

A phylogenetic overview of the *Hydnaceae* (*Cantharellales*, *Basidiomycota*) with new taxa from China

Ting Cao^{1,2}, Ya-Ping Hu³, Jia-Rui Yu^{1,2}, Tie-Zheng Wei⁴, and Hai-Sheng Yuan^{1,2*}

¹CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China; ²University of the Chinese Academy of Sciences, Beijing 100049, PR China; ³Nanjing Institute of Environmental Sciences, MEE/State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Nanjing 210042, PR China; ⁴State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China

*Correspondence: Hai-Sheng Yuan, hsyuan@iae.ac.cn

Abstract: The family Hydnaceae (Cantharellales, Basidiomycota) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, Hydnaceae together with Cantharellaceae, Clavulinaceae and Sistotremataceae are four families in the Cantharellales. The four families were combined and redefined as "Hydnaceae", however, a comprehensive phylogeny based on multiple-marker dataset for the entire Hydnaceae sensu stricto is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family Hydnaceae from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-alpha gene (TEF1). We also produced three more phylogenetic trees for Cantharellus based on 5.8S, nLSU, mtSSU, RPB2 and TEF1, Craterellus and Hydnum both based on the combined nLSU and ITS. This study has reproduced the status of Hydnaceae in the order Cantharellales, and phylogenetically confirmed seventeen genera in Hydnaceae. Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (Cantharellus subgenus Magnus, Craterellus subgenus Cariosi, subg. Craterellus, subg. Imperforati, subg. Lamelles, subg. Longibasidiosi, subg. Ovoidei, and Hydnum subgenus Brevispina); seventeen new species (Ca. laevihymeninus, Ca. magnus, Ca. subminor, Cr. badiogriseus, Cr. croceialbus, Cr. macrosporus, Cr. squamatus, H. brevispinum, H. flabellatum, H. flavidocanum, H. Iongibasidium, H. pallidocroceum, H. pallidomarginatum, H. sphaericum, H. tangerinum, H. tenuistipitum and H. ventricosum); two synonyms (Ca. anzutake and Ca. tuberculosporus as Ca. yunnanensis), and two newly recorded species (H. albomagnum and H. minum). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of Hydnaceae is discussed. Notes of seventeen genera which are phylogenetically accepted in Hydnaceae by this study and a key to the genera in Hydnaceae are provided.

Key words: Cantharellales, Hydnaceae, Multiple-marker phylogeny, Taxonomy.

Taxonomic novelties: New subgenera: In genus Cantharellus: Cantharellus subgenus Magnus T. Cao & H.S. Yuan, in genus Craterellus: Cantharellus: Can

https://doi.org/10.1016/j.simyco.2021.100121.

INTRODUCTION

Hydnaceae Chevall. together with *Botryobasidiaceae* Jülich, *Ceratobasidiaceae* G.W. Martin, *Tulasnellaceae* Juel is nested in *Cantharellales* (Hibbett *et al.* 2014). As initially defined, the family mainly included taxa with a hydnoid hymenophore like the type genus *Hydnum* L. (Miller 1933). In 1999, Pine *et al.* identified a distinct group in the *Homobasidiomycetes*, comprising the genera *Cantharellus* Adans. and *Craterellus* Pers. of *Cantharellaceae* J. Schröt., *Clavulina* J. Schröt. and *Multiclavula* R.H. Petersen of *Clavulinaceae* Donk as well as *Hydnum* and they share the common feature of stichic nuclear division (Pine *et al.* 1999). Several subsequent studies phylogenetically focused on the "cantharelloid clade" (Hibbett & Binder 2002, Binder *et al.* 2005, Larsson 2007) and Moncalvo *et al.* (2006) delimited the

"core cantharelloid clade" which was composed of *Membranomyces* Jülich, *Sistotrema* Fr. and the five genera mentioned above. The type genus *Hydnum* of *Hydnaceae* fell in the core clade and the family "*Hydnaceae*" seemed to be inappropriate for its original narrower definition. Larsson (2007) provided the first phylogenetic evidence of the *Hydnaceae* which was delimited to embrace taxa with stichic basidia. Hibbett *et al.* (2014) proposed that *Cantharellaceae*, *Clavulinaceae* and *Sistotremataceae* were synonyms of the family *Hydnaceae*. The new combined *Hydnaceae* comprised nine genera and was characterised by having stichic basidia and septa with perforate parenthesomes (Hibbett *et al.* 2014). Lawrey *et al.* (2016) did the first phylogeny analysis of *Hydnaceae* of Hibbett *et al.* (2014).

Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.

^{© 2021} THE AUTHORS. Published by Elsevier B.V. on behalf of Westerdijk Fungal Biodiversity Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Hydnaceae is a highly diverse family in terms of morphology, ecology, and phylogeny. Morphologically, the basidiocarps of species in the family can be cantharelloid (e.g. Cantharellus and Craterellus) (Wilson et al. 2012, Henkel et al. 2014), clavarioid (e.g. Clavulina and Multiclavula) (Petersen 1967, Thacker & Henkel 2004, Yuan et al. 2020) or corticioid (e.g. Sistotrema and Membranomyces) (Jülich 1975, Kotiranta & Larsson 2013); the hymenophores range from hydnoid (e.g. Hydnum) (Niskanen et al. 2018), poroid (e.g. Sistotrema) (Zhou & Qin 2013), smooth (e.g. Cantharellus) (Buvck 2014) to veined (e.g. Craterellus) (Dahlman et al. 2000, Redhead et al. 2002, Contu et al. 2009); the number of sterigmata of basidia can be two (e.g. Clavulina and Membranomyces) (Petersen 1967, Kotiranta & Saarenoksa 1993), two to six (e.g. Cantharellus) (Buyck et al. 2014) or eight (e.g. Sistotrema and Sistotremella) (Eriksson et al. 1984). Cantharellus-Craterellus, Hydnum-Sistotrema Ecologically, sensu stricto and Clavulina-Membranomyces are three distinct ectomycorrhizal (ECM) lineages in the family while most species of Sistotrema and Sistotremella are saprotrophic (Eriksson et al. 1984, Boidin & Gilles 1994, Nilsson et al. 2006, Hibbett et al. 2014). Besides, some genera with lichenicolous or lichenised nutritional modes (e.g., Multiclavula and Burgoa) are also embedded in Hydnaceae (Lawrey et al. 2016, Masumoto & Degawa 2020a). Phylogenetically, most genera in Hydnaceae are monophyletic whereas Sistotrema is highly polyphyletic (Moncalvo et al. 2006, Nilsson et al. 2006, Larsson 2007, Veldre et al. 2013, Hibbett et al. 2014). In additon, culinary mushrooms occur in Cantharellus, Clavulina, Craterellus and Hydnum (Boa 2004, Dai et al. 2010); toxic mushrooms have not vet been reported from family Hydnaceae.

In the recent decade, molecular studies of new species and lineages in the Hydnaceae have been prolific from around the world (Buyck et al. 2014, Diederich et al. 2014, Henkel et al. 2014, Lawrey et al. 2016, An et al. 2017, Gruhn et al. 2017, Hembrom et al. 2017, Niskanen et al. 2018, Swenie et al. 2018, Kaur et al. 2019, Pérez-Pazos et al. 2019, Wu et al. 2019, Jian et al. 2020, Lawrey et al. 2020, Masumoto & Degawa 2020a, b, Yuan et al. 2020, Zhang et al. 2020). However, since Hibbett et al. (2014) redivided the Cantharellales, there have been only a few phylogenies involving the family (Lawrey et al. 2016, 2020, Masumoto & Degawa 2020a), based on ITS or nLSU dataset and often including partial genera in Hydnaceae. Although Hydnaceae has been estimated to originate at 259 Mya and the outline shows it including 21 genera (He et al. 2019), a comprehensive phylogeny based on a multiple-marker dataset for the entire Hydnaceae is still lacking and the delimitation as well as diversity of genera is also unclear.

Increasing numbers of studies of *Hydnaceae* are emerging in China (Tian *et al.* 2012, Shao *et al.* 2011, 2014, 2016a, b, Feng *et. al* 2016, He *et al.* 2016, An *et al.* 2017, Zhong *et al.* 2018, Wu *et al.* 2019, Jian *et al.* 2020, Yuan *et al.* 2020). During an investigation of specimens in *Hydnaceae* from China, many specimens were collected. The morphological features and multiple-marker molecular analyses showed that fifty samples are undescribed taxa which belong to the genera *Cantharellus*, *Craterellus* and *Hydnum*. In this study, we describe twenty-seven new taxa, merge two synonyms based on morphological characteristics and phylogenetic analyses, and infer the first relatively comprehensive multilocus phylogeny for the family *Hydnaceae* based on nLSU + ITS + mtSSU + *RPB2* + *TEF1* combined dataset.

The aims of this study are (1) To describe the new taxa of *Hydnaceae* from China, confirm or propose infrageneric subdivision within the genera *Cantharellus*, *Craterellus* and *Hydnum* based on morphological and phylogenetic analyses; (2) To confirm the phylogenetic position of *Hydnaceae* within the *Cantharellales* and (3) To provide more accurate delimitation of *Hydnaceae* at the genus level and clarify the generic diversity in the family.

MATERIALS AND METHODS

Specimens, isolates and identification

The studied specimens were collected from Hunan, Liaoning, Yunnan Province and Xinjiang Autonomous Region in China and deposited at the herbarium of the Institute of Applied Ecology, Chinese Academy of Sciences (IFP). Macroscopic descriptions of collected specimens were based on fresh basidiocarps. Microscopic procedures followed Shao et al. (2014). Dried material was mounted in 5 % aqueous KOH, and Melzer's reagent to test for any amyloid and/or dextrinoid reactions (Melzer's reagent: 1.5 g KI (potassium iodide), 0.5 g I (crystalline iodine), 22 g chloral hydrate, distilled water 20 mL). The following abbreviations are used in the text: KOH = 5 % potassium hydroxide; L_m = mean spore length (arithmetic average of all spores); W_m = mean spore width (arithmetic average of all spores); Q = variation in the ratios of L_m/W_m between specimens studied, and n = total number of spores measured from a given number of specimens. Sections were studied at magnifications up to ×1 000 using a Nikon Eclipse E600 microscope (Tokyo, Japan) with phase-contrast illumination, and dimensions were estimated with an accuracy of 0.1 µm. Microscopic drawings were made with the aid of a drawing tube. Spore measurements excluded the apiculus, and 5 % of the measurements at each end of the range are given in parentheses. The spore measurements were made with a Nikon SMZ 645 compound microscope. Colour codes are from Kornerup & Wanscher (1981).

DNA extraction, PCR, and sequencing

Genomic DNA was extracted from dried herbarium specimens with a Thermo Scientific Phire Plant Direct PCR kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) according to the manufacturer's instructions which was also used for the polymerase chain reaction (PCR) (Chen *et al.* 2016). Nuclear ribosomal RNA markers were used to determine the phylogenetic position of the new species. The internal transcribed spacer (ITS) was amplified with the primers ITS1F/ITS4 (White *et al.* 1990) and LROR/LR5 (Vilgalys & Hester 1990) for partial nLSU; MS1/MS2 (Matheny 2005) for mtSSU; rpb2-5FCanth/ rpb2-7cRCanth (Buyck *et al.* 2014) for *RPB2* of *Cantharellus* and fRPB2-5F/bRPB2-7.1R (Matheny *et al.* 2007) for *Craterellus* and *Hydnum*; Tef1R/Tef1RF (Morehouse *et al.* 2003) for *TEF1* of *Cantharellus* and *Craterellus*, and HEF1F/HEF1R for *Hydnum* (Feng *et al.* 2016).

PCR reactions were performed in 30 μ L reaction mixtures containing 15 μ L of 2 × Phire® Plant PCR buffer, 0.6 μ L Phire® Hot Start II DNA Polymerase, 1.5 μ L of each PCR primer (10 μ M), 10.5 μ L double deionised H₂O (ddH₂O), and 0.9 μ L template DNA. PCR amplification was confirmed on 1 % agarose

Table 1. Specimens and sequences used in this study.

Species		Ge	enBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Cantharellales							
Hydnaceae							
Bergerella atrofusca Diederich & Lawrey	-	MN902070	-	-	-	Berger 34240 (T)	Austria
<i>Bryoclavula phycophila</i> H. Masumoto & Y. Degawa	LC508118	NR169921	-	-	-	TNS F-79667 (T)	Japan
	LC544110	LC544109	-	-	-	S-287-FB3	Japan
<i>Bulbilla applanata</i> Diederich, Flakus & Etayo	-	KC336078	-	-	-	Flakus 16422 (T)	Bolivia
	-	KC336079	-	-	-	Flakus 16424	Bolivia
Burgella flavoparmeliae Diederich & Lawrey (T)	DQ915469	-	-	-	-	JL192-01 (T)	USA
<i>B. lutea</i> Diederich, Capdet, A.I. Romero & Etayo	KC336075	KC336076	-	-	-	Etayo 27623 (T)	Bolivia
Burgellopsis nivea Diederich & Lawrey	KC336077		-	-	-	ATCC MYA-4209 (T)	UK
Burgoa angulosa Diederich, Lawrey & Etayo	DQ915471	-	DQ915480	-	-	JL146-00 (T)	Spain
B. verzuoliana Goid. (T)	NG058614	NR145334	-	-	-	CBS 131.38 (T)	Japan
Cantharellus addaiensis Henn.	KF294667	-	KF294592	KF294745	JX192992	BB 98.033 (neotype)	Tanzania
	KF294621	-	KF294550	KF294695	JX192976	BB 98.057	Tanzania
Ca. afrocibarius Buyck & V. Hofstetter	KF294668	-	KF294593	KF294746	JX192993	BB 96.235 (T)	Zambia
	KF294669	-	KF294594	KF294747	JX192994	BB 96.236	Zambia
<i>Ca. albidolutescens</i> Buyck, Eyssart. & V. Hofst.	KF294646	KF981365	KF294577	KF294723	JX192982	BB 08.070 (T)	Madagascar
	KF294645	-	KF294576	KF294722	KF294752	BB 08.057	Madagascar
Ca. alborufescens (Malençon) Papetti & S. Alberti	KR677531	KR677493	-	KX828735	KX828816	AH44223	Spain
	KX929161	KX907209	-	KX907232	KX907243	BB 12.075	Switzerland
Ca. albovenosus Buyck, Antonín & Ryoo	-	-	-	-	MW124387	PC0142470	Korea
	-	-	-	-	KY271942	1690/V.Antonin 13.152 (T)	Korea
Ca. albus S.P. Jian & B. Feng	MT782540	-	-	MT776012	MT776015	KUN-HKAS:107045 (T)	China
	MT782542	-	-	MT776014	MT776017	KUN-HKAS:107047	China
Ca. altipes Buyck & V. Hofst.	KF294636	-	KF294567	KF294713	GQ914945	BB 07.162	USA
	KF294627	-	KF294556	KF294702	GQ914939	BB 07.019 (T)	USA (continued on next page)

4

Species		Ge	enBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Ca. ambohitantelyensis Buyck & V. Hofst.	KF294656	KF981366	KF294582	KF294733	JX192989	BB 08.336 (T)	Madagascar
Ca. amethysteus (Quel.) Sacc.	KF294639	JN944020	KF294570	KF294716	GQ914953	BB 07.284	Slovakia
	KR677550	KR677512	-	KX828738	KX828819	AH44796 (neotype)	Spain
Ca. anzutake W. Ogawa, N. Endo, M. Fukuda and A. Yamada	LC085415	LC085359	-	-	LC179800	TNS-F-61925 (T)	Japan
Ca. appalachiensis R.H. Petersen	KF294635	-	KF294565	KF294711	GQ914979	BB 07.123	USA
	DQ898690	-	DQ898646	DQ898748	-	GRSM77088	USA
Ca. brunneopallidus Buyck, Randrianj. & V. Hofst.	MK422941		MT002300	MT004809	MK422926	BB 11.105 (T)	Madagascar
	MK422940	-	MT002301	MT004810	MK422925	BB 11.116	Madagascar
Ca. californicus D. Arora & J.S. Dunham	KX828795	KX828768	-	KX828739	KX828820	OSC 122878 (T)	USA
Ca. cascadensis J.S. Dunham, O'Dell & R. Molina	AY041160	AY041181	DQ898676	-	-	OSC 75908	USA
Ca. chicagoensis Leacock, J. Riddell, Rui Zhang & G.M. Muell.	KP639218	KP639201	-	-	KP639230	PRL8916	USA
	KP639214	KP639200	-	-	KP639233	PRL8332	USA
Ca. cerinoalbus Eyssart. & Walleyn	KF294663	-	KF294590	KF294741	-	AV 06.051 (T)	Malaysia
Ca. cibarius Fr.	KF294658	KX907204	KF294585	KF294736	GQ914949	GE 07.025	France
	KR677539	KR677501	-	KX828742	KX828823	BIO-Fungi 10986 (T)	Sweden
Ca. cinnabarinus (Schwein.) Schwein.	KF294630	-	KF294559	KF294705	GQ914984	BB 07.053	USA
	KF294624	-	KF294552	KF294698	GQ914985	BB 07.001 (T)	USA
Ca. citrinus Buyck, R. Ryoo & Antonín	-	-	-	-	MW124385	BRNM825748 (T)	Korea
	-	-	-	-	MW124388	PC0142472	Korea
Ca. congolensis Beeli	KF294609	-	KF294542	-	JX193015	BB 98.039	Tanzania
	KF294673	-	KF294599	-	JX192996	BB 98.058	Tanzania
Ca. conspicuus Eyssart., Buyck & Verbeken	-		KF294598	KF294751	-	GE 99.560 (T)	Zimbabwe
Ca. curvatus Buyck, R. Ryoo & Antonín	-	-	-	-	MW124390	BRNM825749 (T)	Korea
Ca. cyphelloides Suhara & S. Kurogi	NG059027	NR154853	-	-	-	TNS:F-61721 (T)	Japan
Ca. decolorans Eyssart. & Buyck	KF294654	NR154788	-	KF294731	GQ914968	469/BB 08.278	Madagascar
Ca. densifolius Heinem.	KF294616	-	-	KF294690	JX193014	BB 98.013	Tanzania
Ca. ferruginascens P.D. Orton	KR677524	KR677486	-	KX828750	KX828829	BIO-Fungi 11700	Spain
	KF294638	-	KF294569	KF294715	GQ914952	BB 07.283	Slovakia

Species		Ge	enBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Ca. flavolateritius Buyck & V. Hofst.	KX896783	MG450675	_	-	KX857027	VH 1076	USA
	-	-	-	-	KX857029	VH 1078 (T)	USA
Ca. gracilis Buyck & V. Hofst.	KF294612	-	-	KF294686	JX192970	BB 98.234 (T)	Tanzania
<i>Ca. guyanensis</i> Mont.	KX857095	-	KX857121	KX856999	KX857061	1517/MR	Guyana
	KX857094	-	KX857120	KX856998	KX857060	1501/MRG07	Guyana
Ca. hainanensis N.K. Zeng, Zhi Q. Liang & S. Jiang	KY407524	-	-	-	KY407536	FHMU 1931 (T)	China
Ca. humidicolus Buyck & V. Hofst.	KF294666	-	-	KF294744	JX193005	BB 98.036 (T)	Tanzania
Ca. hygrophorus Shao, Buyck & Yu	KJ004002	-	-	-	KJ004003	HKAS80614 (T)	China
Ca. ibityensis Buyck, Randrianj. & V. Hofst.	KF294651	-	-	KF294728	JX192985	BB 08.203	Madagascar
	KF294650	KF981368	-	KF294727	GQ914980	BB 08.196 (T)	Madagascar
Ca. lateritius (Berk.) Singer	KF294628	-	KF294557	KF294703	GQ914957	BB 07.025 (T)	USA
	KF294633	-	KF294562	KF294708	GQ914959	BB 07.058	USA
Ca. laevihymeninus	MW979520	MW980543	MW980526	MW999453	MW999418	Yuan 13900	China
	MW979521	MW980544	MW980527	MW999454	MW999419	Yuan 13902	China
Ca. lewisii Buyck & V. Hofst.	JN940597	JN944021	KF294554	KF294700	GQ914962	BB 07.003 (T)	USA
	KF294623	-	KF294551	KF294697	GQ914961	BB 02.197	USA
Ca. magnus	MW979516		MW980524	MW999451	MW999421	Wei 10319	China
	MW979517		MW980525	MW999452	MW999420	Wei 10244	China
Ca. minor Peck	KF294632	-	KF294561	KF294707	JX192979	BB 07.057	USA
	KF294625	-	KF294553	KF294699	JX192978	BB 07.002	USA
Ca. miomboensis Buyck & V. Hofst.	KF294613	-	KF294544	KF294687	JX192971	BB 98.021 (T)	Tanzania
Ca. nigrescens Buyck, Randrianj. & V. Hofst.	KF294608		KF294541	KF294683	GQ914982	BB 06.197 (T)	Madagascar
Ca. pallens Pilát	KX907215	KX929162	-	KX929160	KX857014	BB 09.409	Italy
Ca. parvisporus (Eyssart. & Buyck) Buyck & V. Hofst.	KF294614	-	-	KF294688	JX192972	BB 98.020	Tanzania
Ca. parvisporus Eyssart. & Buyck	KF294611	-	-	KF294685	GQ914966	BB 98.037	Tanzania
Ca. phloginus S.C. Shao & P.G. Liu	KF801100	-	-	-	KF801095	SSC98 (T)	China
	KF801101	-	-	-	KF801096	SSC99	China
							(continued on next page)

Species		Ge	nBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Ca. phloginus	MW979518	-	-	-	MW999424	Yuan 14468	China
	MW979519		-	-	MW999425	Yuan 14490	China
Ca. platyphyllus Heinem.	KF294620		KF294549	KF294694	JX192975	BB 98.126 (T)	Tanzania
	KF294617	-	KF294546	KF294691	GQ914969	BB 98.012	Tanzania
Ca. platyphyllus subsp. Bojeriensis Eyssart. & Buyck	KF294648	-	KF294579	KF294725	JX192984	BB 08.160	Madagascar
Ca. romagnesianus Eyssart. & Buyck	KX828806	KX828783	-	-	-	PC0085043 (T)	France
	KX828807	KX828784	-	KX828757	KX828836	AH44218	Spain
Ca. roseocanus (Redhead, Norvell & Danell) Redhead, Norvell & Moncalvo	KX828810	KX828787	-	KX828758	KX828837	DAOM220723	Canada
Ca. sebosus Buyck, Randrianj. & V. Hofst.	KF294652	NR154789	KF294581	KF294729	JX192986	BB 08.234 (T)	Madagascar
	KF294649	KF981371	KF294580	KF294726	GQ914981	BB 08.162	Madagascar
Ca. splendens Buyck	KF294671	-	KF294596	KF294749	-	BB 96.199	Zambia
	KF294670	-	KF294595	KF294748	-	BB 96.306	Zambia
Ca. subalbidus A.H. Sm. & Morse	AY041149	AY041179	DQ898680	-	-	OSC 75937	USA
	KX828814	KX828791	-	KX828762	KX828841	OSC 81782	USA
Ca. subamethysteus Eyssart. & D. Stubbe	KF294664	-	KF294591	KF294742	-	DS 06.218 (T)	Malaysia
Ca. subincarnatus Eyssart. & Buyck	KF294601		KF294536	KF294675	JX192962	BB 06.080 (T)	Madagascar
	KF294602	KF981372	KF294537	KF294676	JX192963	BB 06.096	Madagascar
Ca. subminor	MW979522	MW980545	MW980528	MW999455	MW999415	Yuan 13917	China
	MW979523	MW980546	MW980529	MW999456	MW999416	Yuan 13925	China
	MW979524	MW980547	MW980530	MW999457	MW999417	Yuan 13926	China
Ca. subpruinosus Eyssart. & Buyck	KF294660	-	KF294587	KF294739	-	GE07.080	France
Ca. symoensii Heinem.	KF294619	-	KF294548	KF294693	JX192974	BB 98.113 (epitype)	Tanzania
	KF294618	-	KF294547	KF294692	GQ914970	BB 98.011	Tanzania
Ca. tabernensis Feib. & Cibula	JN940608	JN944012	-	JN993600	GQ914975	BB 07.064	USA
	JN940609	JN944013	-	JN993599	GQ914977	BB 07.040	USA
Ca. tanzanicus Buyck & V. Hofst.	KF294622	-	-	KF294696	JX192977	BB 98.040 (T)	Tanzania
Ca. tenuithrix Buyck & V. Hofstetter	JN940600	JN944017	KF294566	KF294712	GU914947	BB 07.125 (T)	USA
	KF294629	-	KF294558	KF294704	GU914976	BB 07.035 (T)	USA

