can induce two stabilizers of

hybrid E/M phenotype NRF2 and SLUG,68,69 (2) IL-1b treatment of MCF7 luminal breast cancer cells can induce DNP63 and mediate sub-

sequent therapy resistance,70 and (3) IL-1b treatment can prevent differentiation of metastatic-initiating cells to highly proliferative epithe-

lial cells, inhibiting overt metastatic growth.71 Together, our analysis suggests IL-1b to be a potent target to prevent luminal-to-basal line-

age plasticity.

Overall, our simulation results show that the core GRN modeled here can capture complex associations between the luminal-basal and

epithelial-mesenchymal axes and explain underlying mechanisms of the phenotypic heterogeneity in basal breast cancer. This GRN can

also serve as a robust framework to simulate the effect of other signaling molecules to enrich for different phenotypes as a consequence

of emergent properties of cross-linked feedback loops among different factors.
DISCUSSION

Phenotypic heterogeneity is a fundamental feature of biological systems implicated in better chances of survival of a population under

various dynamically varying environmental stress levels.72 Not surprisingly, cancer cells are heterogeneous along various functional and

molecular axes. This heterogeneity often helps them to evade therapeutic attacks and adapt to their changing environments, eventually

driving their metastatic dissemination and colonization.3,14,73–75 Single-cell approaches have been instrumental in characterizing such het-

erogeneity, but usually along one axis.35,76,77 Analyzing interconnections among different axes of heterogeneity is relatively poorly

understood.

Here, we used amulti-modal (single-cell, bulk, and spatial) transcriptomic data analysis approach to identify the associations between two

key axes of heterogeneity in breast cancer—EMT and luminal-basal (lineage) plasticity.15,78–80 Often, these axes have been assumed to be

synonymous or largely overlapping, but many questions remained unanswered, such as the following: (1) how do luminal and basal features

map to epithelial, hybrid E/M, and mesenchymal phenotypes? (2) which breast cancer subtype (luminal/basal) have higher heterogeneity in

terms of EMT? and (3) what feedback loops connect these two plasticity axes?

Through our analysis of bulk transcriptomics datasets, we uncover that the luminal-epithelial association and the basal-pEMT association

are strongly positively correlated across breast cancer samples/model systems. Further, we show that the strong association of basal with

pEMT could be due to both increased prevalence of the pEMT cell state in the basal subtype of the disease as well as the coexistence of

both epithelial andmesenchymal cell states in the basal subtype of the disease. Finally, we show usingmathematical models of representative

gene regulatory networks how these associations could be realized in scenarios in breast cancer, thus establishing a conceptual framework to

better characterize EM heterogeneity along the luminal-basal spectrum of the disease.

Our analyses of breast cancer cell lines and primary tumors have unraveled that although luminal breast cancer samples are predominantly

epithelial and quite homogeneous, basal breast cancer samples correspond to hybrid E/M state(s) withmore phenotypic heterogeneity along

the EMT spectrum. Both of these hallmark features of basal breast cancer have independently been associated with worse patient survival in

many cancer types.3,49,81 Thus, their coexistence can possibly explain the aggressive behavior and limited therapeutic response of basal-like

breast cancers.82 Further, given the relatively higher plasticity of hybrid E/M phenotypes as compared to ‘‘fully epithelial’’ or ‘‘fully
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mesenchymal’’ phenotypes,83,84 the presence of hybrid E/M phenotypes can facilitate more phenotypic heterogeneity in a population. Our

results are consistent with observations of higher PD-L1 protein levels85 and tamoxifen resistance62 in basal-like tumors, given that both these

traits have been previously linked to hybrid E/M cells.8,86 Even among luminal tumors, those expressing low levels of ER can display higher

basal-like phenotypes,15 endorsing previous results that ESR1 expression closely associates with luminal breast cancer cells and that silencing

ER can drive EMT.87 Because EMT and tamoxifen resistance can both drive each other,8,88 our results suggest that tamoxifen resistance can

govern lineage plasticity, i.e., luminal-to-basal switch, as well. Similar interconnections about lineage plasticity, EMT, and anti-androgen resis-

tance have been reported in prostate cancer89,90 and small cell lung cancer.91 These correspondences indicate possible generalizability of our

results to other cancer types as well.