Species		Ge	Specimen/culture	Country			
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Ca. texensis Buyck & V. Hofst	JN940601	-	KF294564	KF294710	GQ914987	BB 07.120	USA
	KF294626	-	KF294555	KF294701	GQ914988	BB 07.018 (T)	USA
Ca. tomentosoides Buyck & V. Hofst.	MK422937	-	MT002295	MT004804	MG450685	BB16.007 (T)	Central African Republic
Ca. tomentosus Eyssart. & Buyck	KF294672	-	KF294597	KF294750	JX192995	BB 98.060 (T)	Tanzania
	KF294610	-	KF294543	KF294684	GQ914965	BB 98.038	Tanzania
Ca. tuberculosporus M. Zang	KU720305	-	-	-	KM893837	SSC 6	China
	KU720306	-	-	-	KM893835	SSC 2	China
<i>Ca. vaginatus</i> S.C. Shao, X.F. Tian & P.G. Liu	HM594681	HQ416692	-	-	-	HKAS55730 (T)	China
Ca. versicolor S.C. Shao & P.G. Liu		-	-	-	KM893857	HKAS55762 (T)	China
	MW979525	-	MW980531	MW999458	MW999427	Yuan 13640	China
	MW979526	-	MW980532	MW999459	MW999426	Yuan 13681	China
Ca. yunnanensis W.F. Chiu	KU720333	-	-	-	KU720337	XieXD174	China
	MW979527	-	-	-	MW999428	Yuan 13983	China
	MW979528	-	-	-	MW999429	Yuan 13985	China
Ca. yunnanensis "as Cantharellus anzutake"	MW979514	MW980541	-	-	MW999422	Yuan 14539	China
	MW979515	MW980542	-	-	MW999423	Yuan 14636	China
Clavulina cerebriformis Uehling, Aime & T.W. Henkel	JN228222	NR121504	-	JN228233	-	MCA4022 (T)	Guyana
Clavulina cf. cristata	JN228225	JN228225	-	JN228240	-	MES426	China
Cl. cinereoglebosa Uehling, Aime & T.W. Henkel	JN228232	JN228218	-	JN228246	-	TH8561 (T)	Guyana
Cl. cristata (Holmsk.) J. Schröt.	JN228227	JN228227	-	JN228241	-	JKU8	USA
Clavulina sp.	AY745694	DQ202266	-	DQ366286	DQ028589	MB03-034	USA
Craterellus albidus Fr.	MT921161	-	-	-	-	HGASMF01-3581 (T)	China
	MT921162	-	-	-	-	HGASMF01-10046	China
Cr. albostrigosus C.K. Pradeep & K.B. Vrinda	MG593194		-	-	-	TBGT16577 (T)	India
Cr. atratoides T.W. Henkel, Aime & A.W. Wilson	JQ915129	JQ915103	-	-	-	TH8473	Guyana
	NG042660	JQ915111	-	-	-	TH9232 (T)	Guyana (continued on next page)

 $\overline{}$

Species		Ge	nBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
<i>Cr. atratus</i> (Corner) Yomyart, Watling, Phosri, Piap. & Sihan.	JQ915118	JQ915092	-	-	-	MCA1070	Guyana
	JQ915126	JQ915100	-	-		MCA990	Guyana
Cr. atrobrunneolus T. Cao & H.S. Yuan	MN894058	MN902353	-	-	-	Yuan 13878	China
Cr. badiogriseus	MW979532	MW980548	-	-	MW999432	Yuan 14776	China
	MW979533	MW980549	-	-	MW999433	Yuan 14779	China
Cr. caeruleofuscus A.H. Sm.	-	GU590930	-	-	-	ADW00122	USA
	-	MH558300	-	-	-	MH17001	USA
Cr. carolinensis R.H. Petersen	-	KY654712	-	-	-	FLAS-F-59997	USA
Cr. cinereofimbriatus T.W. Henkel & A.W. Wilson	JQ915130	JQ915104	-	-	-	TH8999	Guyana
	JQ915131	JQ915105	-	-	-	TH9075 (T)	Guyana
Cr. cinereus (Pers.) Pers.	JF412278	-	-	-	-	isolate 107-08 (T)	India
Cr. cornucopioides (L.) Pers.	-	UDB000053	-	-	-	KF01-46	Denmark
	-	KT693262	-	-	-	groc_11399	USA
Cr. croceialbus	MW979529	MW980572	-	MW999460	MW999430	Yuan 14623	China
	MW979530	MW980573	-	MW999461	MW999431	Yuan 14647	China
Cr. excelsus T.W. Henkel & Aime	JQ915127	JQ915101	-	-	-	TH7515	Guyana
	JQ915128	JQ915102	-	-	-	TH8235 (T)	Guyana
Cr. fallax A.H. Sm.	AY700188	DQ205680	-	-	-	AFTOL-ID 286	USA
	-	GU590924	-	-	-	MGW652	USA
Cr. hesleri R.H. Petersen	-	GU590931	-	-	-	RHP55560	USA
Cr. ignicolor (R.H. Petersen) Dahlman, Danell & Spatafora	AF105314		-	-	-	UPSF 11794	USA
Cr. indicus D. Kumari, Ram. Upadhyay & Mod.S. Reddy	NG060387	NR119831	-	-	-	PUN 3884 (T)	India
	-	HQ450769	-	-	-	MSR6	India
<i>Cr. inusitatus</i> C.K. Pradeep & K.B. Vrinda	MG593195	-	-	-	-	taxon:2056430	India
Cr. luteus T.H. Li & X.R. Zhong	MG701171	MG727896	-	-	-	GDGM48105 (T)	China
	MG727898	MG727897	-	-	-	GDGM46432	China
Cr. lutescens (Fr.) Fr.	-	AY082606	-	-	-	taxon:104198	Ireland
	-	GU373513	-	-	-	H 6005875	Finland

Species		Ge	enBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Cr. macrosporus	MW979531	MW980574	-	-	-	Yuan 14782	China
Cr. melanoxeros (Desm.) Pérez-De- Greg.	JQ976983	-	-	-	-	SS576	Sweden
Cr. odoratus (Schwein.) Fr.	AF105306	-	-	-	-	UPSF 11794	USA
Cr. olivaceoluteus T.W. Henkel, Aime & A.W. Wilson	JQ915124	JQ915098	-	-	-	MCA3186	Guyana
	JQ915135	JQ915109	-	-	-	TH9205 (T)	Guyana
<i>Cr. parvogriseus</i> U. Singh, K. Das & Buyck	MF421098	MF421099	-	-	-	CAL 1533 (T)	India
Cr. pleurotoides (T.W. Henkel, Aime & S.L. Mill.) A.W. Wilson	JQ915123	JQ915097	-	-	-	MCA3124	Guyana
	JQ915136	JQ915110	-	-	-	TH9220	Guyana
Cr. shoreae Hembrom, K. Das, A. Parihar & Buyck	KY290585		-	-	-	CAL 1396 (T)	India
Cr. squamatus	MW979534	MW980571	-	MW999462	MW999434	Yuan 14520	China
	MW979535	MW980570	-	MW999463	MW999435	Yuan 14721	China
<i>Cr. strigosus</i> T.W. Henkel, Aime & A.W. Wilson	JQ915120	JQ915094	-	-	-	MCA1750	Guyana
	JQ915134	JQ915108	-	-	-	TH9204 (T)	Guyana
Cr. tubaeformis (Fr.) Quél.	DQ898741	-	DQ898651	DQ898749	-	TM 0268	Canada
	KF294640	-	KF294571	KF294717	GQ914989	BB 07.293	Slovakia
Hydnum albertense Niskanen & Liimat.	-	KX388664	-	-	-	H T. Niskanen 11-354 (T)	Canada
<i>Hy. albomagnum</i> Banker	AY700199	DQ218305	-	DQ234553	DQ234568	AFTOL-ID 471	USA
	-	MH379943	-	-	-	RAS231 (epitype)	USA
	MW979536	MW980550	-	-	-	Wei 10194	China
	MW979537	MW980551	-	-	-	Wei 10247	China
<i>Hy. berkeleyanum</i> K. Das, Hembrom, A. Baghela & Vizzini	NG070500	NR158533	-	-	-	CAL 1656 (T)	India
	KU612667	KU612525	-	-	-	HKAS77834	China
	MW979538	MW980552	-	-	-	Wei 10375	China
<i>Hy. boreorepandum</i> Niskanen, Liimat. & Niemelä	-	KX388658	-	-	-	HTN 1679	Finland
	-	KX388657	-	-	-	H 6003711 (T)	Finland (continued on next page)

10

Species		Ge	nBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Hy. brevispinum	MW979559	MW980578	-	-	-	Wei 10214	China
	MW979560	MW980579	-	-	-	Wei 10258	China
Hy. canadense Niskanen & Liimat.	-	KX388681	-	-	-	HTN 09-006 (T)	Canada
Hy. cremeoalbum Liimat. & Niskanen	-	AB906674	-	-	-	TUMH 40462	Japan
	-	AB906678	-	-	-	TUMH 60740 (T)	Japan
	KU612676	KU612619	-	-	-	HKAS92345	China
Hy. cuspidatum Swenie & Matheny	-	MH379944	-	-	-	RAS 246 (T)	USA
	-	MH379936	-	-	-	RAS 205	USA
Hy. ellipsosporum Ostrow & Beenken	-	AY817138	-	-	-	Os5579 (T)	Germany
	-	KX388671	-	-	-	HTN 12-036	Finland
	KX086217	KX086215	-	-	-	FD3281	Switzerland
Hy. ferruginescens Swenie & Matheny	-	MH379905	-	-	-	MH16005 (T)	USA
	-	MH379942	-	-	-	RAS229	USA
Hy. flabellatum	MW979556	MW980575	-	-	-	Yuan 14708	China
Hy. flavidocanum	MW979545	MW980559	MW980535	MW999466	MW999440	Yuan 13903a	China
	MW979546	MW980560	MW980536	MW999467	MW999441	Yuan 13900a	China
<i>Hy. ibericum</i> Olariaga, Liimat. & Niskanen		HE611086	-	-	-	BIO:Fungi:12330 (T)	Spain
	-	AJ547879	-	-	-	MA-fungi 3457	Spain
Hy. jussii Niskanen, Liimat. & Kytöv	-	KX388665	-	-	-	H 6003709 (T)	Finland
	MW979539	MW980553	-	-	MW999436	Yuan 14008	China
	MW979540	MW980554	-	-	MW999437	Yuan 14009	China
Hy. longibasidium	MW979541	MW980556	MW980533	MW999464	MW999438	Wei 10383	China
	MW979542	MW980555	MW980534	MW999465	MW999439	Wei 10367	China
<i>Hy. magnorufescens</i> Vizzini, Picillo & Contu	KU612669	KU612549	-	-	-	voucher 161209	Slovenia
	-	KC293545	-	-	-	TO HG2818 (T)	Italy
<i>Hy. melitosar</i> x Ruots., Huhtinen, Olariaga, Niskanen, Liimat. & Ammirati		KX388683	-	-	-	H 7043937 (T)	USA
	-	KX388685	-	-	-	K 176869	UK
<i>Hy. melleopallidum</i> Kranab., Liimat. & Niskanen	-	FJ845406	-	-	-	SMI356 (T)	Canada

Species		Ge	enBank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Hy. minum Yanaga & N. Maek.	_	AB906675	_	_	-	TUMH60737 (T)	Japan
	KY407528	KY407533	-	-	-	N.K.Zeng2819	China
	MW979543	MW980557	-	-	-	Wei 10252	China
	MW979544	MW980558	-	-	-	Wei 10260	China
Hy. mulsicolor Liimat. & Niskanen	-	AJ547885	-	-	-	LJU GIS 1336 (T)	Slovenia
	-	JX093560	-	-	-	REB 341	USA
Hy. neorepandum Niskanen & Liimat.	-	KX388659	-	-	-	HTN10-095 (T)	Canada
	-	KX388660	-	-	-	HTN 10-086	Canada
<i>Hy. olympicum</i> Niskanen, Liimat. & Ammirati	-	KX388661	-	-	-	09-134 (T)	USA
	-	MT955159	-	-	-	SAT-10-208-05	USA
<i>Hy. oregonense</i> Norvell, Liimat. & Niskanen	-	KF879509	-	-	-	HVM61	USA
	-	AJ534972	-	-	-	PNW-MS g2010502h1-09 (T)	USA
<i>Hy. ovoideisporum</i> Olariaga, Grebenc, Salcedo & M.P. Martín	-	KU612536	-	-	-	voucher 71106	Slovenia
	-	NR119818	-	-	-	BIO Fungi 12683 (T)	Spain
Hy. pallidocroceum	MW979554	MW980568	-	-	MW999449	Yuan 14023	China
	MW979555	MW980569	-	-	MW999450	Yuan 14017	China
Hy. pallidomarginatum	MW979552	MW980566	MW980539	MW999473	MW999447	Yuan 13928a	China
	MW979553	MW980567	MW980540	MW999474	MW999448	Yuan 13940a	China
Hy. quebecense Niskanen & Liimat.	-	KX388662	-	-	-	HTN 10-064 (T)	Canada
	-	MH379881	-	-	-	CN9	USA
Hy. repandum L.	-	NR164553	-	-	-	H6003710 (T)	Finland
<i>Hy. repando-orientale</i> Liimat. & Niskanen	-	AB906683	-	-	-	TUMH60745 (HT)	Japan
	-	AB906684	-	-	-	TUMH60743	Japan
Hy. rufescens Pers.	-	KX388688	-	-	-	H 6003708 (epitype)	Finland
	-	KX388656	-	-	-	HTN 7839	Estonia
Hy. slovenicum Liimat. & Niskanen	-	AJ547870	-	-	-	LJU GIS 1338 (T)	Slovenia
	-	AJ547884	-	-	-	LJU GIS 1340	Slovenia
							(continued on next page)

Species	GenBank No.					Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Hydnum sp.	KU612668	KU612607	-	-	-	HKAS82411	Taiwan-Island
	KU612644	KU612597	-	-	-	HKAS61337	China
	-	KC679834	-	-	-	wi8T4spel	Taiwan-Island
	-	KC679833	-	-	-	wi1A4spel	Taiwan-Island
Hydnum sp.2	KU612661	KU612543	-	-	-	HKAS92340	China
Hydnum sp.3	KU612665	KU612531	-	-	KU612776	HKAS61795	Canada
Hydnum sp.6	-	KU612547	-	-	KU612773	HKAS45769	China
Hydnum sp.7	-	KU612584	-	-	-	HKAS51070	China
Hydnum sp.8	KU612654	KU612596	-	-	-	HKAS55410	China
<i>Hydnum</i> sp.10	KU612681	KU612567	-	-	-	HKAS93261	China
Hydnum sp.13	KU612673	KU612617	-	-	-	HKAS57714	China
	KU612675	KU612616	-	-	-	HKAS58838	China
<i>Hydnum</i> sp.15	-	KU612613	-	-	-	HKAS55325	China
	-	KU612614	-	-	-	HKAS92336	China
<i>Hydnum</i> sp.16	-	KU612609	-	-	-	HKAS52807	China
	KU612672	KU612610	-	-	-	HKAS92350	China
Hy. sphaericum	MW979549	MW980563	-	MW999470	MW999444	Wei 10243	China
	MW979550	MW980564	-	MW999471	MW999445	Wei 10300	China
	MW979551	MW980565	-	MW999472	MW999446	Wei 10262	China
Hy. subconnatum Swenie & Matheny	-	MH379930	-	-	-	RAS235 (T)	USA
	-	MH379916	-	-	-	RAS169	USA
<i>Hy. subcremeoalbum</i> Tedersoo, Liimat. & Niskanen		UDB013289	-	-	-	TU110688 (T)	Papua New Guinea
Hy. submulsicolor Niskanen & Liimat.	-	KX388682	-	-	-	HTN 10-132 (T)	Canada
Hy. subolympicum Liimat. & Niskanen	KU612653	KU612599	-	-	-	F1188765	USA
	-	MH174257	-	-	-	DAOM744368 (T)	Canada
Hy. subovoideisporum Niskanen & Liimat.		NR158494	-	-	-	H 6003707 (T)	Finland
Hy. subrufescens Niskanen & Liimat.	-	KX388649	-	-	-	HTN 10-154 (T)	Canada
	KU612663	KU612535	-	-	-	F1188749	USA

Species		Ge	Specimen/culture	Country			
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Hy. subtilior Swenie & Matheny	-	MH379918	-	-	-	RAS180	USA
	-	NR164029	-	-	-	TENN073034 (T)	USA
Hy. tangerinum	MW979561	MW980580	-	-	-	Wei 10245	China
	MW979562	MW980581	-	-	-	Wei 10249	China
	MW979563	MW980582	-	-	-	Wei 10250	China
Hy. tenuistipitum	MW979557	MW980576	-	-	-	Wei 10410	China
	MW979558	MW980577	-	-	-	Wei 10417	China
Hy. treui Tedersoo, Liimat. & Niskanen	-	UDB013043	-	-	-	TU110403 (T)	Papua New Guinea
Hy. umbilicatum Peck	-	MH379883	-	-	-	10640TJB (epitype)	USA
<i>Hy. vagabundum</i> Swenie, Ovrebo & Matheny	-	MH379909	-	-	-	CLO4985 (T)	USA
	-	MH379949	-	-	-	10782TJB	USA
Hy. ventricosum	MW979547	MW980561	MW980537	MW999468	MW999442	Yuan 14536	China
	MW979548	MW980562	MW980538	MW999469	MW999443	Yuan 14601	China
Hy. vesterholtii Olariaga, Grebenc, Salcedo & M.P. Martín	-	HE611084	-	-	-	BIO Fungi 12904 (T)	Spain
	-	HE611085	-	-	-	BIO:Fungi:10452	Spain
Hy. washingtonianum Ellis & Everh.	-	MF954990	-	-	-	UBC F-32538	Canada
	-	MH379846	-	-	-	strain 214 (isotype)	USA
Hy. zongolicense Garibay	-	KC152121	-	-	-	GO-2010-142a (T)	Mexico
Membranomyces delectabilis (H.S. Jacks.) Kotir. & Saaren.	AY586688	AY463442	-	-	-	KHL11147	Sweden
<i>Minimedusa obcoronata</i> (B. Sutton, Kuthub. & Muid) Diederich, Lawrey & Heylen	GQ303309	GQ303278	-	-	-	CBS 120605	Thailand
<i>Mi. polyspora</i> (Hotson) Weresub & P.M. LeClair	MH866167	MH854646	-	-	-	CBS 113.16 (T)	USA
	MG833798	MG833806	-	-	-	SH-Ecto-3	China
Multiclavula corynoides (Peck) R.H. Petersen	U66440	U66440	-	-	-	Lutzoni 930804-2	USA
Mu. mucida (Pers.) R.H. Petersen	EU909345	EU909345	-	-	-	TUB 011734	Germany
Mu. petricola H. Masumoto & Y. Degawa	LC516465	LC516464	-	-	-	356 ex-type (T)	Japan (continued on next pag

4

Species		GenB	ank No.			Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Mu. vernalis (Schwein.) R.H. Petersen	U66439	U66439	-	-	-	Lutzoni 930806-1	USA
Neoburgoa freyi Diederich, E. Zimm. & Lawrey	KX423756	KX423756	-	-	-	LF1256 (T)	Switzerland
	KX423755	KX423754	-	-	-	JL596-16	Switzerland
Pseudocraterellus sinuosus (Fr.) Corner	-	GU590932	-	-	-	TENN062865	Sweden
Pseudocraterellus sp.	-	KM576333	-	-	-	LM5294	Austria
	-	MF352690	-	-	-	SK1161	UK
Rogersiomyces malaysianus (K. Matsush. & Matsush.) Zmitr.	KU820986	KT779285	-	-	-	LE-BIN 3507-10	Vietnam
	KT779286	KT779284	-	-	-	LE-BIN 3507	Vietnam
Sistotrema brinkmannii (Bres.) J. Erikss.	DQ898709	-	DQ898655	DQ898755	-	FCUG 2217	USA
S. confluens Pers.	AY647214	DQ267125	-	DQ381837	-	FCUG298	USA
	AY586712	AY463466	-	-	-	PV174	Czechia
S. eximum (H.S. Jacks.) Ryvarden & Solheim	DQ898695	-	DQ898660	DQ898762	-	FCUG 2342	USA
S. muscicola Pers.	AJ606041	AJ606041	-	-	-	taxon:154757	Finland
	AJ606040	AJ606040	-	-	-	KHL 11721	Finland
S. oblongisporum M.P. Christ. & Hauerslev	DQ898728	-	DQ898732	DQ898767	-	GEL2125	USA
S. octosporum (J. Schröt. ex Höhn. & Litsch.) Hallenb.	DQ898698	-	DQ898663	DQ898764		FCUG 2822	USA
S. subconfluens L.W. Zhou	JX076810	JX076812	-	-	-	Dai 12577 (T)	China
Sistotremella perpusilla Hjortstam	MH875516	MH864061	-	-	-	CBS 126048	USA
Tulasnellaceae							
Tulasnella asymmetrica Warcup & P.H.B. Talbot	DQ520101	DQ520101	-	-	-	AFTOL-ID 1678	Germany
T. irregularis Warcup & P.H.B. Talbot	NG057720	NR160166	-	-	-	CBS 574.83 (T)	Australia
T. pruinosa Bourdot & Galzin	AF518662	DQ457642	-	DQ381839	DQ061274	DAOM 17641	USA
<i>Tulasnella</i> sp.	DQ898731	-	DQ898736	DQ898771	-	GEL5130	Canada
T. violea (Quél.) Bourdot & Galzin	-	-	DQ898735	DQ898768	-	GEL2561	Canada
	DQ520097	DQ520097	-	DQ521418	-	AFTOL-ID 1879	Germany