Lineage plasticity is being increasingly reported in the context of breast cancer but with limited mechanistic understanding. For instance,

mature mammary luminal epithelial cells can give rise to Krt14- and Sox9-expressing basal-like carcinomas that can metastasize.78 Similarly,

basal-like tumorigenesis involves luminal-to-basal reprogramming with gain in stemness.30,92 Further, luminal-basal hybrid cells can express

NP63 (basal marker) while maintaining functional levels of ER-alpha (associated with luminal phenotype).79 Our systems-level analysis inte-

grating multi-modal transcriptomic data with mechanism-basedmodels for underlying regulatory networks explains these in vitro and in vivo

observations, reveals hallmarks of basal breast cancer in terms of EMT, and offers a predictive platform to better characterize and control

intra-tumor phenotypic heterogeneity in breast cancer.
Limitations of the study

Our analysis of breast cancer subtypes is focused on the broad categories of being clinically or molecularly labeled as luminal or basal. How-

ever, there are other subtypes of breast cancer that are not studied here, for example, HER2 subtype or subclassifications within the basal or

luminal subtypes are not considered. We have considered majorly methylation as a mode of epigenetic regulation, which does not consider

accessibility of promoters/enhancers or three-dimensional structures of the chromatin that can contribute to gene regulation crosstalk. Our

minimalistic gene regulatory network explains how different cell phenotypes are emergent of pathways that are coupled with one another but

does not have the granularity to distinguish amongmore specific biological microstates or phenotypes seen in breast cancer. Including other

relevant genes to the constructed network considered here would be key to explaining more nuanced phenotypes that are biologically

observed.
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Materials availability
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Data and code availability
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� Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and culture

Cell linesMDA-MB-231,MCF7 andHCC1937were obtained from theAmerican TypeCultureCollection (ATCC-Manassas, VA).MDA-MB-468

and ZR-75-1 were obtained from NCCS (Pune, India) where cell authentication was performed using STR profiling. MDA-MB-231 and MDA-

MB-468 were maintained in L-15 (Leibovitz) medium (Sigma-Aldrich), MCF7 in DMEM-Hi Glucose medium (Sigma-Aldrich) HCC1937 and ZR-

75-1 in RPMI 1640 media (Gibco), HEPES buffered and supplemented with 10% (v/v) heat inactivated Fetal Bovine Serum (Himedia) and

100 U/ml penicillin and streptomycin (Gibco). All cells were maintained in a humidified incubator with 5% CO2 at 37�C except for MDA-

MB-231 and MDA-MB-468 that were maintained with 0% CO2. For all experimental assays using cell lines, a passage number below 20

was used and all cell lines were subjected to frequent recharacterization by immunophenotyping and testing of mycoplasma.
METHOD DETAILS

ssGSEA scores for bulk transcriptomics

We used previously published signatures for luminal and basal breast cancer,29 for epithelial and mesenchymal state26 and for pEMT

state27 Hallmark signatures (estrogen response, E2F target genes) were taken from MSigDB database.93 Breast cancer specific epithelial

(EMT_down), pEMT (EMT_partial) and mesenchymal (EMT_up) were taken from previously published literature.28 ssGSEA scores were calcu-

lated for bulk transcriptomic samples using the gseapy python package96 to estimate the activity of biological pathway of interest. A corre-

lation was considered significant if the Pearson’s correlation coefficient is greater than 0.3 or lesser than 0.3 with a p-value lesser than 0.05.

Meta analysis was performed on a list of 80 breast cancer specific bulk RNA/microarray transcriptomic datasets (Table S3).
Survival analysis

Overall survival data was acquired from TCGA. Based on the median of sample scores, all samples were split into 4 groups : epithelial-high

mesenchymal-low (EPI+MES-) (reference group), epithelial -high mesenchymal-high (EPI+MES+), epithelial-low mesenchymal-high (EPI-

MES+), and epithelial-low mesenchymal-low (EPI-MES-). Similarly, epithelial-high luminal-high (EPI+LUM+) (reference group), epithelial-

high luminal-low (EPI+LUM-), epithelial-low luminal-high (EPI-LUM+), and epithelial-low luminal-low (EPI-LUM-). The R package ’survival’

was employed to perform the Kaplan–Meier analysis. Reported p-values were calculated using a log-rank test. Cox regression was used

to determine the hazard ratio (HR) and confidence interval (95% CI) for TCGA cohorts, and forest plots were made using ‘ggforest’ function

from ‘survminer’ package.
Methylation data analysis

Methylation data (beta values) fromGSE42944 for breast cancer cell lines were downloaded fromGene ExpressionOmnibus. The beta values

for CpG islands vary between 0 (unmethylated) and 1 (fully methylated). The heatmap included only previously identified epithelial and

mesenchymal genes26 and cell lines included in CCLE breast cancer cohort to facilitate direct comparison between the RNA-Seq andmethyl-

ation data. The subtype classification for each cell line was taken fromGSE42944.We further performed z-normalisation and scaled the values

between 0 and 1 to portray only the relative amount of methylation values for each gene across the cell lines.
Spatial transcriptomics data analysis

Spatial transcriptomics datasets in the public domain for 6 patients (2 estrogen receptor positive and 4 triple negative patients)44 were rean-

alysed for assessing the activity of various biological pathways. Count matrices were first imputed by MAGIC algorithm97 and activity scores

were calculated on imputed values using AUCell.94 Pre-processing of spatial data and images was done as per the Seurat pipeline.98
Dual immunofluorescence