INSTITUTE	FUNGALBIO
	www.studiesinmycology.org

Species	GenBank No.					Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	-
Ceratobasidiaceae							
Ceratobasidium globisporum Warcup & P.H.B. Talbot	MH873365	DQ278942	-	DQ301723	DQ301644	CBS 569.83	Australia
Ceratobasidium sp.	AY293171	-	AY293223	-	-	GEL 5602	USA
	AF354083	AF354083	KJ380768	-	-	CAG6	USA
Ceratorhiza hydrophila (Sacc. & P. Syd.) Z.H. Xu, T.C. Harr., M.L. Gleason & Batzer	MT381951	MT381956	-	MT381954	MT381955	E14504F	Ecuador
Rhizoctonia endophytica H.K. Saksena & Vaartaja	KP171655	KP171640	-	KP171658	-	DAOM 138188	Canada
Rh. solani J.G. Kühn	MN078809	MK481078	-	-	MN078941	BRS17	India
<i>Thanatephorus cucumeris</i> (A.B. Frank) Donk	MH873283	DQ278946	-	DQ301727	DQ301660	CBS 700.82	Panama
	AF518655	-	AF518697	-	-	IMI-34886	USA
<i>Uthatobasidium fusisporum</i> (J. Schröt.) Donk		DQ398957	-	DQ381842	-	AFTOL-ID 611	USA
<i>Uthatobasidium</i> sp.	AF518664	-	AF518698	-	-	HHB-102155	USA
Botryobasidiaceae							
Botryobasidium obtusisporum J. Erikss.	DQ898729	-	DQ898733	DQ898769	-	GEL3030	Canada
Bo. simile HolJech.	DQ898730	KP171641	DQ898734	DQ898770	-	GEL2348	Canada
Bo. subcoronatum (Höhn. & Litsch.) Donk	AY647212	DQ200924	-	DQ366284	-	AFTOL-ID 614	USA
Haplotrichum conspersum (Link) Hol Jech.	DQ521414	DQ911612	-	-	DQ521420	AFTOL-ID 1766	USA
Oliveoniaceae							
Oliveonia sp.	MT235618	MT235650	-	-	-	TH 2018074	Finland
	MT235617	MT235649	-	-	-	TH 2018179	Finland
	MT235615	MT235647	-	-	-	VS 9048	Russia
	MT235614	MT235645	-	-	-	VS 9053	Russia
Tremellomycetes							
Holtermanniaceae							
Holtermannia corniformis Kobayasi	NG057658	NR154050	-	KF036899	KF037162	CBS 6979 (T)	Japan
							(continued on next page)

16

Species	GenBank No.					Specimen/culture	Country
	nLSU	ITS	mtSSU	RPB2	TEF1	voucher	
Holtermanniella festucosa (Golubev & J.P. Samp.) Libkind, Wuczk., Turchetti & Boekhout	KY107040	KY102693	-	KF036779	KF037052	CBS10162 (T)	Russia
Ho. nyarrowii (Thomas-Hall & K. Watson) Libkind, Wuczk., Turchetti & Boekhout	NG058306	NR155182	-	KF036803	KF037075	CBS 8804 (T)	Antarctica
Ho. wattica (Guffogg, Thomas-Hall, P. Holloway & K. Watson) Libkind, Wuczk., Turchetti & Boekhout	NG058307	NR138371		KF036828	KF037099	CBS 9496 (T)	Antarctica
Trichosporon insectorum Fuent., S.O. Suh, Landell, Faganello, A. Schrank, Vainstein, M. Blackw. & P. Valente	KY109953	KF036603	-	KF036972	KF037232	CBS 10422 (T)	Panama
Tr. lactis Lopandić, Sugita, Middelhoven, Herzberg & Prillinger	NG058421	NR073334	-	KF036975	KR046413	CBS 9051 (T)	Austria
Dacrymycetales							
Dacrymyces australis Lloyd	-	DQ205684	-	DQ381845	DQ028587	FPL8953	USA

¹Newly generated sequences in this study are in bold. The number of the Hydnum sp. follows Feng et al. (2016).

Fig. 1. Maximum Likelihood tree based on the combined nLSU + ITS + mtSSU + *RPB2* + *TEF1* sequence dataset illustrating the phylogeny of *Cantharellales*. The taxa in *Hydnaceae* have a green background; the blue branches represent the ECM taxa; the green represents the lichenicolous taxa; the orange represents the lichenised taxa and the pink represents the saprotrophic taxa; the shape of the basidiocarps is represented by line diagrams to the right of the tree. Branches are labelled with Maximum Likelihood bootstrap higher than 50 % and Bayesian Posterior Probabilities > 0.95.

Fig. 2. Maximum Likelihood tree based on the combined 5.8S + nLSU + mtSSU + *RPB2* + *TEF1* sequence dataset illustrating the phylogeny of the genus *Cantharellus*. The new taxa have a yellow background; newly acquired samples in this study are in bold; samples from China are marked with red stars. Branches are labelled with Maximum Likelihood bootstrap higher than 50 % and Bayesian Posterior Probabilities > 0.95.

Fig. 3. Maximum Likelihood tree based on the combined nLSU + ITS sequence dataset illustrating the phylogeny of the genus *Craterellus*. The new taxa have a yellow background; newly acquired samples in this study are in bold; samples from China are marked with red stars. Branches are labelled with Maximum Likelihood bootstrap higher than 50 % and Bayesian Posterior Probabilities > 0.95.

electrophoresis gel stained with ethidium bromide (Stöger *et al.* 2006) and sequenced at the Beijing Genomics Institute (BGI) with the same primers as used in PCR. The newly generated DNA sequences were assembled and manually modified with the software DNAMAN8 (Lynnon Biosoft, Quebec, Canada). The sequence quality control followed the guidelines by Nilsson *et al.* (2012). All sequences newly obtained were submitted to Gen-Bank (Sayers *et al.* 2020).

Phylogenetic analyses

Sequences for phylogenetic analysis were found in GenBank (http://www.ncbi.nlm.gov) using the BLAST option and downloaded (Table 1). DNA alignments were performed using the MAFFT v. 7.471 online service (https://mafft.cbrc.jp/alignment/ server/index.html; Katoh *et al.* 2019). Intron regions of *RPB2* and *TEF1* as well as low-homology regions of ITS1 and ITS2 were removed before phylogenetic analyses, and the two sequence datasets were combined using BioEdit v. 7.2.6 (Hall 2005).

We assembled four datasets for phylogenetic analyses: the Cantharellales dataset based on a five-locus concatenated alignment which included nLSU, ITS, mtSSU, RPB2 and TEF1; the Cantharellus dataset based on a five-locus concatenated alignment which included 5.8S, nLSU, mtSSU, RPB2 and TEF1; the Craterellus and Hydnum datasets both based on a two-locus (nLSU and ITS) concatenated alignment. The four datasets were all partitioned by gene and codon position and the best-fit models were determined by iModelTest v. 2.1.10 (Darriba et al. 2012) based on the Corrected Akaike Information Criterion (AICc). The first dataset (Cantharellales) was divided into nine data partitions and the best-fit models were: GTR + I + G for nLSU, GTR + G for ITS, TrN + G for mtSSU, GTR + I + G for RPB2 1st, 2nd, 3rd and TEF1 1st, K80 + G for TEF1 2nd and 3rd; the second (Cantharellus) was divided into nine: TPM1 + G for 5.8S, TIM1 + I + G for nLSU, F81 + I for mtSSU, TrNef + I + G for PRB2 1st, TrN + G for *PRB2* 2^{nd} and *PRB2* 3^{rd} , TIM1ef + I + G for *TEF1* 1^{st} , JC for *TEF1* 2^{nd} and TPM2 + I + G for *TEF1* 3^{rd} ; the third (*Craterellus*) was divided into four: ITM1 + I + G for nLSU, TrN + I for ITS1, JC

Fig. 4. Maximum Likelihood tree based on the combined nLSU + ITS sequence dataset illustrating the phylogeny of the genus *Hydnum*. The new taxa have a yellow background; newly acquired samples in this study are in bold; samples from China are marked with red stars. Branches are labelled with Maximum Likelihood bootstrap higher than 50 % and Bayesian Posterior Probabilities > 0.95.

for 5.8S and TrN + G for ITS2 and the fourth (*Hydnum*) was divided into four: GIR + I + G for nLSU, JC for ITS1, K80 for 5.8S and TrN + G for ITS2.

Phylogenetic analyses for each dataset were conducted using Bayesian Inference (BI) analysis and Maximum Likelihood (ML) methods. All characters were weighted, and gaps were treated as missing data. BI analysis with MrBayes v. 3.2.7 (Ronquist *et al.* 2012) implemented the Markov Chain Monte Carlo (MCMC) technique. Four simultaneous Markov chains were run with 15, 10, 5, 5 million generations for the four datasets respectively, starting from random trees and keeping one tree every 100th generation until the average standard deviation of split frequencies was below 0.01. The value of burn-in was set to discard 25 % of trees when calculating the posterior probabilities. Bayesian Posterior Probabilities (BPP) were obtained from the 50 % majority rule consensus of the trees kept. An ML analysis used the same datasets as the BI analysis and was performed in RAxML v. 8.2.4 (Stamatakis 2014). The best tree was obtained

0.02

Genera	Morphology of basidiocarps	Nutritional modes	Distribution	Number of species ¹	References
Bergerella	Bulbil-forming	Lichenicolous	Austria	1	Lawrey et al. (2020)
Bryoclavula	Clavarioid	Lichenised	Japan	1	Masumoto & Degawa (2020a)
Bulbilla	Bulbil-forming	Lichenicolous	South America	1	Diederich et al. (2014)
Burgella	Bulbil-forming	Lichenicolous	North and South America	2	Diederich & Lawrey (2007), Diederich <i>et al.</i> (2014)
Burgellopsis	Bulbil-forming	Lichenicolous	Scotland	1	Diederich et al. (2014)
Burgoa	Bulbil-forming	Lichenicolous	Asia, Europe	10	Diederich & Lawrey (2007)
Cantharellus	Cantharelloid	Ectomycorrhizal	Worldwide	328	Buyck et al. (2014)
Clavulina	Clavarioid coralloid/ infundibuliform, resupinate, or effused	Ectomycorrhizal	Worldwide	88	Smith et al. (2011), Tibpromma et al. (2017)
Corallofungus	Clavarioid	-	Japan	2	He <i>et al.</i> (2019)
Craterellus	Cantharelloid, Tuberiform	Ectomycorrhizal	Worldwide	73	Henkel <i>et al.</i> (2014), Hembrom <i>et al.</i> (2017), Kirk & Larsson (2013), Das <i>et al.</i> (2017)
Gloeomucro	Geotropic, mucous to watery-gelatinous, lanceolate	Saprotrophic	North and South America, Asia	10	He <i>et al.</i> (2019)
Hydnum	Pileate-stipitate	Ectomycorrhizal	Worldwide	49	Feng et al. (2016)
Ingoldiella	-	Saprotrophic	Australia,Canada, Malaysia	3	He et al. (2019)
Membranomyces	Resupinate	Ectomycorrhizal	Asia, Middle East, Europe, Canada, USA	2	Argüelles-Moyao <i>et al.</i> (2017), Jülich (1975), Kotiranta & Saarenoksa (1993)
Minimedusa	Bulbil-forming	Lichenicolous, Saprophytic	North America, Europe, Asia	3	Lawrey et al. (2007)
Multiclavula	Clavarioid	Saprotrophic, Lichenised	Worldwide	16	Masumoto & Degawa (2020b)
Neoburgoa	Bulbil-forming	Lichenicolous	Alps, Russia	1	Lawrey <i>et al.</i> (2016), Zhurbenko Pino-Bodas (2017)
Parastereopsis	Tuberiform	-	Malaysia	1	He <i>et al.</i> (2019)
Osteomorpha	-	Saprotrophic	France, Russia	1	He <i>et al.</i> (2019)
Repetobasidiellum	Resupinate	Saprotrophic	Northern Europe	1	He <i>et al.</i> (2019)
Rogersiomyces	Hypochnoid	Saprotrophic	USA, Asia	2	Mel'nik <i>et al.</i> (2015), Psurtseva <i>et al.</i> (2016)
Sistotrema	Resupinate, stipitate	Saprotrophic, Ectomycorrhizal, Endophyte	Worldwide	55	Kirk & Larsson (2013), Hibbett <i>et al.</i> (2014)
Sistotremella	Resupinate	Saprotrophic	Europe	3	Eriksson <i>et al.</i> (1984), Boidin & Gilles (1994)

Table 2. Taxonomic information of the genera of Hydnaceae.

¹The number of the species based on the http://www.indexfungorum.org/, and He et al. 2019 (Note and outline of Basidiomycota).

by performing 1 000 rapid bootstrap inferences followed by a thorough search for the most likely tree (Stamatakis *et al.* 2008). Phylogenetic trees were checked and modified in FigTree v. 1.4 (Rambaut 2012). The alignments and trees were deposited in TreeBASE (No. S28157).

RESULTS

Sequences and alignments produced in this study

We generated a total of 169 sequences from 20 species of three genera in *Hydnaceae* which included 50 of nLSU, 17 of mtSSU, 42 of ITS, 24 of *RPB2* and 36 of *TEF1* sequences.

Phylogenetic analyses

The ML and BI analyses for the four datasets produced similar topologies and therefore, only the ML tree for each dataset is shown (Figs 1-4).

The Cantharellales dataset included 110 samples *i.e.*, 109 of 77 species of 28 genera in six families, and one as the outgroup (*Dacrymyces australis*). The data matrix comprised 347 sequences and had an aligned length of 3410 bases. The BI analysis resulted in an average standard deviation of split frequencies = 0.004722. The *Cantharellales* clade had high support (86 % ML and 1.00 BPP) in the tree (Fig. 1). *Hydnaceae* together with *Tulasnellaceae*, *Botryobasidiaceae*, and *Ceratobasidiaceae* nested in *Cantharellales* and all with full support. *Hydnaceae* was placed as a sister clade to *Tulasnellaceae*. Seventeen genera were confirmed in *Hydnaceae*.

Fig. 5. Basidiocarps of new taxa in Hydnaceae. A–B. Cantharellus laevihymeninus (IFP 019441). C–D. Cantharellus magnus (IFP 019443). E. Cantharellus subminor (IFP 019445). F. Craterellus badiogriseus (IFP 019452). G. Craterellus croceialbus (IFP 019454). H. Craterellus macrosporus (IFP 019456). I. Craterellus squamatus (IFP 019457). J. Hydnum brevispinum (IFP 019464). K–L. Hydnum flabellatum (IFP 019459). M–N. Hydnum flavidocanum (IFP 019460). O. Hydnum longibasidium (IFP 019462). P–Q. Hydnum pallidocroceum (IFP 019466). R–S. Hydnum pallidomarginatum (IFP 019468). T–U. Hydnum sphaericum (IFP 019470). V. Hydnum tangerinum (IFP 019473). W. Hydnum tenuistipitum (IFP 019476). X–Y. Hydnum ventricosum (IFP 019478). Scale bars: A, B, E–Y = 1 cm; C, D = 2 cm.

The Cantharellus dataset comprises 113 samples *i.e.*, 111 from 61 Cantharellus species and 2 as outgroups (Craterellus tubaeformis and C. cornucopioides). The data matrix comprised 385 sequences and had an aligned length of 2 675 bases. The BI analysis resulted in an average standard deviation of split frequencies = 0.003862. A new subgenus Magnus and three new species Cantharellus magnus, Ca. laevihymeninus and Ca. subminor are revealed, and two synonyms, Ca. anzutake and Ca. tuberculosporus as Ca. yunnanensis are recognised according to the analysis. The phylogenetic tree was divided into eight clades which correspond to subgenus Cantharellus,

subgen. *Rubrinus*, subgen. *Parvocantharellus*, subgen. *Cinnabarinus*, subgen. *Pseudocantharellus*, subgen. *Magni*, subgen. *Afrocantharellus* and *Ca. guyanensis*, respectively. Ten sections also had high support in the tree. The result of the present study is similar to Buyck *et al.* (2014). Besides, it is noted that *Cantharellus* species from China are distributed throughout the genus except for subgen. *Rubrinus* (Fig. 2).

The *Craterellus* dataset comprises 52 samples *i.e.*, 50 of 31 *Cantharellus* species and two as outgroups (*Hydnum ellipsosporum* and *Sistotrema muscicola*). The data matrix comprised 81 sequences and had an aligned length of 1 701 bases. The BI

Fig. 6. Microscopic structures of basidiospores. A. Cantharellus laevihymeninus (IFP 019441). B. Cantharellus magnus (IFP 019443). C. Cantharellus subminor (IFP 019445). D. Craterellus badiogriseus (IFP 019452). E. Craterellus croceialbus (IFP 019454). F. Craterellus macrosporus (IFP 019456). G. Craterellus squamatus (IFP 019457). H. Hydnum brevispinum (IFP 019464). I. Hydnum flabellatum (IFP 019459). J. Hydnum flavidocanum (IFP 019460). K. Hydnum longibasidium (IFP 019462). L. Hydnum pallidocroceum (IFP 019466). M. Hydnum pallidomarginatum (IFP 019468). N. Hydnum sphaericum (IFP 019470). O. Hydnum tangerinum (IFP 019473). P. Hydnum tenuistipitum (IFP 019476). Q. Hydnum ventricosum (IFP 019478). Scale bar = 10 μm.

Fig. 7. Microscopic structures of Cantharellus laevihymeninus (IFP 019441). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

analysis resulted in an average standard deviation of split frequencies = 0.002033. Six subgenera including subgen. *Cariosi,* subgen. *Craterellus,* subgen. *Imperforati,* subgen. *Lamelles,* subgen. *Longibasidiosi,* subgen. *Ovoidei,* in *Craterellus* are proposed and four new species (*Craterellus badiogriseus, Cr. croceialbus, Cr. macrosporus* and *Cr. squamatus*) are revealed in the genus according to the tree (Fig. 3).

The *Hydnum* dataset comprises 111 samples *i.e.*, 109 from 56 *Hydnum* species and two samples of *Sistotrema muscicola* as outgroups. The data matrix comprised 157 sequences and had an aligned length of 1 460 bases. The BI analysis resulted in an average standard deviation of split frequencies = 0.003647. The four subgenera *Alba*, *Hydnum*, *Pallida* and *Rufescentia*, two sections *Hydnum* and *Olympica* as well as the five subsections in section *Rufescentia* suggested by Niskanen *et al.* (2018), and a new subgenus *Brevispina* have been confirmed and suggested here with high support. However, the two sections *Rufescentia* and *Magnorufescentia* have weak support which is probably due to the addition of several samples from China. The taxa from China in the tree consist of ten new species (*Hydnum brevispinum*, *H. flabellatum*, *H. flavidocanum*, *H. longibasidium*, *H. pallidocroceum*, *H. pallidomarginatum*, *H. sphaericum*, *H. tangerinum*, *H. tenuistipitum* and *H. ventricosum*) as well as two newly recorded species (*H. albomagnum* and *H. minum*) from this study and ten undescribed samples by Feng *et al.* (2016) and these Chinese taxa have been found in every subgenus (Fig. 4).

Taxonomy

New taxa of Hydnaceae in this study

Cantharellus Adans. ex Fr., Syst. Mycol. (Lundae) 1: 316. 1821. MycoBank MB 17236.

Fig. 8. Microscopic structures of Cantharellus magnus (IFP 019443). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

Fig. 9. Microscopic structures of Cantharellus subminor (IFP 019445). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

Synonym: Afrocantharellus (Eyssart. & Buyck) Tibuhwa, IMA Fungus 3: 33. 2012. MycoBank MB 518687. *Goossensia* Heinem., Bull. Jard. Bot. État Brux 28: 424. 1958. MycoBank MB 17690.

Type species: Cantharellus cibarius Fr., Syst. Mycol. (Lundae) 1: 318. 1821. MycoBank MB 200345.

Notes: Cantharellus was described by Fries (1821), with *Cantharellus cibarius* selected as the type species by Earle (1909). It is a large ectomycorrhizal genus of the *Hydnaceae*, comprising many edible species (Moncalvo *et al.* 2006, Hibbett *et al.* 2014), and belongs in the core lineage of the cantharelloid clade. Our study reproduced the infrageneric classification of the genus

Fig. 10. Microscopic structures of Craterellus badiogriseus (IFP 019452). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

based on a multiple-marker database (including 5.8S, nLSU, mtSSU and two protein coding genes *RPB2* and *TEF1*) (Fig. 2) and the result is similar to Buyck *et al.* (2014). The phylogenetic status of *Cantharellus* in the family proposed by Moncalvo *et al.* (2006) and Hibbett *et al.* (2014) is also confirmed by our tree (Fig. 1). *Cantharellus* groups with *Craterellus* and these two genera as well as *Hydnum* and several samples of *Sistotrema* form a strongly supported subclade in *Hydnaceae.*

Cantharellus is characterised by fleshy basidiocarps, a colourful pileus, nearly smooth to obvious veined hymenophore, long and stichic basidia, cylindrical hyphal endings in the pileipellis and a solid stipe (Cairney & Chambers 1999, Pine *et al.* 1999, Buyck 2014, Buyck *et al.* 2014). The boundary between *Cantharellus* and its sister group *Craterellus* had been resolved with molecular data by Dahlman *et al.* (2000) and Moncalvo *et al.* (2006). Furthermore, the basidiocarps mostly have a solid stipe

Fig. 11. Microscopic structures of Craterellus croceialbus (IFP 019454). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

which also differentiates *Cantharellus* from *Craterellus* (Buyck *et al.* 2014). Many new taxa of *Cantharellus* have been published from around the world in the past two decades; for the overview of the detailed references see He *et al.* (2019). As of now, there are six subgenera, ca. ten sections (Buyck *et al.* 2014) and up to 300 species recognised in the genus (http://www.indexfungorum.org/). Species of *Cantharellus* are distributed worldwide but only nine species have been described from China (Chiu 1973, Zang 1980, Shao *et al.* 2011, 2014, 2016a, b,

Tian *et al.* 2012, An *et al.* 2017, Jian *et al.* 2020) and a key to them was provided by Jian *et al.* (2020).

As significant ectomycorrhizal (ECM) fungi (Table 2), species of *Cantharellus* have many host species such as the trees of *Fagaceae*, *Pinaceae*, *Betulaceae*, *Salicaceae*, *Juglandaceae*, *Polygonaceae*, *Leguminosae*, *Phyllanthaceae*, *Fabaceae* etc. (De Kesel *et al.* 2011, Kumari *et al.* 2011, Bahram *et al.* 2012, Tian *et al.* 2012, Buyck *et al.* 2012, 2014, 2016a, b, Henkel *et al.* 2014, Shao *et al.* 2014, De Kesel *et al.* 2016, Leacock *et al.*

Fig. 12. Microscopic structures of Craterellus macrosporus (IFP 019456). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

2016, Thorn *et al.* 2017, Das *et al.* 2018, Parad *et al.* 2018, Hyde *et al.* 2019, Buyck *et al.* 2020). In general, the candidate host of *Cantharellus* is related to species, regional disparities, and varies with altitude gradient.

Cantharellus subg. *Magni* T. Cao & H.S. Yuan, *subg. nov.* MycoBank MB 839393; Fig. 2

Etymology: Magni (Lat.), as the name of the type species.

Fig. 13. Microscopic structures of Craterellus squamatus (IFP 019457). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

Type species: Cantharellus magnus T. Cao & H. S. Yuan, MycoBank MB 839407.

Notes: Cantharellus subg. Magni is characterised by a large basidiocarp; smooth, azonate, deep yellow to deep orange pileal

surface; always incised pileal margin; decurrent and almost perfectly smooth hymenophore; broadly ellipsoid basidiospores, absence of cystidia, thin- to slightly thick-walled terminal cells of pileipellis hyphae and presence of clamps. The type species,

В

Fig. 14. Microscopic structures of Hydnum brevispinum (IFP 019464). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bars: A, C = 10 µm; B = 5 µm.

Cantharellus magnus, is distinctly different from the species of the other six subgenera based on morphological characteristics. The subgenus *Afrocantharellus* Buyck & V. Hofstetter includes small to large species (up to 180 mm wide and 100 mm high, like

Cantharellus splendens), and they are differentiated from *C. magnus* by having four-spored basidia and absence of clamps. *C. magnus* resembles species of subgenus *Cantharellus* in having abundant clamps, smooth hymenophore (partly in some

Fig. 15. Microscopic structures of Hydnum flabellatum (IFP 019459). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 μ m.

Fig. 16. Microscopic structures of Hydnum flavidocanum (IFP 019460). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

species) and yellowish pileus but differs by the extremely large basidiocarps and thin- to slightly thick-walled pileipellis hyphae. The species of subgenus *Rubrinus* Buyck & V. Hofstetter can be obviously distinguished from *Cantharellus magnus* by small to medium-sized basidiocarps and absence of clamps. The species

of subgenus *Cinnabarinus* Buyck & V. Hofstetter are similar to *C. magnus* in having abundant clamps but differ by the thin-walled terminal cells of the pileipellis hyphae and small to medium-sized basidiocarps (except *C. afrocibarius*). In addition, *Cantharellus magnus* differs from species of subgenus *Parvocantharellus* and

subgenus *Pseudocantharellus* Buyck & V. Hofstetter by having large basidiocarps and nearly smooth hymenophore (Buyck 2014).

Cantharellus laevihymeninus T. Cao & H. S. Yuan, sp. nov. MycoBank MB 839405; Figs 1, 2, 5A–B, 6A, 7

Etymology: Laevihymeninus (Lat.), refers to the almost perfectly smooth hymenophore.

Typus: **China**, Yunnan Province, Shizong County, Junzishan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 8 Aug. 2019, H. S. Yuan & J. R. Yu, **holotype**, Yuan 13902 (IFP 019441).

Diagnosis: Differs from *Cantherallus hainanensis* in having larger pilei (30–65 mm vs. 25–55 mm wide in *C. hainanensis*), discoloured stipes when injured, broader spores (5–6.1 μ m vs. 4.5–5 μ m wide) and shorter terminal cells (15–38.5 μ m vs. 23–82 μ m long) of the pileipellis.

Description: Basidiocarps concrescent, medium, fleshy, leathery when fresh, becoming soft corky and light in weight upon drying. Pilei 30-65 mm wide, convex when young, with maturity becoming slightly plano-convex and slightly depressed in the center. Pileal surface dry, subglabrous, smooth to irregularly wrinkled, pale orange to orange (5A3-5A6) when moist, drying light brown (6D6/7D5/7D6). Pileal margin slightly decurved when young, undulate with maturity, involute or irregularly folded, sometimes incised. Pileal context 0.5-3 mm thick, thin towards the pileus margin, light vellow (4A4), Hymenophore decurrent, almost perfectly smooth to a few faint ridges or folds, pale orange to light orange (5A3/5A4). Stipes central, often concrescent, confluent with pilei, 25-45 mm long, 10-18 mm wide, subcylindrical, sometimes hollow; surface glabrous to finely rugulose, orange-white (5A2/6A2) when moist, bruising darker when injured, drying brown to dark brown (6E7-6F8); stipe base slightly enlarged and with a small amount of white basal mycelium. Odour typically of apricots. Taste mild.

Basidiospores ellipsoid, (6.8-)7.0-8.8(-9.0) × (4.8-)5.0-6.1(-6.2) μ m, L_m = 7.87 μ m, W_m = 5.52 μ m, Q = 1.35-1.42 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.5-1.0 µm long. Basidia subcylindric, subclavate to clavate, 22.5-75 × 6.5-10 µm, sometimes with large guttules or finely granulose contents; sterigmata 4-6, up to 10 µm long, 1-2.5 µm wide at base, slightly curving. Basidioles cylindrical to subclavate, smaller than basidia. Subhymenium trama filamentous, hyphae 2-7 µm wide, thin- to slightly thickwalled, olive yellow in KOH. Cystidia absent. Pileipellis composed of cylindrical hyphae, 3-9 µm wide, thick-walled, interwoven, rarely branched; terminal elements rounded at apex, cells 15-38.5 × 3-10 µm. Stipitipellis composed of cylindrical hyphae, thick-walled, densely interwoven to subparallel, 4.9-7.4 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: China. Yunnan Province, Shizong County, Junzishan Mt., on soil in angiosperm and Pinus sp. mixed forest, 8 Aug. 2019, H. S. Yuan & J. R. Yu, paratype, Yuan 13902 (IFP 019442).

Notes: The new species, Cantharellus laevihymeninus, fell in subgenus Cantharellus and together with three other smooth chanterelles viz., C. hainanensis, C. flavolateritius and C. lateritius made up section Sublaeves with a strong support (100 % ML, 1.00 BPP) based on our phylogenetic tree. Members of section Sublaeves usually share the almost smooth

hymenophore (apart from *C. lateritius* which is only partly smooth) (Buyck 2014).

Cantharellus hainanensis is another Chinese species in section Sublaeves and was described from Hainan Province. Morphologically, Cantharellus hainanensis is like C. laevihymeninus in having a decurrent and almost smooth hymenophore, sometimes hollow stipes, clavate to subcylindrical basidia and 4–6 sterigmata. But Cantharellus laevihymeninus is quite distinct due to its larger pilei (30–65 mm vs. 25–55 mm wide in C. hainanensis), discoloured stipes when injured, broader spores (5–6.1 µm vs. 4.5–5 µm wide) and shorter terminal cells (15–38.5 µm vs. 23–82 µm long) of the pileipellis (An *et al.* 2017).

Cantharellus flavolateritius was described from North Carolina in the USA and resembles *C. laevihymeninus* in having a decurrent and almost smooth hymenophore, stipes bruising darker when injured, absence of cystidia and presence of clamps. However, *Cantharellus flavolateritius* differs from the new species by having slenderer basidiospores (4.2–5.2 µm), longer basidia (up to 85 µm), 5 sterigmata and longer terminal cells (up to 70 µm long) of the pileipellis (Buyck *et al.* 2016b). *Cantharellus lateritius* is similar to *C. laevihymeninus* in having yellow to orange fruit bodies, sometimes concrescent stipes, ellipsoid spores and absence of cystidia, but differs by larger basidiocarps (up to 9 cm wide and 12 cm high), partly smooth hymenophore, thin-walled hyphae in pileipellis and (3–)4–5 sterigmata (Petersen 1979a, Buyck 2014).

Cantharellus magnus T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839407; Figs 1, 2, 5C–D, 6B, 8

Etymology: Magnus (Lat.), refers to the large basidiocarps.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao & Y. L. Wei, **holotype**, Wei 10225 (IFP 019443).

Diagnosis: Differs from *Cantherallus miomboensis* in having a larger pileus (200 mm *vs.* 150 mm wide) and smooth hymenophore.

Description: Basidiocarps solitary, fleshy and fragile when fresh, becoming soft corky and light in weight upon drying. Pilei up to 200 mm wide, convex when young, becoming plano-convex and depressed in the center, infundibuliform when mature. Pileal surface dry, subglabrous to velutinate, smooth, azonate, deep vellow to deep orange (4A8-5A8) when moist, drying become light yellow to grevish orange (4A5-5B4). Pileal margin always incised, decurved when young, becoming strongly and irregularly folded and undulate with age. Pileal context 5-15 mm thick, vellowish white (3A2). Hymenophore decurrent, almost perfectly smooth to a few faint ridges or folds, pale yellow to greyish yellow (4A3-4B4) when fresh, pale orange to brownish orange (5A4-5C8) upon drying. Stipes central, confluent with pilei, 30-100 mm long, 6-25 mm wide, subcylindrical, somewhat curved, solid; surface subglabrous to finely rugulose, orange to yellowish white to white (3A1-3A2) when moist, drying pale yellow (4A3); stipe base equal and covered with a small amount of white basal mycelium. Odour typically of apricots. Taste mild.

Basidiospores broadly ellipsoid, $(8.5-)9.0-11.0(-11.5) \times (6.5-)6.8-7.5(-8.0) \mu m$, $L_m = 9.73 \mu m$, $W_m = 7.26 \mu m$, Q = 1.34-1.37 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.5 μm long. Basidia subcylindric, subclavate to clavate, $85-120 \times 10-18 \mu m$,

Fig. 17. Microscopic structures of Hydnum longibasidium (IFP 019462). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

sometimes with large guttules or finely granulose contents; sterigmata 2–6, up to 10 μ m long, 1.5–5 μ m wide at base, somewhat curving. *Basidioles* numerous, subcylindrical to subclavate, smaller than basidia, 30–98 × 3–11 μ m. *Subhymenium trama* filamentous, hyphae 3.5–6 μ m wide, thin- to slightly thick-walled, olive yellow in KOH. *Cystidia* absent. *Pileipellis* composed of cylindrical hyphae, 6–13 μ m wide, thin- to slightly thick-walled, interwoven, rarely branched; terminal elements rounded at apex, cells 92–160 × 7–15 μ m. *Stipitipellis* composed of cylindrical hyphae, thick-walled, densely interwoven to subparallel, 7.5–11 μ m wide, terminal elements rounded at apex. *Clamp connections* present.

Material examined: China, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao & Y. L. Wei, paratype, Wei 10244 (IFP 019444).

Notes: Cantharellus magnus was collected from a subtropical forest in central China. The phylogenetic analysis shows that it

nests in the genus *Cantharellus* but does not belong to any recognised subgenus. *Cantharellus magnus* has large basidiocarps, with a deep yellow to deep orange pileal surface, decurrent and smooth hymenophore, broadly ellipsoid spores and large, thin- to slightly thick-walled terminal cells of the pileipellis. *Cantharellus magnus* resembles *C. afrocibarius* (up to 180 mm wide) and *C. miomboensis* (up to 150 mm wide) in having large basidiocarps, but the new species can be differentiated from these two species by having an almost smooth hymenophore (Buyck *et al.* 2012).

Cantharellus subminor T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839409; Figs 1, 2, 5E, 6C, 9

Etymology: Subminor (Lat.), refers to the affinity with C. minor.

Typus: **China**, Yunnan Province, Luoping County, Huangnigou Village, on soil in angiosperm and *Pinus* sp. mixed forest, 9 Aug. 2019, H. S. Yuan, **holotype**, Yuan 13917 (IFP 019445).

Fig. 18. Microscopic structures of Hydnum pallidocroceum (IFP 019466). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

Diagnosis: Differs from *Cantharellus minor* in the intervenose hymenophore, shorter and broader stipes $(15-30 \times 2-5 vs. 20-50 \times 1-2 mm)$ and smaller basidiospores $(7.8-8.8 \times 5.2-5.8 vs. 6-11.5 \times 4-6.5 \mu m)$.

Description: Basidiocarps solitary, soft and leathery when fresh, becoming brittle upon drying. *Pilei* thin, 5–15 mm wide, convex to plano-convex and slightly depressed in the center when young, becoming broadly uplifted and infundibuliform with age. *Pileal surface* dry, subglabrous, smooth to irregularly wrinkled, vivid yellow to light yellow (3A8/3A5) when moist, drying become brownish orange to light brown (6C6–6D7). *Pileal margin* entire and decurved when young, becoming plane, uplifted, sometimes incised with age. *Pileal context* thin, ca. 0.2 mm thick. *Hymenophore* decurrent, composed of low forking veins, sometimes intervenose at margin, concolorous with pileal surface. *Stipes* central, confluent with pilei, 15–30 mm long, 2–5 mm wide, subcylindrical, solid; surface glabrous to finely rugulose, orange to golden yellow (5B7–5B8) when moist, drying brownish orange

to light brown (6C5–7D7), deeper than the pileal surface; leathery or fleshy when fresh, become hard upon drying; stipe base slightly enlarged and covered with a small amount of white basal mycelium. *Odour* faintly fruity. *Taste* mild.

Basidiospores ellipsoid, $(7.5-)7.8-8.8(-9.0) \times (4.8-)$ 5.2-5.8 (-6.0) µm, L_m = 8.38 µm, W_m = 5.57 µm, Q = 1.47-1.50 (n = 60/2), smooth and thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.3-0.8 µm long. Basidia subcylindric, subclavate to clavate, 43-96.5 × 6.5-10 µm, sometimes with large guttules or finely granulose contents; sterigmata 4-5, up to 10 µm long, 1-3 µm wide at base, somewhat curving. Basidioles numerous, cylindrical to subclavate, smaller than basidia, 10-62.5 × 2-10 µm. Subhymenium trama filamentous, hyphae 3-5.5 µm wide, thin- to slightly thick-walled, olive yellow in KOH. Cystidia absent. Pileipellis composed of cylindrical hyphae, 8.5-12 µm wide, thinto slightly thick-walled, interwoven, rarely branched; terminal elements rounded at apex, cells 22-96 × 8.5-15 µm. Stipitipellis

Fig. 19. Microscopic structures of Hydnum pallidomarginatum (IFP 019468). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 μ m.

composed of cylindrical hyphae, thick-walled, densely interwoven to subparallel, $5-13.5 \mu m$ wide, terminal elements rounded at apex. *Clamp connections* present.

Material examined: China, Yunnan Province, Qujing City, Luoping County, Huangnigou Village, on soil in angiosperm and *Pinus* sp. mixed forest, 9 Aug. 2019, H. S. Yuan, paratype, Yuan 13925 (IFP 019446); Yuan 13926 (IFP 019447).

Notes: Cantharellus subminor is the smallest species of Cantharellus described from China. In the phylogenetic tree, *C. subminor* is embedded in subg. *Parvocantharellus* and forms a clade with two other small chanterelles, *C. minor* and *C. romagnesianus*.

Morphologically, Cantharellus subminor is closely related to C. minor by having a smooth and yellowish pileal surface, small pileus (less than 15 mm wide) and 4-5 sterigmata, ellipsoid basidiospores and presence of clamps, but C. minor differs by the non-intervenose hymenophore, longer and slenderer stipes (20-50 × 1-2 mm) and larger basidiospores (6-11.5 × 4-6.5 μm) (Peck 1873, Lao et al. 2019). Cantharellus romagnesianus is like C. subminor in having subcylindrical stipes, subcylindric basidia, absence of cystidia and presence of clamps, however, it is differentiated by having a larger pileus (up to 25 mm wide), discoloured context when injured, slenderer basidiospores (4.5-5 µm wide) and 5-6 sterigmata (Eyssartier & Buvck 1999). Cantharellus albus is another Chinese species embeded in subg. Parvocantharellus, but it can be distinctly differentiated from C. subminor in having a larger pileus (up to 50 mm wide and 70 mm high) and snow white basidiocarps (Jian et al. 2020). The Mexican Cantharellus parvoflavus M. Herrera, Bandala & Montoya is also a member of subg. Parvocantharellus and has small size basidiocarps as C. subminor, however, it differs from C. subminor by having orangish pilei, slenderer basidiospores (Q = 1.52-1.57 vs. 1.47-1.50), shorter basidia (50-89 vs. 43-96.5 µm long) and smaller terminal elements (23-80 × 3.5-8 vs. 22-96 × 8.5-15 µm) of pileipellis. Besides, the similarity of TEF1 sequences between C. parvoflavus and C. subminor is 94.69 %.

Cantharellus yunnanensis W.F. Chiu, Acta Microbiol. Sin. 13(2): 129. 1973. MycoBank MB 310378.

Synonym: Cantharellus tuberculosporus M. Zang, Acta Microbiol. Sin. 20(1): 31. 1980. MycoBank MB 118474.

Cantharellus anzutake W. Ogawa, N. Endo, M. Fukuda and A. Yamada, Mycoscience 59: 158. 2017. MycoBank MB 813057.

Typus: **China**, Yunnan Province, Kunming City, Xishan Forest Park, on soil in angiosperm and *Pinus* sp. mixed forest, 11 Aug. 1942, S. J. Shen, **holotype**, Tsinghua 8090 (HMAS 4090).

Materials examined: **China**, Yunnan Province, Kunming City, Xishan Forest Park, on soil in angiosperm and *Pinus* sp. mixed forest, 15 Aug. 2019, T. Cao, Yuan 13983 (IFP 019448), 13985 (IFP 019449); Liaoning Province, Fushun City, Xinbin County, Gangshan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 12 Aug. 2020, H. S. Yuan, Yuan 14539 (IFP 019450); 14636 (IFP 019451).

Notes: Cantharellus yunnanensis is the first species of the genus to be described from China (Chiu 1973). Shao *et al.* (2021) have selected the epitype (Herrera 263C) and redescribed the species. In this study, we collected several samples (Yuan 13983 and Yuan 13985) from Xishan Forest Park of Kunming, where the type material of *C. yunnanensis* (HMAS 4090, Tsinghua 8090) and epitype (Herrera 263C) were collected and we

recognised them as the same taxa as *C. yunnanensis* based on phylogenetical and morphological evidences. Phylogenetic analyses shows that four samples (Yuan 13983, 13985, 14539, 14363) which were collected from Liaoning Province, group with *C. yunnanensis* (XieXD 174), *C. tuberculosporus* (HKAS58195 and HKAS58196) and *C. anzutake* (TNS-F-61925). The eight samples form a strongly supported (84 % in ML, 0.99 BPP) isolated lineage (Fig. 2). Furthermore, Yuan 13983 showed a high similarity of *TEF1* sequences to KU720337 (XieXD 174), KM893834 (HKAS58195), KM893835 (HKAS58196) and LC179800 (TNS-F-61925) with 99.01 %, 99.12 %, 99.01 % and 98.76 % respectively.

According to the original description, *Cantharellus yunnanensis* possesses small basidiocarps with a white to pale salmon hymenophore and small basidiospores $(4-5 \times 2-3.5 \ \mu\text{m})$ (Chiu 1973). The verification of the epitype specimen (Herrera 263C) shows that the basidiospore size, $6.5-8.5 \times 5-6.5 \ \mu\text{m}$ overlaps the spore size of the newly collected specimens Additionally, according to the observations of the specimens (epitype, Yuan 13983 and Yuan 13985), the size of the basidiocarps of *C. yunnanensis* is also larger than the original description, and the hymenophore can be white, pale salmon or even yellow in some individuals.

Cantharellus anzutake, described from Japan, was collected from a forest of Japanese red pine and is characterised by a pale yellow to orange-yellow pileal surface, white to pale yellow hymenophore, 4–6 spored basidia and ellipsoid basidiospores. The spore size of the *C. yunnanensis* epitype (Herrera 263C, $6.5-8.5 \times 5-6.5 \mu m$), Yuan 13983 and Yuan 13985 ($7.5-9 \times 5-6.5 \mu m$) overlaps with those of *C. anzutake* ($5.8-9.2 \times 4-6.3 \mu m$), and the pileal and hymenophore colour of *C. anzutake* often change with weather conditions; having a paleyellow pileus and white hymenophore in drier conditions or yellow in wet is very similar to *C. yunnanensis* (Ogawa *et al.* 2018). Phylogenetic analyses (Fig. 2) suggest the type *Cantharellus anzutake* (TNS-F-61925) and several samples of *C. yunnanensis* belong to a separate lineage which confirms *C. anzutake* is the later synonym of *C. yunnanensis*.

Cantharellus tuberculosporus was described from Xizang, China. According to the original description, the species is characterised by a bright yellow pileal surface and hymenophore as well as tuberculate basidiospores (Zang 1980). Shao (2011) corrected the type specimen number (HKAS5412) to HKAS 28930 and redescribed the species as the spores of HKAS 28930 are smooth, 7-8 × 5-6 µm, and obviously different from the tuberculate spores in the original description. The tuberculate spores may be due to the shrinkage caused by dehydration (Shao 2011). The anatomical features of C. tuberculosporus are closely related to C. anzutake and C. yunnanensis. In addition, the macroscopic morphology of the fruitbody and molecular evidence in our study both strongly support that C. tuberculosporus is the same species as C. anzutake and C. yunnanensis. Cantharellus yunnanensis has priority, therefore, C. tuberculosporus and C. anzutake are later synonyms of C. yunnanensis.

Craterellus Pers., Mycol. Eur. (Erlanga) 2: 4. 1825. MycoBank MB 17398.

Synonym: Pseudocraterellus Corner, Beih. Sydowia 1: 268. 1958. MycoBank MB 18388.

Pterygellus Corner, Monogr. Cantharelloid Fungi: 166. 1966. MycoBank MB 18424.

Type species: Craterellus cornucopioides (L.) Pers., Mycol. Eur. (Erlanga) 2: 5. 1825. MycoBank MB 153130.

Notes: Craterellus was described in 1825, with C. cornucopioides as the type species (Persoon 1825). The genus is traditionally characterised by funnel-shaped basidiocarps with a hollow stipe that may also be much reduced (Petersen 1979a). The genus belongs to Hydnaceae according to Hibbett et al. (2014) which is also supported by our analysis based on dataset 4 (this study provides four markers for genus Craterellus: nLSU, ITS, RPB2 and TEF1) (Fig. 1). Craterellus with the sister genus Cantharellus form a fully supported lineage which is closely related to the genera Hvdnum and Sistotrema. Pseudocraterellus and Ptervgellus Corner, two other genera in Hydnaceae, have been recognised as synonyms of Craterellus. Although in the tree (Fig. 3) three samples of Pseudocraterellus have been appropriately embeded in Craterellus, the validity of the recombined species and research on typification in the two genera are needed to confirm their status (Feibelman et al. 1997, Yomyart et al. 2012, Henkel et al. 2014, Hembrom et al. 2017). Approximately 140 taxa names are recorded for Craterellus, and up to 70 species are currently accepted (http://www.indexfungorum. org). The species in the genus often possess an ectomycorrhizal nutritional mode and are distributed worldwide. Most of the known species are edible and show diversity in colour (Dahlman et al. 2000, Dunham et al. 2003, Porter et al. 2008, Wright et al. 2009, Matheny et al. 2010, Wilson et al. 2012, Osmundson et al. 2013, Henkel et al. 2014, Raja et al. 2017, Bijeesh et al. 2018, Zhong et al. 2018). Up to now, there are only four species described from China (Berkeley & Curtis 1860, Zhong et al. 2018, Zhang et al. 2020, Cao et al. 2021).

Although the molecular evidence has been widely used in taxonomy of *Craterellus* since Dahlman *et al.* (2000), most studies do a phylogenetic analysis using only nLSU or ITS sequences but our study is based on the combined nLSU and ITS dataset (dataset 2). There are six distinct clades with high support have been recognised in the phylogenetic tree (Fig. 3). The species in the same clade often share several similar morphological characteristics, thus we propose them as six subgenera in the genus *Craterellus*.