Cells (1x104) were seeded on poly-L-lysine coated coverslips. Immunofluorescence was performed as reported previously99 by incubating

cells in primary antibodies- anti-E-cadherin (Abcam-EP700Y) and anti-Vimentin (BioGenex) overnight at 4�C at specific dilutions- 1:500 and

1:25 respectively. This was followed by labelling with specific secondary antibodies - Alexa Fluor� 488 Chicken Anti-Mouse IgG (H+L) for

Anti-Vimentin and Alexa Fluor 568 Donkey Anti-Rabbit IgG for anti-E-cadherin for 1 h at room temperature. The slide was then mounted

on gold antifade reagent with DAPI and examined under a fluorescent microscope (Olympus BX51).
Single cell RNA sequencing and cell-cell communication data analysis

Count matrices for single-cell RNA sequencing data were imputed by MAGIC algorithm.97 Activity scores were calculated on imputed values

using AUCell.94 Lists of top cell-cell communication receptor ligand pairs were estimated using the LIANA package.65 For estimating the top

ligand receptor pairs, pre-labelled luminal A and basal cell types from each patient were considered and all other cell types including

themselves were considered as potential ligand producing cells while the receptors were assumed to be only expressed on the chosen

luminal A or basal subtype of cells. Only those ligand receptor pairs which had a cellphonedb p-value < 0.05 and sca LRscore > 0.8 and

were expressed in all ER+ or TNBC were considered as unique/common ligands/receptors. Ligands or receptors that were only specific
18 iScience 27, 110116, July 19, 2024
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to luminal cells in ER+ breast cancer patients were considered to be luminal specific ligands/ receptors. Similar analysis was done for basal

cells in TNBC as well. Top genes were subjected to meta-analysis with relevant pathways & their expression in bulk transcriptomics.
RACIPE simulations

Random Circuit Perturbation (RACIPE) was employed to generate an ensemble of kinetic models for a given GRN. The GRN contains nodes

and edges (inhibitory or activating) among them. The dynamics of each node was determined using a set of coupled ordinary differential

equations (ODEs).61 Each node/gene had basal production and degradation rates as ODE parameters. Shifted Hill functions were multiplied

to the production rate to incorporate the effects of excitatory and inhibitory links incoming to that node/gene. All steady-state values ob-

tained from RACIPE, which were initially in log2 scale, were converted into z-scores, to indicate relative levels. RACIPE simulations were

done in triplicates, each replicate with 10,000 parameter sets, and 100 initial conditions for each parameter set. Euler’s Methodwas employed

for numerical integration. RACIPE chooses kinetic parameters from a large range of biologically realistic parameter values to identify a ma-

jority of states that are allowed by a given GRN. A single RACIPE parameter set and associated random initial conditions has the potential to

produce one or more stable steady-state solutions. However, for this analysis, up to six stable steady-state solutions were considered.

The luminal score was calculated as sum of normalised steady state values of ERa66, GATA3, PGR, and FOXA1. Similarly, basal score

included DNP63 and SLUG; epithelial score incorporated CDH1 and miR-200 and the mesenchymal score consisted of ZEB1 and SLUG.

Furthermore, the resistance (to anti-ER drugs) score was calculated as the difference between steady-state values of ERa36 and ERa66. Addi-

tionally, RACIPE was used to perform overexpression (OE; 100x) of TGFB1 & IL1B genes separately for a modified GRN consisting of both

these genes and the steady state results obtained were then compared with control (not OE) RACIPE simulations.
MINT-chip data analysis

MINT-Chip data for 4 breast cancer cell lines (MCF7, ZR-75-1, HCC38 and HMLER) were processed to obtain the enriched promoters (consid-

ered to be 5000 base pairs either side of the transcriptional start site) for different cell lines and CD44 status. First, a list of top correlated

epithelial and mesenchymal genes (Spearman’s correlation coefficient > 0.5 and p-value < 0.05) were obtained from RNA seq data of the

same cell lines (GSE184647). Amongst these genes which were labelled to be epithelial or mesenchymal, the proportion of genes that

had an enriched promoter in either activation (H3K27ac) or inhibitory (H3K27me3) marks were quantified and compared across the cell lines

or cell lines with specific CD44 status.
QUANTIFICATION AND STATISTICAL ANALYSIS

We computed the Pearson’s correlation coefficients and used corresponding p-values to gauge the strength of correlations. For statistical

comparison between groups, we used a two-tailed Student’s t-test under the assumption of unequal variances and computed significance.

Details of statistical analysis, definitions for significance, dataset IDs and the description of n (sample size) and abbreviations can be found in

main text and figure legends.
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