Craterellus subg. *Cariosi* T. Cao & H. S. Yuan, *subgen. nov.* MycoBank MB 839396; Fig. 3

Etymology: Cariosi (Lat.), refers to the habit of fruiting on decayed wood.

Type species: Craterellus pleurotoides (T.W. Henkel, Aime & S.L. Mill.) A.W. Wilson, Mycologia 104: 1475. 2012. MycoBank MB 510239.

Notes: The subgenus consists of two South American species, *Craterellus pleurotoides* and *C. olivaceoluteus*. Although *Craterellus* is an ECM genus, the two species in subgen. *Cariosi, C. pleurotoides* and *C. olivaceoluteus* both fruit on very decayed wood and they also share the characteristics of small-sized basidiocarps, smooth hymenophore and presence of clamps (Henkel *et al.* 2006, 2014).

Craterellus subg. Craterellus MycoBank MB 839401; Fig. 3

Etymology: Craterellus (lat.), refers to the subgenus in which the type species of the genus is located.

Type species: Craterellus cornucopioides (L.) Pers., Mycol. Eur. (Erlanga) 2: 5. 1825. MycoBank MB 153130.

Notes: This subgenus includes the genus type Craterellus cornucopioides as well as five other 'black trumpet' species viz., C. badiogriseus, C. caeruleofuscus, C. croceialbus, C. macrosporus and C. squamatus, and they all have tuberiform to infundibuliform blackish brown basidiocarps. However, the vellow individuals (e.g., C. konradii Bourdot & Maire) rule out blackish brown basidiocarps as an iconic feature of this group. The species in clade Craterellus often have a fully perforated pileus with smooth or wrinked hymenophore and lack distinct stipes. Although lacking molecular evidence, we suspect other species in the C. cornucopioides complex (e.g., C. cornucopioides var. cornucopioides (L.) Pers., C. cornucopioides var. crispus Sacc., C. cornucopioides var. flavicans Sacc., C. cornucopioides var. mediosporus Corner, C. cornucopioides var. parvisporus Heinem., C. cornucopioides var. roseus R. Heim, C. philippinensis Bres. and C. verrucosus Massee) also belong to subgenus Craterellus. Craterellus cornucopioides, C. fallax, C. macrosporus and C. squamatus form a well-supported subclade in Clade III and they share the large basidiospore size (up to 14 µm long) (Smith 1968, Gulden & Høiland 1989, Matheny et al. 2010).

Craterellus subg. *Imperforati* T. Cao & H. S. Yuan, *subgen. nov.* MycoBank MB 839397; Fig. 3

Etymology: Imperforati (Lat.), refers to the non-perforated pileus.

Type species: Craterellus carolinensis R.H. Petersen, Persoonia 5(2): 217. 1968. MycoBank MB 329222.

Notes: This subgenus is comprised of our new species *Craterellus badiogriseus* and eight other species *viz.*, *C. albidus*, *C. albostrigosus*, *C. carolinensis*, *C. hesleri*, *C. indicus*, *C. inusitatus*, *C. parvogriseus*, *C. shoreae* and *Pseudocraterellus sinuosus* (Fig. 3). They often have variably coloured pilei but share the small basidiocarps (less than 40 mm wide and high), non-perforated pilei, smooth or slightly wrinked hymenophore, broadly ellipsoid basidiospores and absence of clamps (Reid 1962, Petersen 1969, Petersen 1975, Deepika *et al.* 2012, Henkel *et al.* 2014, Das *et al.* 2017, Hembrom *et al.* 2017, Bijeesh *et al.* 2018, Zhang *et al.* 2020).

Craterellus subg. *Lamelles* T. Cao & H. S. Yuan, *subgen. nov.* MycoBank MB 839398; Fig. 3

Etymology: Lamelles (Lat.), refers to the hymenophore with folds or well-developed false gills.

Type species: Craterellus cinereus R.H. Petersen, Mycol. Eur. (Erlanga) 2: 6. 1825. MycoBank MB 357303.

Notes: There are five species in subgenus Lamelles viz., Craterellus cinereus, C. ignicolor, C. lutescens, C. melanoxeros and C. tubaeformis. They often have medium to large basidiocarps, perforated or occasionally perforated pilei and presence of clamps. Most species in this clade have a hymenophore with

Fig. 20. Microscopic structures of Hydnum sphaericum (IFP 019470). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

folds or well-developed false gills, but *C. lutescens* has a smooth hymenophore (Dahlman *et al.* 2000, Redhead *et al.* 2002, Contu *et al.* 2009).

Craterellus subg. Longibasidiosi T. Cao & H. S. Yuan, subgen. nov. MycoBank MB 839399; Fig. 3

Etymology: Longibasidiosi (Lat.), refers to the long basidia.

Type species: Craterellus excelsus T.W. Henkel & Aime, Mycotaxon 107: 202. 2009. MycoBank MB 510899. *Notes*: There are two species in this subgenus characterised by medium to large basidiocarps (up to 65 mm wide in *Craterellus cinereofimbriatus* and 150 mm in *C. excelsus*), greyish brown and often perforated pilei, smooth hymenophore, long basidia (up to 100 μ m long), broadly ellipsoid basidiospores and absence of clamps. Besides, both species grow on soil under *Dicymbe corymbosa* (Henkel *et al.* 2009, 2014).

Craterellus subg. *Ovoidei* T. Cao & H. S. Yuan, *subgen. nov.* MycoBank MB 839400; Fig. 3

Etymology: Ovoidei (Lat.), refers to the narrowly ellipsoid to ovoid basidiospores.

Type species: Craterellus odoratus (Schwein.) Fr., Epicr. Syst. Mycol. (Upsaliae): 532. 1838. MycoBank MB 190345.

Notes: Craterellus luteus and *C. odoratus* constitute sugenus *Ovoidei* and the perforated pilei, smooth hymenophore, narrowly ellipsoid to ovoid basidiospores ($8.5-12.5 \times 5.7-7.8 \mu m$ in *C. luteus* and $8.9-11.8 \times 4.4-6.3 \mu m$ in *C. odoratus*) and absence of clamps are the common features. In addition, the two species both have brightly coloured basidiocarps (light yellow and bright orange) (Petersen 1979b, Zhong *et al.* 2018).

Craterellus badiogriseus T. Cao & H. S. Yuan, sp. nov. MycoBank MB 839410; Figs 1, 3, 5f, 6d, 10

Etymology: Badiogriseus (Lat.), refers to the brownish grey pileal surface.

Typus: **China**, Liaoning Province, Qingyuan County, on soil in angiosperm and *Pinus* sp. mixed forest, 7 Sep. 2019, H. S. Yuan, **holotype**, Yuan 14776 (IFP 019452).

Diagnosis: Differs from *Craterellus indicus* in having a brownish grey to black pileal surface, longer basidia $(55-106 \text{ vs.} 48-85 \text{ }\mu\text{m} \text{ long})$ and broader terminal cells of pileipellis hyphae $(5-10 \text{ vs.} 2.5-8 \text{ }\mu\text{m} \text{ long})$.

Description: Basidiocarps concrescent. infundibuliform. leathery when fresh, becoming brittle and light in weight upon drying. Pilei 10-15 mm wide, convex-expanded towards the margin, slightly or deeply depressed in the center but not perforated. Pileal surface dry, velutinate, brownish grey (8F2) to black when moist, drying greyish brown (7D3-7F3). Pileal margin thin, slightly involute or irregularly involute, orange-grey (5B2), lighter than pileal surface. Pileal context 0.3-0.5 mm thick, orange-grey to brownish orange (5B2-5C3). Hymenophore decurrent, smooth, brownish grey to grey (4C1-4C2) when moist drying yellowish grey to orange-grey (4B2-5B2). Stipes 10-15 mm long, 3-5 mm wide, subcylindrical, hollow; surface glabrous, concolorous with hymenophore; stipe base equal or slightly enlarged and rarely covered with basal mycelium. Odour fruity.

Basidiospores broadly ellipsoid. (7.5 -) $8.0-10.5(-11.0) \times (6.5-)6.8-7.5(-8.0) \mu m$, L_m = 9.35 μm , W_m = 7.33 µm, Q = 1.25-1.28 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents, inamyloid; hilar appendix 0.3-0.8 µm long. Basidia subcylindric, subclavate to clavate, 55-106 × 8-12 µm, sometimes with large guttules or finely granulose contents; sterigmata 2-4, up to 10 µm long, 2-5 µm wide at base, slightly curving. Basidioles numerous, subcylindrical to subclavate, smaller than basidia 15-95 × 5-10 µm. Subhymenium trama filamentous, hyphae 3-5 µm wide, thick-walled, olive yellow in KOH; pileal trama hyphae 3–6 µm wide, thick-walled, secondary septation absent. Cystidia absent. Pileipellis composed of cylindrical hyphae, 5-15 µm wide, thick-walled, interwoven to subparallel, rarely branched; terminal elements rounded at apex, cells 20-65 × 6-15 µm. Clamp connections absent.

Material examined: China, Liaoning Province, Qingyuan County, on soil in angiosperm and *Pinus* sp. mixed forest, H. S. Yuan, 7 Sep. 2019, paratype, Yuan 14779 (IFP 019453).

Notes: The new species, *Craterellus badiogriseus*, was discovered from a temperate forest in northeast China. In the phylogenetic tree, *Craterellus badiogriseus* and three samples of *Pseudocraterellus* Corner form a lineage with strong support (100 % ML and 0.99 BPP). Although *Pseudocraterellus* was regarded as a later synonym of *Craterellus* by Feibelman *et al.* (1997), the molecular and morphological evidence of the type material in the genus are unconvincing. *P. sinuosus* is similar to *C. badiogriseus* in having dark greyish brown and non-perforated pileus, a smooth hymenophore and absence of clamps. However, it can be distinctly differentiated from the new species in having a larger pileus (12–25 mm wide), longer stipes (up to 37 mm long) and presence of secondary hyphal septation (Henkel *et al.* 2014).

Craterellus badiogriseus and Pseudocraterellus group with two other Asiatic species C. indicus and C. parvogriseus and form a large clade with support, 87 % in ML and 0.95 BPP. Craterellus badiogriseus resembles C. indicus in having a nonperforated pileus, smooth hymenophore, broadly ellipsoid basidiospores, 2–4 sterigmata and absence of clamps, but the latter differs from the new species by the light brownish pileal surface, shorter basidia (48–85 µm long) and slenderer terminal cells (2.5–8 µm wide) of the pileipellis hyphae. Craterellus parvogriseus is related to C. badiogriseus in having a brownish grey pileal sueface, broadly ellipsoid basidiospores and absence of clamps, however, the former can be distinguished from C. badiogriseus by the irregularly folded hymenophore, longer stipes (up to 27 mm long), 2–6 sterigmata and smaller basidia (47–78 × 8–9 µm) (Das et al. 2017).

Craterellus croceialbus T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839411; Figs 1, 3, 5G, 6E, 11

Etymology: *Croceialbus* (Lat.), refers to the orange-white pileal margin.

Typus: **China**, Liaoning Province, Xinbin County, Gangshan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 26 Aug. 2020, H. S. Yuan, Yuan 14623 (**holotype** IFP 019454).

Diagnosis: Differs from *Craterellus cornucopioides* in having smaller basidiocarps (up to 2 cm vs. 15 cm wide), 2–4 sterigmata and smaller basidiospores (up to 12.5 µm vs. 14 µm long).

Description: Basidiocarps solitary to concrescent, infundibuliform, leathery when fresh, becoming brittle upon drying. Pilei 10-20 mm wide, convex-expanded towards the margin, broadly and deeply depressed in the center and perforation continuous with hollow stipe. Pileal surface dry, glabrous to velutinate, smooth, brownish grey to greyish brown (6D2-6D3) when moist, drying grevish brown (6F3-7E3). Pileal margin thin, slightly revolute and undulate, orange-white (5A2), distinctly lighter than pileal surface. Pileal context 0.3-1 mm thick, orange-white (5A2). Hymenophore decurrent, almost perfectly smooth to having a few faint ridges or folds, moist pale grey to grey (1B1-3B1), drying yellowish grey to orange-grey (4B2-5B2). Stipes indistinct, confluent with pileus, 20-35 mm long and 3-8 mm wide, subconic, hollow; surface glabrous, concolorous with the hymenophore: stipe base equal or slightly enlarged and rarely covered with basal mycelium. Odour fruity.

Basidiospores ellipsoid, (9.0–)10.0–12.0(–12.5) × (6.5–) 6.8–8.0(–8.2) $\mu m, \ L_m$ = 10.31 $\mu m, \ W_m$ = 7.33 $\mu m,$

Fig. 21. Microscopic structures of Hydnum tangerinum (IFP 019473). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

Q = 1.41–1.44 (n = 60/2), smooth, thin-walled, IKI–, hyaline, some with granular contents, inamyloid; hilar appendix 0.5 μ m long. *Basidia* subcylindric, subclavate to clavate, 60–85 × 10–12 μ m, sometimes with large guttules or finely granulose contents; sterigmata 2–4, up to 10 μ m long, 1–4 μ m wide at base, somewhat curving. *Basidioles* numerous, subcylindrical to subclavate, smaller than basidia, 16–75 × 5–10 µm. Subhymenium trama filamentous, hyphae 3–5 µm wide, thick-walled, brownish yellow in KOH; pileal trama hyphae 3–5.5 µm wide, thick-walled, secondary septation absent. Cystidia absent. Pileipellis composed of cylindrical hyphae, 9–20 µm wide, thin- to slightly thick-walled, subparallel, rarely

Fig. 22. Microscopic structures of Hydnum tenuistipitum (IFP 019476). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 μ m.

branched; terminal elements rounded at apex, cells $35-75 \times 10-23 \mu m$. *Clamp connections* absent.

Material examined: **China**, Liaoning Province, Fushun City, Xinbin County, Gangshan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 26 Aug. 2020, H. S. Yuan, paratype, Yuan 14647 (IFP 019455).

Notes: Craterellus croceialbus resembles *C. cornucopioides* in the brownish grey pileus, hollow stipes, ellipsoid basidiospores and absence of clamps, but the latter species differs from *C. croceialbus* in having larger basidiocarps (pileus up to 15 cm wide), basidia with 2 sterigmata and larger basidiospores (up to 14 μm long) (Smith 1968, Smith *et al.* 1979, Gulden & Høiland 1989, Hansen & Knudsen 1997, Matheny *et al.* 2010, Kumari *et al.* 2011, Tibuhwa 2018).

Craterellus macrosporus T. Cao & H. S. Yuan, sp. nov. MycoBank MB 839412; Figs 3, 5H, 6F, 12

Etymology: Macrosporus (Lat.), refers to the large basidiospores.

Typus: **China**, Liaoning Province, Qingyuan County, on soil in angiosperm and *Pinus* sp. mixed forest, 7 Sep. 2019, T. Cao, **holotype**, Yuan 14782 (IFP 019456).

Diagnosis: Differs from *Craterellus cornucopioides* in having smaller basidiocarps (less than 35 mm wide and 60 mm high), velutinate and smooth pileal surface and broader basidiospores (up to 11.5μ m wide).

Description: Basidiocarps solitary, infundibuliform, leathery when fresh, becoming brittle and light in weight upon drying. Pilei 30-35 mm wide, convex-expanded towards the margin, broadly and deeply depressed in the center and perforation continuous with hollow stipe. Pileal surface dry, glabrous to velutinate. smooth, brownish grey to greyish brown (5C2-5D3) when moist, drying brown (6E4-6E5). Pileal margin thin, slightly revolute and undulate, brownish grey (7F2-8F2), deeper than pileal surface. Pileal context 1-2 mm thick, brownish grey to greyish brown (8E2-8E3). Hymenophore decurrent, almost perfectly smooth or forming a few faint ridges or folds, grey (3B1) when moist, drying grevish brown to brownish grev (6D3-7C2). Stipes indistinct, confluent with pilei, 55-60 mm long and 8-15 mm wide, subconic, slightly curved, hollow; surface glabrous, concolorous with the hymenophore; stipe base equal or slightly enlarged and rarely with basal mycelium. Odour fruity.

Basidiospores broadly ellipsoid, (12.5-)12.8-14.5(-15.0) × (8.8-)9.0-11.0(-11.5) µm, L_m = 13.46 µm, W_m = 10.27 µm, Q = 1.31 - 1.37 (n = 30/1), smooth, thin-walled, IKI-, hyaline, some with granular contents, inamyloid; hilar appendix 0.5 µm Basidia subcylindric, subclavate to long. clavate, 80-105 × 9-13.5 µm, sometimes with large guttules or finely granulose contents; sterigmata 2, up to 10 µm long, 3-5 µm wide at base, slightly curving. Basidioles numerous, subcylindrical to subclavate, smaller than basidia, 13-85 × 5-10 µm. Subhymenium trama filamentous, hyphae 3-5 µm wide, thickwalled, pale yellow in KOH; pileal trama hyphae 4-5 µm wide, thick-walled, secondary septation absent, Cystidia absent, Pileipellis composed of cylindrical hyphae, 10-23 µm wide, thinwalled, subparallel, rarely branched; terminal elements rounded at apex, cells 35-98 × 10-25 µm. Clamp connections absent.

Notes: Craterellus macrosporus resembles C. cornucopioides in the infundibuliform basidiocarps, dark brownish pileus with almost smooth hymenophore, hollow stipes, absence of clamps, and basidia with 2 sterigmata, but C. cornucopioides differs in

having scaly pileal surfaces, larger basidiocarps (up to 15 cm wide), shorter basidia (less than 96 µm long) and narrower basidiospores (less than 9 µm wide) (Smith 1968, Smith et al. 1979, Gulden & Høiland 1989, Hansen & Knudsen 1997, Matheny et al. 2010, Kumari et al. 2011, Tibuhwa 2018). The large (up to 15 µm long) spores of Craterellus macrosporus are like those of C. konradii. The European Craterellus konradii has the habit of C. cornucopioides and may be a member of the C. cornucopioides complex. However, Craterellus konradii has yellowish basidiocarps (Gulden & Høiland 1989), Craterellus cornucopioides var. parvisporus Heinem. is similar to C. macrosporus in the blackish brown pileal surface but differs by the smaller basidiospores $(6.8-8.5 \times 4.3-6 \mu m)$ (Heinemann 1958). Another new species from a temperate forest in northeast China, Craterellus croceialbus, is similar to C. macrosporus in having greyish brown basidiocarps, smooth pileal surface, grey hymenophore and absence of clamps, but C. macrosporus differs from C. croceialbus in having a larger pileus (30-35 mm wide), longer and wider stipes (55-60 mm long and 8-15 mm wide), larger basidiospores (12.8-14.5 × 9-11 µm), and longer basidia (80-105 × 9-13.5 µm) with 2 sterigmata.

Craterellus squamatus T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839413; Fig. 1, 3, 5I, 6G, 13

Etymology: Squamatus (Lat.), refers to the scaly pileus.

Typus: **China**, Liaoning Province, Kuandian County, Baishilazi Nature Reserve, ground in angiosperm forest, 8 Aug. 2020, H.S. Yuan, **holotype**, Yuan 14520 (IFP 019457).

Diagnosis: Differs from *Craterellus cornucopioides* in having smaller basidiocarps (pileus less than 13 mm wide and stipes less than 35 mm long), broader basidiospores (up to 10 μ m long) and basidia with 2–4 sterigmata.

Description: Basidiocarps solitary to concrescent, tuberiform to infundibuliform, leathery when fresh, becoming brittle and light in weight upon drying. *Pilei* 5–15 mm wide, broadly and deeply depressed in the center and perforation continuous with hollow stipe. *Pileal surface* dry, glabrous, grey, light brown to dark brown (6B1/7D4/7F2) when moist, drying become dark brown (7F3–7F4); scabrous, often with darker brown raised scales. *Pileal margin* thin, slightly undulate, decurved or involute. *Pileal context* 1–3 mm thick, orange-white to orange-grey (5A2–5B2). *Hymenophore* decurrent, almost perfectly smooth or forming a few faint ridges or folds, orange-grey (5B1–6B2). *Stipes* indistinct, confluent with pilei, 15–35 mm long, 2–5 mm wide, sub-cylindrical, somewhat curved and irregular, hollow; surface glabrous, concolorous with the hymenophore; stipe base enlarged and covered with white basal mycelium. *Odour* fruity.

Basidiospores ellipsoid, (11.5-)12.0-13.8(-14.0) × (8.2-) 8.5-9.5(-10.0) μm, L_m = 13.03 μm, W_m = 8.89 μm, Q = 1.46 - 1.51 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents, inamyloid; hilar appendix 0.5-0.8 µm long. Basidia subcylindric, subclavate to clavate, 35-62 × 5-7.5 µm, sometimes with large guttules or finely granulose contents; sterigmata 2-4, up to 5 µm long, 1.5-3 µm wide at base, slightly curving, Basidioles numerous, subcvlindrical to subclavate, smaller than basidia. 13.5–45 × 3–6.2 µm. Subhymenium trama filamentous, hyphae 3-8 µm wide, thick-walled, olive yellow in KOH; pileal trama hyphae 4-8 µm wide, thick-walled, secondary septation absent. Cystidia absent. Pileipellis composed of cylindrical hyphae,

Fig. 23. Microscopic structures of Hydnum ventricosum (IFP 019478). A. Hymenium and subhymenium. B. Basidiospores. C. Pileipellis. Scale bar = 10 µm.

 $6-15 \mu m$ wide, thick-walled, interwoven to subparallel, frequently branched; terminal elements rounded at apex, cells $15-53.5 \times 9-20 \mu m$. *Clamp connections* absent.

Material examined: China, Liaoning Province, Kuandian County, Baishilazi Nature Reserve, on soil in angiosperm forest, 3 Sep. 2020, H. S. Yuan, paratype, Yuan 14721 (IFP 019458).

Notes: Morphologically, Craterellus squamatus is reminiscent of the C. cornucopioides complex clade (including C. cornucopioides and C. fallax A.H. Sm.) (Dahlman et al. 2000, Moncalvo et al. 2006) which is also confirmed by the molecular evidence. In the phylogenetic tree (Fig. 3), *C. squamatus* and *C. macrosporus* clustered together with the *C. cornucopioides* complex and formed a group with moderate support (77 % ML and 0.96 BPP). *Craterellus squamatus* is similar to the genus type species, *C. cornucopioides*, in having a dark-coloured pileus (except for the yellow individuals from Europe) (Dahlman et al. 2000), scaly pileal surface, almost perfectly smooth hymenophore, hollow stipes and absence of clamp connections. However, the latter

species differs from C. squamatus by the larger basidiocarps (up to 15 cm wide), longer basidia (up to 96 µm long) and basidia with 2 sterigmata (Smith 1968, Smith et al. 1979, Gulden & Høiland 1989, Hansen & Knudsen 1997, Matheny et al. 2010, Kumari et al. 2011, Tibuhwa 2018). Additionally, there is the molecular similarity of ITS sequences between C. squamatus (Yuan 14520, holotype) and the two sequences of C. cornucopioides (KT693262 and UDB000053) with 95.43 % and 94.95 %, respectively. Craterellus fallax is regarded as a more recent synonym of C. cornucopioides. The morphological features of C. fallax are very similar to the latter, expect for the vellowish to orangy spore print of C. fallax (which in C. cornucopioides is white) and the presence of secondary septation (which in C. cornucopioides is absent) (Smith 1968, Petersen 1975, Bigelow 1978). However, phylogenetic analysis supports it as a species distinct from C. cornucopioides (Matheny et al. 2010). The presence of the secondary septation in C. fallax distinctly distinguishes it from C. squamatus and three new species of Craterellus in this study. Among the described varieties of Craterellus cornucopioides, several species also have black pilei, but the European C. cornucopioides var. cornucopioides (L.) Pers, can be distinguished by its regularly bi-sterigmate and long basidia (up to 100 µm long) (Corner 1966), the Malaysian C. cornucopioides var. mediosporus Corner differs by the 6sterigmate basidia and blackish brown hymenophore (Corner 1966) and the Congolese C. cornucopioides var. parvisporus has smaller basidiospores (6.8-8.5 \times 4.3-6 µm) than C. squamatus (Heinemann 1958).

Craterellus croceialbus, C. squamatus, C. macrosporus, and the C. cornucopioides complex clustered together and formed a large subclade with strong support (96 % ML and 0.95 BPP). Craterellus croceialbus is closely related to C. squamatus in having an almost perfectly smooth hymenophore, hollow stipes, basidia with 2-4 sterigmata, and absence of cystidia. However, Craterellus croceialbus can be distinctly differentiated from C. squamatus by the larger pilei (10-20 mm), velutinate and smooth pileal surface, smaller spores $(10-12 \times 6.8-8 \mu m)$, larger basidia (60-85 × 10-12 µm) and larger terminal cells (35-75 × 10-23 µm) of the pileipellis hyphae. Craterellus macrosporus and C. squamatus form a well-supported lineage (Fig. 3). The similarity of the ITS sequences between C. squamatus and C. macrosporus is 97.70 % and they share several morphological characteristics including the infundibuliform basidiocarps, almost perfectly smooth hymenophore, absence of cystidia and clamp connections. But C. macrosporus differs C. squamatus by having a larger plieus (30-35 mm wide), longer and wider stipes (55-60 mm long and 8-15 mm wide), smooth pileal surface, larger basidia (80-105 × 9-13.5 µm) with 2 sterigmata, broader basidiospores (Q = 1.31-1.37) and larger terminal cells (35-98 × 10-25 µm) of pileipellis hyphae. Craterellus macrosporus is a separate species distinctly different from C. squamatus based on the phylogenetic and morphological analyses.

Hydnum L., Sp. pl. 2: 1178. 1753. MycoBank MB 17797.

Synonym: Malacodon Bataille, Bull. Soc. Mycol. Fr. 39: 203. 1923. MycoBank MB 22227.

Type species: Hydnum repandum L., Sp. Pl. 2: 1178. 1753. MycoBank MB 225014.

Notes: Hydnum typified by H. repandum and traditionally characterised by stipitate and pileate basidiocarps with aculeate hymenophore, stichic basidia, fleshy and azoned monomitic context, smooth and subglobose to obovoid-elliptic basidiospores and usually the absence of cystidia (Vizzini *et al.* 2013, Niskanen *et al.* 2018, Swenie *et al.* 2018). *Hydnum* form ECM associations with a variety of host species including members of *Betulaceae*, *Dipterocarpaceae*, *Fagales*, *Magnoliaceae*, *Malvaceae*, *Myrtaceae*, *Pinaceae*, *Salicaceae* and *Ulmaceae* (McNabb 1971, Agerer *et al.* 1996, Lee *et al.* 2002, Feng *et al.* 2016, Niskanen *et al.* 2018, Swenie *et al.* 2018).

The genus was placed in *Cantharellales* by Kreisel (1969) based on its stichic basidia and this was confirmed by several subsequent molecular analyses (Pine *et al.* 1999, Moncalvo *et al.* 2006, Matheny *et al.* 2007, Hibbett *et al.* 2014). As the type genus of *Hydnaceae*, *Hydnum* is the sister clade of *Sistotrema confluens-subconfluens* lingeage and closely related to *Cantharellus* as well as *Craterellus* in the tree (Fig. 1) which is similar to a previous study (Hibbett *et al.* 2014). Four subgenera, four sections and several subsections have been recognised within the genus (Niskanen *et al.* 2018), the four subgenera, section *Hydnum*, section *Olympica*, and five subsections get strong support in the tree (Fig. 4) which is similar to Niskanen *et al.* (2018).

There are up to 900 taxa bearing the name *Hydnum* (http:// www.indexfungorum.org), however, only ca. 40 species from Europe, North America and Asia have been described using modern molecular phylogenetic analyses and morphological features (Grebenc *et al.* 2009, Olariaga *et al.* 2012, Vizzini *et al.* 2013, Yanaga *et al.* 2015, Buyck *et al.* 2017, Niskanen *et al.* 2018, Swenie *et al.* 2018, Wang *et al.* 2018). Feng *et al.* (2016) estimated the global survey of diversity in *Hydnum* and recognised at least 31 phylogenetic species from Asia, Central America (Honduras), Europe, North America, Oceania, and South America (Venezuela) according to molecular evidence, but the samples in Africa are poorly investigated. Around less than half of the global diversity of *Hydnum* has been discovered and the diversity and distribution of *Hydnum* should be further explored (Niskanen *et al.* 2018).

Until 2016, the few species of *Hydnum* in China that been recorded were *H. repandum*, *H. repandum* var. *album* and *H. rufescens* (Le *et al.* 1993, Bi *et al.* 1994, Zang *et al.* 1996). Feng *et al.* (2016) recognised at least 19 taxa from China based on molecular phylogeny evidence, among which around 6 taxa fell in the named-clade and 13 lineages/taxa are non-named and seem to be new taxa. Several samples were described as *H. berkeleyanum*, *H. jussii* and *H. cremeoalbum* (Niskanen *et al.* 2018, Wang *et al.* 2018). We added 16 samples from Feng *et al.* (2016) in our study and the phylogenetic tree of the genus *Hydnum* shows the current status of *Hydnum* species in China.

Hydnum subg. *Brevispina* T. Cao & H. S. Yuan, *subgen. nov.* MycoBank MB 839402; Fig. 4

Etymology: Brevispina (Lat.), following the name of the type species.

Type species: Hydnum brevispinum T. Cao & H. S. Yuan. MycoBank MB 839417.

Notes: Two species, *Hydnum brevispinum* and *H. tenuistipitum*, comprise the subgenus and they share the following features: basidiocarps small to medium, solitary or concrescent, fleshy when fresh; pilei rounded, pileal surface velutinate, smooth, azonate to subzonate, pure whitish to yellowish white or orange-

white, pileal margin often entire and slightly decurved; spines non-decurrent to subdecurrent; basidia with 2–6 sterigmata; basidiospores often subglobose to broadly ellipsoid, cystidia absent, terminal cells of pileipellis hyphae thick-walled, stipitipellis hyphae slightly thick-walled and clamps present. *Hydnum* subgenus *Alba* resembles subg. *Brevispinum* in having whitish basidiocarps, non-decurrent to subdecurrent spines but differs by having broader basidiospores (Q avg. = 1.00-1.10). Besides, subg. *Alba* contains some species with large basidiocarps (*e.g.*, *H. albomagnum*) while subg. *Brevispinum* only has (very) small to medium ones. Three other subgenera, subg. *Hydnum*, subg. *Pallida* and subg. *Rufescentia* can be differentiated from subg. *Brevispinum* by the mostly yellow or orange-coloured pileus (except for a few whitish ones).

Hydnum brevispinum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839417; Figs 4, 5J, 6H, 14

Etymology: Brevispinum (Lat.), refers to the short spines.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, **holotype**, Wei 10214 (IFP 019464).

Diagnosis: Differs from *Hydnum minum* in having shorter spines (0.2-0.8 mm 0.2-0.8 mm vs. up to 1.7 mm long), longer stipes (25 vs. 15 mm long), broader pileipellis hyphae (5-12 vs. 4-6 µm), larger basidia $(20-40 \times 3-10 \text{ µm } 20-30 \times 4-7 \text{ µm})$ with 4-6 sterigmata.

Description: Basidiocarps solitary or concrescent, fleshy when fresh, becoming brittle and light in weight upon drying. Pilei 10-15 mm wide, round, convex to plano-convex, shallowly depressed in the center. Pileal surface dry, velutinate, smooth, azonate to subzonate, pure white to yellowish white (4A2), drying vellowish white to grevish orange (4A2/5B4). Pileal margin thin, entire and slightly decurved, concolorous with the pileal surface. Pileal context 1–3 mm thick, pure white. Hymenophore hydnoid, spines non-decurrent to subdecurrent, crowded, evenly distributed; surface pure white when fresh, yellowish white (4A2) when dry; fibrous, subulate, acute, straight to somewhat flexuous, solitary, 0.2–0.8 mm long, shortest near the pileus margin, 5–9 per mm, brittle when dry. Stipe central or eccentric, up to 25 mm long, 2-4 mm wide, subcylindrical, solid; surface glabrous, white; stipe base enlarged and covered with a small amount of white basal mycelium. Odour mild.

Basidiospores broadly ellipsoid, $(4.5-)5-5.8(-6) \times (3.5-)$ 3.8-4.8(-5) µm, L_m = 5.28 µm, W_m = 4.16 µm, Q = 1.27-1.31 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 1 µm long. Basidia fusiform to subcylindric, ventricose, 20-40 × 3-10 µm, sometimes with large guttules or finely granulose contents; sterigmata 4-6, up to 7 µm long, 1.5 µm wide at base, somewhat curving. Basidioles numerous, ventricose, subcylindrical or subclavate, smaller than basidia, 10-35 × 3-7.5 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 2-4 µm wide, thin- to slightly thickwalled, olive in KOH. Hyphae of spines 2-3 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, thick-walled, subparallel, occasionally branched; terminal elements rounded at apex, cells 80-145 × 5-12 µm. Stipitipellis composed of subcylindrical hyphae, slightly thick-walled, interwoven, 5-16.5 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, paratype, Wei 10258 (IFP 019465).

Notes: There are several almost pure white species in genus Hydnum such as H. minum, H. treui, H. zongolicense and the species in subgenus Alba (e.g., H. cremeoalbum, H. subcremeoalbum and H. albomagnum). Hydnum brevispinum is also a white species with small basidiocarps which are reminiscent of H. minum, however, H. minum differs from H. brevispinum in having longer spines (up to 1.7 mm long), shorter stipes (less than 1.5 cm long), slenderer pileipellis hyphae (4-6 µm wide), and smaller basidia $(20-30 \times 4-7 \mu m)$ with 5-8 sterigmata (Yanaga et al. 2015); Hydnum albomagnum can be differentiated from H. brevispinum by larger basidiocarps (pilei 60-110 mm wide), longer spines (1-6 mm long), ellipsoid basidiospores (Q up to 2.17) and slenderer pileipellis hyphae (2.5-5 µm wide) (Swenie et al. 2018); Hydnum brevispinum differs from H. zongolicense by a smaller pileus (10-15 vs. 17-35 mm wide), shorter spines (0.2-0.8 vs. 0.5-2 mm long), broadly ellipsoid and smaller basidiospores (subglobose and 5-5.8 × 3.8-4.8 µm in *H. zongolicense*) and basidia with 4–6 sterigmata (2–5 in *H.* zongolicense) (Niskanen et al. 2018). The small whitish basidiocarps and small basidiospores of H. albidum are similar to *H. brevispinum*, but the former species differs from the latter by having the bumpy or mottled pileal surface, longer spines (1-6 mm long) and presence of 7-spored basidia (Niskanen et al. 2018), besides, the similarity of the ITS sequences between the type materials (NR_164025 of H. albidum and MW980578 of H. brevispinum) of two species is only 92.79 %.

Hydnum flabellatum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839414; Figs 4, 5K–L, 6l, 15

Etymology: Flabellatum (Lat.), refers to the flabelliform to semicircular pileus.

Typus: **China**, Liaoning Province, Xinbin County, Qingsongling Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 5 Sep. 2020, H. S. Yuan, **holotype**, Yuan 14708 (IFP 019459).

Diagnosis: Differs from *Hydnum subtilior* in the smaller pilei (30-45 mm vs. up to 90 mm wide), shorter spines (0.6-2 mm vs. up to 8 mm long), longer basidia (35-60 µm vs. less than 44 µm) and broader pileipellis hyphae (5-16 vs. 3-7 µm).

Description: Basidiocarps solitary, fleshy and leathery when fresh, becoming soft corky and light in weight upon drying. Pilei 30-45 mm wide, flabelliform to semicircular, convex. Pileal surface dry, glabrous, irregularly bumpy or mottled, subzonate towards margin, yellowish white, pale yellow to greyish yellow (4A2/4A3/4B3), drying pale orange (5A3); scabrous, often with some brownish orange (6C7/6C8) scales. Pileal margin thin, entire and straight, concolorous with the pileal surface. Pileal context 1-5 mm thick, yellowish white (4A2). Hymenophore hydnoid, spines non-decurrent or subdecurrent, crowded, evenly distributed; surface orange-white (5A2) when fresh, greyish orange (5B5) when dry; subulate, acute, straight to somewhat flexuous, solitary, 0.6-2 mm long, shortest near the pileus margin, 3-5 per mm, brittle when dry. Stipes eccentric, up to 50 mm long, 8-13 mm wide, subcylindrical, hollow; surface glabrous, white, staining orange-white (5A2) when handled; stipe base enlarged and covered with a small amount of white basal mycelium. Odour mild.

Basidiospores broadly ellipsoid, $(7.8-)8.5-9.5(-10) \times (6-)$ 6.5–7.8(–8) µm, L_m = 9.07 µm, W_m = 7.04 µm, Q = 1.26–1.29 (n = 30/1), smooth, thin-walled, IKI–, hyaline, some with granular contents; hilar appendix 1 µm long. *Basidia* subcylindric, subclavate to clavate, 35–60 × 6–11 µm, sterigmata 2–5, up to 10 µm long, 1–1.5 µm wide at base, slightly curving. *Basidioles* numerous, subcylindrical or subclavate, smaller than basidia, 12–45 × 3.5–9 µm. *Cystidia* absent. *Subhymenium trama* filamentous, hyphae 2–5 µm wide, thin-walled, greenish yellow in KOH. *Hyphae of spines* 1.5–3 µm, thin-walled, apex cylindrical. *Pileipellis* composed of cylindrical hyphae, thin- to slightly thickwalled, subparallel, rarely branched; terminal elements rounded at apex, cells 50–185 × 5–16 µm. *Stipitipellis* composed of subcylindrical hyphae, thick-walled, interwoven, 5–12 µm wide, terminal elements rounded at apex. *Clamp connections* present.

Notes: Hydnum flabellatum was collected from a temperate forest in northeast China. It is embedded in the subgenus Pallida and shares the small to medium basidiocarps, cream-coloured to ochraceous with very pale orange pileus, stipes bruising brownish when handled, non-decurrent or subdecurrent spines and broadly ellipsoid basidiospores with other species of this subgenus (Niskanen et al. 2018). However, Hydnum flabellatum can be differentiated from H. iberidum in having larger basidiospores (avg. = $9.07 \times 7.04 vs. 8.2 \times 6.4 \mu m$) and basidia with 2-5sterigmata (Niskanen et al. 2018). Hydnum subtilior differs from H. flabellatum by having a larger pileus (up to 90 mm wide), longer spines (up to 8 mm long), shorter basidia (less than 44 µm) and slenderer pileipellis hyphae (3-7 µm wide) (Swenie et al. 2018). The subgenus type species, Europe Hydnum vesterholtii differs from H. flabellatum in having one-spored basidia (sometimes), thin-walled pileipellis hyphae with yellowish content and thin-walled and slenderer stipitipellis hyphae (4-8 µm wide) (Olariaga et al. 2012).

Hydnum flavidocanum T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839415; Figs 1, 4, 5M–N, 6J, 16

Etymology: Flavidocanum (Lat.), refers to the yellowish grey tint at the centre of the pileal surface.

Typus: **China**, Yunnan Province, Shizong County, Junzishan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 8 Aug. 2019, J. R. Yu & T. Cao, **holotype**, Yuan 13903a (IFP 019460).

Diagnosis: Differs from *Hydnum minum* in having a subzonate pileal surface, larger basidia $(33.5-55 \times 5-10 \text{ vs.} 20-30 \times 4-7 \text{ }\mu\text{m})$ with 2–5 sterigmata, larger basidiospores $(7.2-8.8 \times 5.5-6.5 \text{ vs.} 4.5-5.5 \times 3-4.5 \text{ }\mu\text{m})$ and broader pileipellis cells $(5-10 \text{ vs.} 4-6 \text{ }\mu\text{m})$.

Description: Basidiocarps solitary to concrescent, fleshy and leathery when fresh, becoming soft corky and light in weight upon drying. *Pilei* 20–30 mm wide, round, convex to plano-convex, shallowly depressed in the center. *Pileal surface* dry, glabrous, smooth, subzonate, yellowish white or yellowish grey (4A2–4B2) at center and whitish towards margin when moist, azonate upon drying. *Pileal margin* thin, entire and slightly incurved, concolorous with the pileal surface. *Pileal context* 1–3 mm thick, yellowish white to pale yellow (4A2–4A3). *Hymenophore* hydnoid, spines non-decurrent or subdecurrent, crowded, evenly distributed; surface orange-white (5A2) when fresh, greyish orange (5B4–5B6) when dry; fibrous, subulate, acute, straight to somewhat flexuous, solitary, 0.5–2 mm long, shortest near the pileus margin, 3–5 per mm, brittle when dry.

Stipes central, confluent with pilei, 25–40 mm long, 8–10 mm wide, subcylindrical, solid; surface glabrous, concolorous with the spine surface; stipe base enlarged and covered with a small amount of white basal mycelium. *Odour* mild and fruity.

Basidiospores broadly ellipsoid, (7.0-)7.2-8.8(-8.9) × (5.2-) 5.5-6.5(-6.8) µm, L_m = 7.75 µm, W_m = 6.01 µm, Q = 1.29-1.31 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.3-1 µm long. Basidia subcylindric, subclavate to clavate, 33.5-55 × 5-10 µm, sometimes with large auttules or finely granulose contents; sterigmata 2-5, up to 5 um long, 1-3 µm wide at base, somewhat curving. Basidioles numerous, subcylindrical or subclavate, smaller than basidia, 12.5-48 × 3-10 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 3-5 µm wide, thin-walled, olive yellow in KOH. Hyphae of spines 1.5-4 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 5-10 µm wide, thinwalled, densely interwoven to subparallel, rarely branched; terminal elements rounded at apex, cells 20-73 × 5-10 µm. Stipitipellis composed of subcylindrical hyphae, thin- to slightly thick-walled, interwoven, 7-13.5 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Yunnan Province, Shizong County, Junzishan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 8 Aug. 2019, J. R. Yu & T. Cao, paratype, Yuan 13900a (IFP 019461).

Notes: Hydnum flavidocanum forms a group with H. minum. Morphologically, Hydnum minum resembles H. flavidocanum by a non-decurrent hymenophore, absence of cystidia and presence of clamps, but differs from it by the azonate pileal surface, smaller basidia ($20-30 \times 4-7 \mu m$) with 5–8 sterigmata, smaller basidiospores ($4.5-5.5 \times 3-4.5 \mu m$) and slenderer pileipellis cells ($4-6 \mu m$ wide) (Yanaga *et al.* 2015).

Hydnum longibasidium T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839416; Figs 1, 4, 50, 6K, 17

Etymology: Longibasidium (Lat.), refers to the long basidia.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 24 Sep. 2020, T. Cao, Wei10383 (**holotype** IFP 019462).

Diagnosis: Differs from *Hydnum ferruginescens* in having a subzonate to zonate pileal surface, smaller basidiocarps, larger basidiospores $(8.5-11 \times 7.8-9.8 \text{ vs. } 6-8 \times 5-7.5 \text{ } \mu\text{m})$, larger basidia $(45-82 \times 10-14 \text{ vs. } 39-56 \times 7.5-9 \text{ } \mu\text{m})$ as well as thick-walled and broader $(8-18 \text{ vs. } 5-7 \text{ } \mu\text{m})$ pileipellis hyphae.

Description: Basidiocarps solitary to concrescent, leathery when fresh, becoming brittle and light in weight upon drying. Pilei 10-15 mm wide, irregularly round, plano-convex, shallowly depressed in the center. Pileal surface dry, subglabrous to velutinate, subzonate or zonate towards margin, orange-white to grevish orange (5A2-5B5) when fresh, grevish orange to brownish yellow (5C7-5C8) upon drying. Pileal margin entire and incurved when young, slightly decurved, straight and somewhat lobed in age, orange-white to orange-grey (6A2-6B2). Pileal context 0.5-1 mm thick, white to yellowish white (4A1-4A2). Hymenophore hydnoid, spines non-decurrent or subdecurrent, crowded, evenly distributed; surface orangewhite to pale orange (5A2/5A3) when fresh, concolorous with the pileal surface when dry; fibrous, subulate, acute, straight to somewhat flexuous, solitary, 1-4 mm long, shortest near the pileus margin, 2-3 per mm, brittle when dry. Stipes central, 15-25 mm long and 3-8 mm wide, subcylindrical, solid; surface

glabrous, white, staining pale yellow when handled; stipe base enlarged and white basal mycelium absent. *Odour* mild and fruity.

Basidiospores broadly ellipsoid to subglobose, (8.0-) $8.5-11.0(-11.5) \times (7.5-)7.8-9.8(-10.0) \ \mu m, \ L_m = 9.81 \ \mu m,$ $W_m = 9.03 \ \mu m$, Q = 1.09-1.13 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.5-1 µm long. Basidia subcylindric or subclavate, $45-82 \times 10-14$ µm, sometimes with large guttules or finely aranulose contents: steriamata 2-4. up to 8 µm long. 1.5-3.5 µm wide at base, slightly curving. Basidioles numerous, subclavate to clavate, smaller than basidia, $15-56 \times 5-14 \mu m$. Cystidia absent. Subhymenium trama filamentous, hyphae 2-5.5 µm wide, thin- to slightly thick-walled, olive yellow in KOH. Hyphae of spines 4.5-6 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 8-18 µm wide, thickwalled, interwoven to subparallel, occasionally branched; terminal elements rounded at apex, cells 40-138 × 8-18 µm. Stipitipellis composed of subcylindrical hyphae, thick-walled, subparallel, 7-25 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: China, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 24 Sep. 2020, T. Cao, paratype, Wei 10367 (IFP 019463).

Notes: Hydnum longibasidium falls in subg. Rufescentia and is closely related to Hydnum sp. (HKAS82411) (Taiwan Island), H. ferruginescens (southeastern US) and H. magnorufescens (Italian) (Feng et al. 2016, Niskanen et al. 2018). In terms of molecular and morphology characteristics, Hydnum ferruginescens and H. magnorufescens are very similar and they both resemble H. longibasidium in having an entire and incurved pileal margin when young, non-decurrent or subdecurrent spines, white basal mycelium covering stipe base, absence of cystidia and presence of clamps. However, Hydnum ferruginescens and H. magnorufescens can both be differentiated from H. longibasidium by the azonate pileal surface, larger basidiocarps (pileus up to 60 mm wide and stipes up to 40 mm long in H. ferruginescens, up to 55 mm wide and 50 mm long in H. magnorufescens), smaller spores $(6-8 \times 5-7.5 \ \mu m$ in former and 7-8.5 × 6.8-8 µm in latter), smaller basidia (39-56 × 7.5-9 µm and 38-46 × 7.5-9.5 µm respectively) as well as thin-walled and slenderer pileipellis hyphae (mostly 5-7 µm and 5-7 µm wide respectively) (Swenie et al. 2018, Niskanen et al. 2018).

Hydnum pallidocroceum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839418; Figs 1, 4, 5P–Q, 6L, 18

Etymology: Pallidocroceum (Lat.), refers to the pale orange pileal surface.

Typus: **China**, Xinjiang Auto. R, Kanasi National Geopark, on soil in *Pinus* sp. and *Picea* sp. forest, 6 Aug. 2019, Xu Lu & Y. H. Mu, **holotype**, Yuan 14023 (IFP 019466).

Diagnosis: Differs from *Hydnum jussii* in having a smaller pileus (25-40 vs. up to 60 mm wide), non-decurrent spines, slenderer spores (Q= 1.32-1.35 vs. 1.03-1.18) and larger basidia $(42-55 \times 8-11 \text{ vs. } 43-48 \times 7-9 \text{ µm})$.

Description: Basidiocarps solitary, fleshy and leathery when fresh, becoming brittle and light in weight upon drying. *Pilei* 25–40 mm wide, irregularly round, plano-convex, shallowly

depressed in the center. *Pileal surface* dry, subglabrous, azonate, orange-white to pale orange (5A2–5A3). *Pileal margin* entire and slightly incurved or straight, concolorous with pileal surface. *Pileal context* 1–3 mm thick, yellowish white to yellowish grey (4A2–4B2). *Hymenophore* hydnoid, spines non-decurrent, crowded, evenly distributed; surface light yellow (4A4) when fresh, concolorous with pileal surface when dry, fibrous, subulate, acute, straight to somewhat flexuous, solitary, 1–5 mm long, shortest near the pileus margin, 2–6 per mm, brittle when dry. *Stipes* central or eccentric, 30–55 mm long, 5–10 mm wide, subcylindrical, solid; surface glabrous, concolorous with spine surface, staining brownish when handled; stipe base somewhat narrower than the apex. *Odour* mild and fruity.

Basidiospores broadly ellipsoid, (7.5-) $7.8-9.5(-10.0) \times (5.5-)6.0-7.5(-8.0) \ \mu\text{m}, \ \text{L}_{\text{m}} = 9.09 \ \mu\text{m},$ W_m = 6.72 µm, Q = 1.32-1.35 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.5-1 µm long. Basidia subcylindric or subclavate, $42-55 \times 8-11 \mu m$, sometimes with large guttules or finely granulose contents; sterigmata 2-5, up to 5 µm long, 1-3 µm wide at base, slightly curving. Basidioles numerous, subclavate to clavate, smaller than basidia, 15-48 × 3-10 µm, Cvstidia absent. Subhymenium trama filamentous, hyphae 3-5 µm wide, thin-walled, pale yellow in KOH. Hyphae of spines 3-6 µm, thinwalled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 8-23 µm wide, thin- to slightly thick-walled, interwoven to subparallel, rarely branched; terminal elements rounded at apex, cells 73-100 × 8.5-25 µm. Stipitipellis composed of subcylindrical hyphae, thick-walled, subparallel, 7-18 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Xinjiang Auto. Reg., Kanasi National Geopark, on soil in *Pinus* sp. and *Picea* sp. forest, 6 Aug. 2019, Xu Lu & Y. H. Mu, paratype, Yuan 14017 (IFP 019467).

Notes: Hydnum pallidocroceum was discovered from the Xinjiang Autonomous Region and the two samples form a strongly supported (93 % in ML and 1.00 BPP) group with the *H. jussii* lineage which includes two other samples from Xinjiang (Yuan 14008 and Yuan 14009). *Hydnum jussii* is widely distributed, being known from Finland, as well as from Xizang and Xinjiang in China. Morphologically, *Hydnum jussii* is closely related to the new species in having a pale orange pileal surface, thin-walled hyphae at the spine apex and stipes bruising brownish when handled but differs by the larger pileus (up to 60 mm wide), somewhat decurrent spines, broader spores (Q = 1.03-1.18) and smaller basidia ($43-48 \times 7-9 \mu$ m) (Niskanen *et al.* 2018).

In the phylogenetic tree, *Hydnum pallidocroceum*, and *H. jussii* clustered together with *H. melleopallidum* as well as *H. albertense*. *Hydnum melleopallidum* is similar to *H. pallidocroceum* in having a convex pileus, pale orange pileal surface and thinwalled hyphae at the spine apex but can be differentiated from it by smaller basidiocarps (less than 35 mm wide and long), decurrent spines, broader spores (Q = 1.04-1.18) and smaller basidia ($42-48 \times 7.5-8.5 \mu m$) (Niskanen *et al.* 2018). *Hydnum albertense* resembles *H. pallidocroceum* in having a convex pileus, incurved pileal margin and non-decurrent spines, however, it differs from the new species in having larger basidiocarps (pileus up to 100 mm wide and stipes up to 65 mm long), broader spores (Q = 1.06-1.22) and smaller basidia ($40-47 \times 6.5-8 \mu m$) (Niskanen *et al.* 2018).

Hydnum pallidomarginatum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839419; Figs 1, 4, 5R–S, 6M, 19

Etymology: Pallidomarginatum (Lat.), refers to the light-coloured pileal margin.

Typus: **China**, Yunnan Province, Yimen County, on soil in angiosperm forest, 10 Aug. 2019, H. S. Yuan, **holotype**, Yuan 13928a (IFP 019468).

Diagnosis: Differs from *Hydnum ibericum* in having broader stipes (10–15 *vs.* 5–8 mm wide), basidia with 2–4 sterigmata and larger basidiospores (8.2–9.8 × 6.5–7.8 *vs.* 7.5–8.5 × 6–7 μ m).

Description: Basidiocarps solitary to concrescent, sometimes multipileate, fleshy and leathery when fresh, becoming hard and light in weight upon drying. Pilei 20-35 mm wide, irregularly round or semicircular, infundibuliform, depressed in the center. Pileal surface dry, glabrous, smooth, orange-white to pale orange (6A2/6A3), with a light colour zone towards center, drying azonate. Pileal margin entire to incised, straight or slightly decurved, whitish, obviously lighter than the pileal surface. Pileal context 3-5 mm thick, vellowish white to pale vellow (4A2-4A3). Hymenophore hydnoid, spines decurrent, crowded, evenly distributed, surface orange-white to pale orange (5A2-5A3) when fresh, brownish orange (5C6) when dry; subulate, terete or flattened, straight to somewhat flexuous, solitary, 0.5-2 mm long, shortest near the pileus margin, 2-3 per mm, brittle when dry. Stipes central or eccentric, confluent with pilei, 25-30 mm long, 10-15 mm wide, subcylindrical, solid; surface glabrous, concolorous with the spine surface, bruising brownish when handled; stipe base slightly enlarged and covered with white basal mycelium. Odour mild and fruity.

Basidiospores broadly ellipsoid, (8.0-) $8.2-9.8(-10.0) \times (6.0-)6.5-7.8(-8.2) \mu m$, L_m = 8.75 μm , W_m = 6.99 µm, Q = 1.25-1.28 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.3-0.5 µm long. Basidia subcylindric, subclavate to clavate, $32-65 \times 6.5-11 \mu m$, sometimes with large guttules or finely granulose contents; sterigmata 2-4, up to 10 µm long, 2-5 µm wide at base, slightly curving. Basidioles numerous, subcvlindrical subclavate. smaller than or basidia. 23-60 × 3-10 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 2.5-6 µm wide, thin-walled, pale yellow in KOH. Hyphae of spines 2-4 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 6-10 µm wide, slightly thick-walled, interwoven, rarely branched; terminal elements rounded at apex, cells 35-110 × 6-11.5 µm. Stipitipellis composed of subcylindrical hyphae, thick-walled, densely interwoven to subparallel, 4.5-18 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Yunnan Province, Yimen County, on soil in angiosperm forest, 10 Aug. 2019, T. Cao, paratype, Yuan 13940a (IFP 019469).

Notes: The two samples of *Hydnum pallidomarginatum* form a fully supported lineage in the phylogenetic tree. They are embeded in subgenus *Pallida* and grouped with *H. ibericum*, *H. vesterholtii*, *H. subtilior* as well as another new Chinese species, *H. flabellatum*. Morphologically, the Spanish species. *Hydnum ibericum*, is closely related to *H. pallidomarginatum* in having a pileal surface with pale orange tints, decurrent spines, stipes

bruising brownish and presence of clamps. However, it can be differentiated from the new species by the slenderer stipes (5-8 mm wide), basidia with 3-5 sterigmata and smaller basidiospores (7.5–8.5 × 6–7 μ m). Additionally, H. *ibericum* grows the soil of an angiosperm forest whereas on H. pallidomarginatum grows in coniferous mixed forests (Niskanen et al. 2018). Hydnum vesterholtii is described from France and resembles H. pallidomarginatum in having zonate pileus with whitish margin, broadly ellipsoid basidiospores and absence of cvstidia, but differs from it by the non-decurrent to slightly decurrent spines, basidia with 3-5 steriomata, thinwalled and broader (up to 14 µm wide) terminal cells of pileipellis and slenderer stipitipellis hyphae (4-8 µm wide) (Olariaga et al. 2012). Hydnum subtilior is similar to H. pallidomarginatum in having a zonate pileal surface, broadly ellipsoid basidiospores, absence of cystidia and presence of clamps, but differs from it by a larger pileus (up to 90 mm wide), longer spines (up to 8 mm long), larger stipes (up to 60 mm long and 21 mm wide), smaller basidia (less than 44 µm long and 9 µm wide) and thin-walled terminal cells of pileipellis (Swenie et al. 2018).

Hydnum flabellatum and *H. pallidomarginatum* are found in the temperate and subtropical forests of China, respectively, and they share the pale orange-tinted pileal surface. However, the former species differs from *H. pallidomarginatum* in having a scabrous pileal surface, longer stipes (up to 50 mm long), basidia with 2–5 sterigmata, broader pileipellis hyphae (up to 16 µm wide) and slenderer stipitipellis hyphae (less than 12 µm wide). The two species from subtropical China, *H. pallidomarginatum* and *H. flavidocanum*, share the zonate pileal surface, enlarged stipe base, absence of cystidia and presence of clamps. However, *H. pallidomarginatum* can be differentiated from *H. flavidocanum* by the shorter but wider stipes (25–30 × 10–15 mm), longer basidia (up to 65 µm long) with 2–4 sterigmata, larger basidiospores (8.2–9.8 × 6.5–7.8 µm) and slightly thick-walled and larger terminal cells (35–110 × 6–11.5 µm) of pileipellis.

Hydnum sphaericum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839420; Figs 1, 4, 5T–U, 6N, 20

Etymology: Sphaericum (Lat.), refers to the subglobose pileus.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, **holotype**, Wei10243 (IFP 019470).

Diagnosis: Differs from *Hydnum repandum* in the smaller pileus (20-35 vs. 110 mm wide), non-decurrent to subdecurrent spines and larger basidia $(37-65 \times 8-13.5 \text{ vs. } 35-45 \times 6-8 \mu\text{m})$.

Description: Basidiocarps solitary to concrescent, fleshy and leathery when fresh, becoming brittle and light in weight upon drying. *Pilei* 20–35 mm wide, subglobose when young, becoming irregularly round with age. *Pileal surface* dry, subglabrous, azonate, orange-white (6A2) when moist, greyish orange to brownish orange (5B5–6C7) upon drying. *Pileal margin* entire and strongly incurved when young, slightly decurved and undulate in age, concolorous with the pileal surface. *Pileal context* 1–3 mm thick, white to yellowish white (4A1–4A2). *Hymenophore* hydnoid, spines non-decurrent to subdecurrent, crowded, evenly distributed; surface white (3A1–4A1) when fresh, brownish orange (6C4–6C6) when dry; fibrous, subulate, acute, straight to somewhat flexuous, solitary, 0.5–3 mm long,

FUNGALBI DIVERSIT shortest near the pileus margin, 3–6 per mm, brittle when dry. *Stipe* central or eccentric, 18–25 mm long, 5–8 mm wide, subcylindrical, solid; surface glabrous, concolorous with the spine surface; stipe base enlarged and covered with a small amount of white basal mycelium. *Odour* mild and fruity.

Basidiospores broadly ellipsoid, $(7.5-)8.0-8.8(-9.0) \times (6.0-)$ 6.5-7.5(-8.0) μm, L_m = 8.36 μm, W_m = 6.94 μm, Q = 1.20-1.23 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.5 µm long. Basidia subcylindric or subclavate, 37-65 × 8-13.5 µm, sometimes with large auttules or finely granulose contents; sterigmata 4-5, up to 8 µm long, 2-2.5 µm wide at base, slightly curving. Basidioles numerous, subclavate, smaller than basidia, 15-53 × 4-11 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 3-5 µm wide, thin- to slightly thick-walled, pale yellow in KOH. Hyphae of spines 3-5 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 5-13 µm wide, thick-walled, interwoven to subparallel, occasionally branched; terminal elements rounded at apex, cells 70-105 × 5-14.5 µm. Stipitipellis composed of subcylindrical hyphae, thick-walled, subparallel, 8.5-20 µm wide, terminal elements rounded at apex. Clamp connections present.

Materials examined: **China**, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao , paratype, Wei 10262 (IFP 019471); Wei 10300 (IFP 019472).

Notes: The three samples of *Hydnum sphaericum* cluster with HKAS51070 and all were collected from subtropical China. Although the coverage between the ITS sequences of Wei 10243 (holotype of *H. sphaericum*, 647 bp) and HKAS51070 (556 bp) is 85 %, they got 98.74 % similarity. The four samples form a separate lineage with strong support (97 % ML, 1.00 BPP) and we describe them as a new taxon.

In the phylogenetic tree, *Hydnum sphaericum* fell in subg. *Hydnum*. The genus type species *H. repandum* is also nested in this subgenus and it is closely related to *H. sphaericum* in having a cream colour to orange pileal surface, crowded spines, thinwalled hyphae in the spines, and presence of clamps. However, it differs from *H. sphaericum* in having a larger pileus (up to 110 mm wide), larger stipes $(35-60 \times 7-14 \text{ mm})$, mostly decurrent spines and smaller basidia $(35-45 \times 6-8 \text{ µm})$ (Niskanen *et al.* 2018).

Species of *Hydnum* subg. *Hydnum* usually have medium to large (pilei 40–110 mm wide) basidiomata (Niskanen *et al.* 2018), however, *H. sphaericum* has small ones (pilei 20–35 mm wide). Another relatively small species is *H. olympicum* (pilei 30–65 mm wide) and it resembles the new species in having whitish pileal surface, crowded spines, broadly ellipsoid basidiospores and presence of clamps, but *H. olympicum* differs from *H. sphaericum* in having larger basidiocarps (pileus up to 65 mm wide and stipes up to 60 mm long), smaller basidia (37–43 × 6.6–8.6 µm) with 4 sterigmata, and presence of pleurocystidia (Niskanen *et al.* 2018).

Hydnum tangerinum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839421; Figs 4, 5V, 6O, 21

Etymology: Tangerinum (Lat.), refers to the orange tint of pileal surface.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, **holotype**, Wei 10245 (IFP 019473).

Diagnosis: Differs from *Hydnum melitosarx* in having shorter stipes (60 *vs.* 70 mm long), broadly ellipsoid basidiospores and basidia with 3–6 sterigmata.

Description: Basidiocarps solitary or concrescent, fleshy and leathery when fresh, becoming soft corky and light in weight upon drving, Pilei 10-50 mm wide, flabelliform, or irregularly round, convex to plano-convex, shallowly depressed in the center. Pileal surface dry, velutinate, smooth, azonate, pale orange, light orange, orange to brownish orange (5A3/5A4/6B8/ 6C8), drying greyish orange (5B5/5B6/6B5); scabrous, often with some scales towards center. Pileal margin thin, entire and undulate, concolorous with the pileal surface. Pileal context 1-5 mm thick, yellowish white (4A2). Hymenophore hydnoid, spines non-decurrent, crowded, evenly distributed; surface orange-white (6A2) when fresh, grevish orange (5B5/5B6) when dry; subulate, acute, straight to somewhat flexuous, solitary, 2-6 mm long, shortest near the pileus margin, 2-3 per mm, brittle when dry. Stipes central, up to 60 mm long, 3-7 mm wide, subcylindrical, solid; surface glabrous, white, staining pale orange (5A3) when handled; stipe base enlarged and covered with a small amount of white basal mycelium. Odour mild and fruity.

Basidiospores broadly ellipsoid, $(7-)7.2-8.8(-9) \times (5.5-)$ $5.8-7(-7.5) \mu m$, $L_m = 8.11 \mu m$, $W_m = 6.19 \mu m$, Q = 1.23-1.31(n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 1 µm long. Basidia subcylindric, subclavate to clavate, 29-45 × 5.5-10 µm, sometimes with large guttules or finely granulose contents; sterigmata 3-6, up to 6 µm long, 1.5 µm wide at base, somewhat curving. Basidioles numerous, subcylindrical or subclavate, smaller than basidia, 12.5-43.5 × 3-10 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 3-5 µm wide, thin-walled, greenish yellow in KOH. Hyphae of spines 2-3.5 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, thin-walled, subparallel, occasionally branched; terminal elements rounded at apex, cells 75-210 × 4-18 µm. Stipitipellis composed of subcylindrical hyphae, slightly thick-walled. interwoven. 3.5-13 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, paratype, Wei 10249 (IFP 019474); Wei 10250 (IFP 019475).

Notes: Hydnum tangerinum is nested in the subgenus Rufescentia and shares the small to medium basidiocarps, orangetinted pileal surface, bruising stipes when handled, nondecurrent spines and broadly ellipsoid basidiospores, with most of the species in the subgenus. Hydnum melitosarx and H. tangerinum form a weakly supported lineage in the tree (Fig. 4), the former species is similar to H. tangerinum in the medium basidiocarps, orange-tinted pileal surface and non-decurrent spines but differs by having longer stipes (up to 70 mm long), subglobose basidiospores (Q avg. = 1.11) and basidia with 3 sterigmata (Niskanen et al. 2018). Hvdnum mulsicolor and H. submulsicolor both share medium basidiocarps, orange-tinted pileal surface and non-decurrent spines with H. tangerinum, however, H. mulsicolor can be differentiated from H. tangerinum by having shorter basidiospores (L_m = 7.5); H. submulsicolor differs from H. tangerinum in having subglobose basidiospores (Q avg. = 1.13) and basidia with 3-4 sterigmata (Niskanen et al. 2018).

Hydnum tenuistipitum T. Cao & H. S. Yuan, *sp. nov.* Myco-Bank MB 839422; Figs 4, 5W, 6P, 22

Etymology: Tenuistipitum (Lat.), refers to the slender stipes.

Typus: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, **holotype**, Wei 10410 (IFP 019476).

Diagnosis: Differs from *Hydnum treui* in having longer stipes (uo to 60 mm vs. 15-20 mm long), and larger basidia ($45-63 \times 3-12 \ \mu m \ 35-42 \times 6-7 \ \mu m$) with 2-6 sterigmata

Description: Basidiocarps solitary or concrescent, fleshy when fresh, becoming brittle and light in weight upon drying. Pilei 10-30 mm wide, round, convex to plano-convex, shallowly depressed in the center. Pileal surface drv. glabrous, smooth, azonate, yellow-white to orange-white (4A2/5A2), drying pale orange to greyish orange (5A3/5B4). Pileal margin thin, entire and slightly decurved, concolorous with pileal surface. Pileal context 1-5 mm thick, white to yellowish white (4A2). Hymenophore hydnoid, spines non-decurrent to subdecurrent, crowded, evenly distributed; surface orange-white (5A2) when fresh, light brown (6D7/6D8) when dry; subulate, acute, straight to somewhat flexuous, solitary, 1-3 mm long, shortest near the pileus margin, 3-4 per mm, brittle when dry. Stipes central, up to 60 mm long, 2-6 mm wide, subcylindrical, solid; surface glabrous, white, staining pale orange (5A3) when handled; stipe base enlarged and covered with a small amount of white basal mycelium. Odour mild and fruity.

Basidiospores subglobose, (6.5-)6.8-7.2(-7.5) × (5.2-) $5.5-6.5(-6.8) \mu m$, $L_m = 7.08 \mu m$, $W_m = 6.09 \mu m$, Q = 1.07-1.16(n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 1 µm long. Basidia subcylindric, subclavate to clavate, 45-63 × 3-12 µm, sometimes with large guttules or finely granulose contents; sterigmata 2-6, up to 10 µm long, 1.5 µm wide at base, slightly curving. Basidioles numerous, subcylindrical or subclavate, smaller than basidia, 12-50 × 3-10 µm. Cystidia absent. Subhymenium trama filamentous, hyphae 3-5 µm wide, thin-walled, greenish yellow in KOH. Hyphae of spines 2-4 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, thick-walled, subparallel, frequently branched; terminal elements rounded at apex, cells 98-260 × 4-15 µm. Stipitipellis composed of subcylindrical hyphae, slightly thick-walled, interwoven, 3.5-13 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Hunan Province, Sangzhi County, Badagong Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, paratype, Wei 10417 (IFP 019477).

Notes: Hydnum tenuistipitum and H. brevispinum form a wellsupported lineage in the tree (Fig. 4) so, we suggest subgenus *Brevispina*; the five samples in the subgenus are all collected from a subtropical forest in China. Hydnum tenuistipitum resembles H. brevispinum in the whitish and smooth pileal surface, non-decurrent to subdecurrent spines, thick-walled pileipellis hyphae and slightly thick-walled stipitipellis hyphae, but the latter species differs from H. tenuistipitum by the smaller pileus (less than 15 mm wide), shorter stipe (less than 25 mm wide), smaller (5–5.8 × 3.8–4.8 µm) and broadly ellipsoid basidiospores and shorter basidia (20–40 µm long). The Australasian Hydnum treui belongs to subtropical/tropical forest and is similar to H. tenuistipitum in having a whitish pileal surface, non-decurrent to subdecurrent spines and subglobose basidiospores, however it can be distinguished from the latter species by shorter stipes (15–20 mm long), and smaller basidia ($35-42 \times 6-7 \mu m$) with 4 sterigmata (Niskanen *et al.* 2018).

Hydnum ventricosum T. Cao & H. S. Yuan, *sp. nov.* MycoBank MB 839423; Figs 1, 4, 5X–Y, 6Q, 23

Etymology: Ventricosum (Lat.), refers to the ventricose basidia.

Typus: **China**, Liaoning Province, Xinbin County, Gangshan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 12 Aug. 2020, H. S. Yuan, **holotype**, Yuan 14536 (IFP 019478).

Diagnosis: Differs from *Hydnum berkeleyanum* in having a smaller pileus (28–35 *vs.* up to 80 mm wide), shorter spines (1–5 mm *vs.* up to 9 mm long), shorter but broader (46 × 14 *vs.* 60 × 9 μ m) ventricose basidia and slightly thick-walled pileipellis hyphae.

Description: Basidiocarps solitary to concrescent, fleshy and leathery when fresh, becoming soft corky and light in weight upon drying. Pilei 28-35 mm wide, irregularly round, planoconvex, shallowly depressed in the center. Pileal surface dry, subglabrous, azonate, orange (6A7) when moist, brown (6D6-6D7) upon drying. Pileal margin thin, entire and incurved, concolorous with the pileal surface. Pileal context 1-2.5 mm thick, yellowish white to orange-white (4A2-5A2). Hymenophore hydnoid, spines non-decurrent, crowded, evenly distributed; surface orange-white (5A2-6A2) when fresh, brownish orange (6C4-6C6) when dry, subulate, straight to somewhat flexuous, solitary, 1-5 mm long, shortest near the pileus margin, 2-4 per mm, brittle when dry. Stipes central or eccentric, 30-35 mm long, 10-15 mm wide, subcylindrical, solid; surface glabrous, concolorous with the spine surface, bruising brownish when handled; stipe base somewhat narrower than apex and white basal mycelium absent. Odour mild and fruity.

Basidiospores subglobose, $(7.5-)8.2-9.0(-9.5) \times (7.0-)$ 7.5–8.5(–9.0) μm, L_m = 8.64 μm, W_m = 8.17 μm, Q = 1.05–1.09 (n = 60/2), smooth, thin-walled, IKI-, hyaline, some with granular contents; hilar appendix 0.3-1 µm long. Basidia fusiform to subcylindric, ventricose, 30-46 × 7.5-14 µm, sometimes with large guttules or finely granulose contents; sterigmata 2–4, up to 8 µm long, 1–3 µm wide at base, somewhat curving. Basidioles numerous, subclavate, smaller than basidia, $13-35 \times 3-11 \mu m$. Cystidia absent. Subhymenium trama filamentous hyphae 3-7.5 µm wide, thin- to slightly thick-walled, brownish yellow in KOH. Hyphae of spines 2-5 µm, thin-walled, apex cylindrical. Pileipellis composed of cylindrical hyphae, 5-10 µm wide, slightly thick-walled, interwoven to subparallel, rarely branched; terminal elements rounded at apex, cells 38-95 × 6-10 µm. Stipitipellis composed of subcylindrical hyphae, thick-walled, subparallel, 7.5-18 µm wide, terminal elements rounded at apex. Clamp connections present.

Material examined: **China**, Liaoning Province, Xinbin County, Gangshan Mt., on soil in angiosperm and *Pinus* sp. mixed forest, 26 Aug. 2020, H. S. Yuan, paratype, Yuan 14601 (IFP 019479).

Notes: The two samples of *Hydnum ventricosum* cluster with HKAS61795. This cluster forms a separate branch with strong support (100 % ML and 0.99 BPP) and all samples were collected from a temperate forest in China. We describe them as a new taxon.

In the phylogenetic tree, *Hydnum ventricosum* falls in subg. *Rufescentia* Niskanen & Liimat and formed a subgroup with *H. berkeleyanum*, *H. rufescens* and *H. subrufescens*.

Morphologically, the Indian species H. berkelevanum is closely related to *H. ventricosum* in having a light orange pileal surface, entire pileal margin, subglobose basidiospores, 2-4 sterigmata and presence of clamps, but differs from it in having a larger pileus (up to 80 mm wide), longer spines (up to 9 mm long), longer but slenderer basidia (up to 60 µm long and less than 9 µm wide) and thin-walled pileipellis hyphae (Wang et al. 2018). Hydnum rufescens is the type species of subg. Rufescentia, and is similar to *H. ventricosum* in having the non-decurrent spines and presence of clamps. However, H. rufescens can be distinguished from the new species by the larger pileus (up to 65 mm across), deep reddish orange pileal surface, longer stipes (up to 55 mm long), slenderer basidia (less than 9 µm wide) and smaller basidiospores (7-8.5 × 6-7.2 µm) (Niskanen et al. 2018). Hydnum subrufescens is a species described from Canada and is a synonym of H. aerostatisporum according to Swenie et al. (2018). It is related to H. ventricosum in having an orange-tinted pileus surface and non-decurrent spines. But H. subrufescens can be differentiated from the latter by the larger pileus (up to 60 mm wide), longer stipes (up to 40 mm long), slenderer basidia (less than 9 µm wide) and smaller basidiospores (7.4-8.8 × 6.4-7.8 µm) (Niskanen et al. 2018).

Hydnum albomagnum Banker, Bull. Torrey Bot. Club 28: 207. 1901. MycoBank MB 141572.

Notes: Phylogenetic analyses based on ITS and nLSU sequences and morphological characteristics confirmed the new record. The two Chinese samples and the American *Hydnum albomagnum* formed an isolated lineage with strong support (98 % in ML and 0.99 BPP). For a detailed description of *H. albomagnum*, see Banker (1901) and Yanaga *et al.* (2015). This species was originally described from the USA and recorded in Japan by Yanaga *et al.* (2015).

Materials examined: China, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 21 Sep. 2020, W. M. Qin, Wei 10194 (IFP 019480); 23 Sep. 2020, W. M. Qin, Wei 10247 (IFP 019481).

Hydnum minum Yanaga & N. Maek., Mycoscience 56: 435. 2015. MycoBank MB 808762.

Notes: Morphological and phylogenetic analyses based on ITS and nLSU sequences confirmed the new record, which is described in detail by Yanaga *et al.* (2015). This species was originally described from Japan (Yanaga *et al.* 2015) and so far, has only been collected in two East Asian countries, China and Japan (Yanaga *et al.* 2015, Niskanen *et al.* 2018).

Materials examined: China, Hunan Province, Sangzhi County, Badagong Mt. Nature Reserve, on soil in angiosperm forest, 23 Sep. 2020, T. Cao, Wei 10252 (IFP 019482), 10260 (IFP 019483).

Notes on other genera phylogenetically accepted in *Hydnaceae* in this study

Bergerella Diederich & Lawrey, Bryologist 123(2): 159. 2020. MycoBank MB 835061.

Type species: Bergerella atrofusca Diederich & Lawrey, Bryologist 123(2): 159. 2020. MycoBank MB 835062.

Notes: Bergerella is a lichenicolous genus described from Austria with hosts *Physcia aipolia* and *P. stellaris*. Bergerella atrofusca is the single species in the genus and is characterised by dark reddish brown and hairless bulbils as well as the absence of clamps (Lawrey et al. 2020). Phylogenetic analysis indicated it is a member of the Cantharellales, with closest relatives in the genus Minimedusa Weresub & P.M. LeClair (Lawrey et al. 2020). Our phylogenetic tree (Fig. 1) shows that Be. atrofusca belongs to Hydnaceae. Bergerella atrofusca and Bryoclavula phycophila form a lineage with moderate support in our tree. The Bergerella-Bryoclavula lineage clustered with Minimedusa and the three genera form a subclade with 46 % support in the ML analysis. Despite the clavarioid basidiocarps and absence of a bulbil-like structure, Br. phycophila is a lichenised species (Masumoto & Degawa 2020a). Minimedusa is a bulbil-forming and lichenicolous genus like Bergerella (Lawrey et al. 2007). Thus Bergerella, Bryoclavula and Minimedusa form a distinct lichen-associated branch in the Hydnaceae.

Bryoclavula H. Masumoto & Y. Degawa, Mycol. Progr. 19(7): 708. 2020. MycoBank MB 833863.

Type species: Bryoclavula phycophila H. Masumoto & Y. Degawa, Mycol. Progr. 19(7): 708. 2020. MycoBank MB 833864.

Notes: Bryoclavula has a single species, Br. phycophila, which is characterised by small-sized, whitish to pale cream and clavate or fusiform basidiocarps, basidia with 4–6 sterigmata, narrowly ellipsoid to elongate basidiospores and slow-growing colonies with undulate margin (Masumoto & Degawa 2020a). Morphologically, Bryoclavula is closely related to Multiclavula R.H. Petersen in having clavarioid basidiocarps and 4–6 sterigmata, and both are lichenised genera. However, Bryoclavula phycophila does not form the globular or bulbil-like lichenised thallus like the species in Multiclavula (Oberwinkler 1970, Nelsen *et al.* 2007, Masumoto & Degawa 2020a, b). The two lichenised genera have a distant relationship in the phylogenetic tree according to Masumoto & Degawa (2020a) and also this study.

Bryoclavula was described from Japan and is nested in the "CHS assemblage (following the the name in the article)" in Cantharellales (Masumoto & Degawa 2020a). In our tree (Fig. 1), Bryoclavula fell in Hydnaceae and formed a distinct lichen-associated subclade with Bergerella, and Minimedusa in the family. Three species of the polyphyletic genus Sistotrema, S. adnatum, S. coronilla and S. hypogaeum, are also members of this subclade according to Masumoto & Degawa (2020a). The three species of Sistotrema differ from the taxa in the other three genera of the lichen-associated subclade in all respects and the phylogenetic relationship of Sistotrema spp. should be further studied.

Bulbilla Diederich, Flakus & Etayo, Lichenologist 46(3): 340. 2014. MycoBank MB 807650.

Type species: Bulbilla applanata Diederich, Flakus & Etayo, Lichenologist 46(3): 340. 2014. MycoBank MB 807651.

Notes: Bulbilla is described from South America and is strictly lichenicolous with *Peltigerales* hosts. It belongs to the *Cantharellales* and is characterised by relatively large (200–500 μm), hairless, and diverse-coloured bulbils as well as an absence of clamps (Diederich *et al.* 2014). Bulbils of the genus are slightly immersed in the thallus and often leave holes when removed which is distinctly different from the other three bulbilliferous and lichenicolous genera of *Cantharellales viz.*, *Burgoa*, *Burgellopsis* and *Minimedusa*. The bulbils in these genera are often loosely attached to the substratum and do not leave conspicuous scars when removed (Goidànich 1937, Diederich & Lawrey 2007, Diederich *et al.* 2014).

The phylogeny of Bulbilla shows that it is a separate lineage in the Cantharellales, forming a group with Clavulinaceae Donk and is closely related to Hydnaceae (Diederich et al. 2014). Hibbett et al. (2014) suggested Cantharellaceae, Clavulinaceae and Sistotremataceae as synonyms of Hydnaceae. Thus, we suspect Bulbilla is a member of Hydnaceae and this has been confirmed by our phylogenetic study. In the tree (Fig. 1), the two samples of the genus type species B. applanata nest in Hydnaceae and form an unsupported group with the Clavulina-Membranomyces lineage. Ecologically, species of the Clavulina-Membranomyces lineage possess ECM nutritional modes (Smith et al. 2011, Argüelles-Moyao et al. 2017), while Bulbilla is strictly lichenicolous (Diederich et al. 2014). Morphologically, species in Clavulina have clavarioid to coralloid/infundibuliform, resupinate or effused basidiocarps (Henkel et al. 2011, Uehling et al. 2012a, b, Felipe 2012, He et al. 2016), Membranomyces has resupinate ones (Jülich 1975) and Bulbilla forms bulbils (Diederich et al. 2014). Thus, it can be concluded that the relationships between Bulbilla and the Clavulina-Membranomyces lineage are rather distant, and their generic rank seems to be appropriate. Bulbilla contains only one species now and the discovery of more taxa are needed for the further study of the phylogenetic relationships within the genus.

Burgella Diederich & Lawrey, Mycol. Progr. 6(2): 62. 2007. MycoBank MB 511585.

Type species: Burgella flavoparmeliae Diederich & Lawrey, Mycol. Progr. 6(2): 64. 2007. MycoBank MB 511586.

Notes: Burgella was suggested by Diederich and Lawrey to embrace the lichenicolous species with yellow to orangecoloured bulbils (Diederich & Lawrey 2007). The only two species in the genus, *Burgella flavoparmeliae* (type species) and *B. lutea*, fell within the *Cantharellales* based on molecular evidence (Diederich & Lawrey 2007, Lawrey *et al.* 2007, Diederich *et al.* 2014). *Burgella* nested in *Hydnaceae* according to our phylogeny analysis (Fig. 1); the result is similar to Lawrey *et al.* (2016). *Burgella* formed a group with *Sistotrema oblongisporum* and *S. brinkmannii* (Diederich & Lawrey 2007, Lawrey *et al.* 2007, Diederich *et al.* 2014) and it is also confirmed by our tree (Fig. 1). Bulbils occur in *Sistotrema oblongisporum* and *S. brinkmannii* (Hallenberg 1984) which also makes the two species closely related to *Burgella* spp.

Burgellopsis Diederich & Lawrey, Lichenologist 46(3): 344. 2014. MycoBank MB 807653.

Type species: Burgellopsis nivea Diederich & Lawrey, Lichenologist 46(3): 344. 2014. MycoBank MB 807654.

Notes: Burgellopsis nivea is the only species in the genus. It was described from Great Britain and the pure white bulbils and absence of clamps are distinct features of the genus Burgellopsis (Diederich et al. 2014). Only the nLSU sequence data are available for the genus at this time. Phylogenetically, the result in Diederich et al. (2014) shows that Burgellopsis belongs to Clavulinaceae and forms an unsupported group with the Burgella-Sistotrema lineage. The tree in Lawrey et al. (2016) suggests that Burgellopsis falls in Hydnaceae and groups with Multiclavula R.H. Petersen. In the present study, Burgellopsis and Rogersiomyces form a weakly supported (42 % in ML) group which is closely related to the Burgella-Sistotrema lineage.

Burgoa Goid., Boll. R. Staz. Patalog. Veget. Roma, N.S. 17: 354. 1937. MycoBank MB 7457.

Type species: Burgoa verzuoliana Goid., Boll. R. Staz. Patalog. Veget. Roma, N.S. 17: 359. 1937. MycoBank MB 255369.

Notes: Burgoa is one of the bulbilliferous and lichenicolous genus in Cantharellales (Diederich & Lawrey 2007, Lawrey et al. 2007, Diederich et al. 2014). It is typified by *B. verzuoliana* and characterised by whitish, brownish to black and hairless bulbils and the presence of clamps (Diederich & Lawrey 2007). The genus includes ten species (http://www.indexfungorum.org/) which grow on various lichens distributed worldwide (Diederich et al. 2018).

Schlechte and Hoffmann (2000) suggested Burgoa turficola Schlechte & P. Hoffmann belongs to Athelia Pers., but the combination has been rejected by Lawrey et al. (2007). Phylogenetic research shows that Burgoa turficola is nested in Agaricales (Diederich & Lawrey 2007, Lawrey et al. 2007). Therefore, whether Burgoa is monophyletic requires further research by combining phylogenetic and morphological evidence. However, we have confirmed that several samples of Burgoa indeed belong to the Cantharellales and are embedded in the Hydnaceae. The type species, Burgoa verzuoliana, and B. angulosa form a fully supported lineage with Sistotrema octosporum and S. eximum in our tree (Fig. 1). S. biggsiae Hallenb., S. efibulatum (J. Erikss.) Hjortstam and S. sernanderi (Litsch.) Donk are also members of this lineage according to Lawrey et al. (2007, 2016) and Masumoto & Degawa (2020a).

Clavulina J. Schröt., Krypt.-Fl. Schlesien (Breslau) 3.1(25-32): 442. 1888. MycoBank MB 17322.

Type species: Clavulina cristata (Holmsk.) J. Schröt., Krypt.-Fl. Schlesien (Breslau) 3.1(25-32): 442. 1888. MycoBank MB 114572.

Notes: Clavulina is typified by Clavulina cristata and comprises 88 described species from temperate or tropical ecosystems around the world (Thacker & Henkel 2004, Douanla-Meli 2007, Duhem & Buyck 2007, Trappe & Castellano 2007, Henkel et al. 2005, 2011, Uehling et al. 2012a, b, Olariaga & Salcedo 2012, Wartchow 2012, He et al. 2016, Tibpromma et al. 2017, Pérez-Pazos et al. 2019, Wu et al. 2019, Yuan et al. 2020). The genus is characterised by simple or branched, clavarioid to coralloid (occasionally cantharelloid, cerebriform, resupinate or effused) basidiocarps, a monomitic hyphal system and smooth, hyaline, subglobose to broadly ellipsoid basidiospores (Corner 1950, 1970, Petersen 1988, Thacker & Henkel 2004, Henkel et al. 2005, Uehling et al. 2012a). Ecologically, most Clavulina species have an ECM lifestyle except for a few suspected of being saprotrophic (Hobbie et al. 2001, 2002, Zeller et al. 2007, Rinaldi et al. 2008, Tedersoo et al. 2012, Hou et al. 2012, Tedersoo & Smith 2013, Ważny 2014). Clavulina was recovered as a monophyletic group in the Cantharellales (Thacker & Henkel 2004, Moncalvo et al. 2006, Olariaga et al. 2009). It was initially selected as the type genus of Clavulinaceae Donk (Donk 1961), but now belongs to Hydnaceae (Hibbett et al. 2014). Clavulina forms a well-supported group with Membranomyces Jülich in our tree (Fig. 1) and they share ECM nutritional modes.

Membranomyces Jülich, Persoonia 8(3): 296. 1975. MycoBank MB 18042.

Type species: Membranomyces spurius (Bourdot) Jülich, Persoonia 8(3): 296. 1975. MycoBank MB 317560.

Notes: Membranomyces nests in Hydnaceae (Larsson 2007, Hibbett et al. 2014) and belongs to the Cantharellales (Moncalvo et al. 2006). There are two species in the genus including the type species, Membranomyces spurius and Me. delectabilis (H.S. Jacks.) Kotir. & Saaren. They are both described from Europe and are also widely distributed in Asia, Middle East, Canada and the USA (Jülich 1975, Kotiranta & Saarenoksa 1993). Membranomyces is characterised by resupinate and effused basidiocarps with smooth hymenophore, monomitic hyphal system, and smooth, ellipsoid to subglobose basidiospores (Jülich 1975, Kotiranta & Saarenoksa 1993). Despite the different shape of their respective basidiocarps, Membranomyces is anatomically similar to Clavulina in having a monomitic hyphal system, two-spored basidia and smooth, ellipsoid to subglobose basidiospores (Corner 1950, 1970, Petersen 1988, Thacker & Henkel 2004). Ecologically, the two genera share the ECM nutritional modes (Argüelles-Moyao et al. 2017). Our phylogenetic analyses also indicate an apparent relationship between Membranomyces and Clavulina. The two genera form a distinct ECM lineage in the Hydnaceae (Fig. 1).

Minimedusa Weresub & P.M. LeClair, Can. J. Bot. 49(12): 2210. 1971. MycoBank MB 18065.

Type species: Minimedusa polyspora (Hotson) Weresub & P.M. LeClair, Can. J. Bot. 49(12): 2210. 1971. MycoBank MB 317759.

Notes: Minimedusa was recovered as a monophyletic genus in the Cantharellales and includes three bulbilliferous species. Minimedusa polyspora and Mi. obcoronata are saprophytic and grow on various substrates (Hotson 1912, Sutton *et al.* 1984, Diederich & Lawrey 2007), while Mi. pubescens Diederich, Lawrey & Heylen is a lichenicolous species (Weresub & LeClair 1971, Diederich & Lawrey 2007). The phylogenetic results of Lawrey *et al.* (2007) placed Minimedusa in the Cantharellales grouping with Sistotrema coronilla. In the tree of Masumoto & Degawa (2020a), Minimedusa setted in the "CHS assemblage" and in Lawrey *et al.* (2016) and Lawrey *et al.* (2020) the genus fell in the Hydnaceae. Our study confirms that Minimedusa indeed nests in Hydnaceae (with full support) and forms a subclade with Bergerella and Bryoclavula (Fig. 1).

Multiclavula R.H. Petersen, Am. Midl. Nat. 77: 207. 1967. MycoBank MB 18080.

Type species: Multiclavula corynoides (Peck) R.H. Petersen, Am. Midl. Nat. 77: 215. 1967. MycoBank MB 334548.

Notes: Multiclavula is typified by Mu. corynoides and characterised by the simple or branched small clavarioid basidiocarps and lichenised nutritional mode (Petersen 1967, Fischer *et al.* 2007, Nelsen *et al.* 2007, Masumoto & Degawa 2020b). Multiclavula is morphologically and ecologically similar to another lichenised genus *Bryoclavula* but it has a globular or bulbil-like structure which is lacking in *Bryoclavula* and phylogenetically it is distant from *Bryoclavula* (Masumoto & Degawa 2020a). Multiclavula consists of thirteen species from Asia, Europe, North America, Oceania and South America (Corner 1950, Petersen 1967, Petersen 1988, Nelsen *et al.* 2007, Masumoto & Degawa 2020b).

Multiclavula is nested in *Hydnaceae* (Hibbett *et al.* 2014) and was recovered as monophyletic with high support in several previous molecular phylogenetic studies (Nelsen *et al.* 2007, Masumoto & Degawa 2020a, b). *Multiclavula, Burgella, Clavulina* and *Membranomyces* initially belonged to the family

Clavulinaceae (Kirk et al. 2008). Binder et al. (2005), Moncalvo et al. (2006) and Masumoto & Degawa (2020b) suggested Multiclavula as a sister group to Clavulina and the S. brinkmannii-oblongisporum clade according to molecular evidence, however, in the studies of Masumoto & Degawa (2020a) as well as Lawrey et al. (2020), the relationship between the two genera seems distant. Our study (Fig. 1) also confirmed that Multiclavula is a well-supported monophyletic group in the Hydnaceae and provided the evidence that Multiclavula is not a sister clade of Clavulina and S. brinkmannii-oblongisporum, but is a single lineage in the family. The result is similar to Masumoto & Degawa (2020a) and Lawrey et al. (2020). The change in the status of Multiclavula in different molecular analyses is probably due to the addition of several lichenicolous genera like Bulbilla, Burgella and Burgellopsis as well as the saprotrophic genus Rogersiomyces J.L. Crane & Schokn to the phylogeny.

Neoburgoa Diederich, Bryologist 119(4): 344. 2016. MycoBank MB 818611.

Type species: Neoburgoa freyi Diederich, Bryologist 119(4): 344. 2016. MycoBank MB 818612.

Notes: The lichenicolous Neoburgoa is nested within Hydnaceae and consists of a single species, Neoburgoa freyi, described from Europe (Lawrey et al. 2016). Neoburgoa freyi is characterised by immersed to superficial, yellow to orange, roundish to ellipsoid or irregular bulbils, internally composed of roundish to ellipsoid or polyhedral cells, clamps absent in bulbils but present in culture (Lawrey et al. 2016). Morphologically, Neoburgoa is closely related to another lichenicolous genus Burgella in having yellow to orange bulbils. However, Neoburgoa has a distant phylogenetic relationship with Burgella as well as with other lichenicolous bulbil-forming genera including Bergerella, Bulbilla, Burgella, Burgellopsis, Burgoa and Minimedusa as shown by Lawrey et al. (2016), Masumoto & Degawa (2020a) and this study. The two samples of N. freyi form a separate lineage in Hydnaceae in our tree (Fig. 1).

Rogersiomyces J.L. Crane & Schokn., Am. J. Bot. 65: 903. 1978. MycoBank MB 16297.

Synonym: Hyphobasidiofera K. Matsush. & Matsush., Matsush. Mycol. Mem. 9: 33. 1996. MycoBank MB 27665.

Type species: Rogersiomyces okefenokeensis J.L. Crane & Schokn., Am. J. Bot., Suppl. 65(8): 903. 1978. MycoBank MB 322867.

Notes: Rogersiomyces is a saprotrophic genus nested in Hydnaceae and characterised by gymnocarpous basidiocarps composed of fasciculate or loose synnematous holobasidia and the spores germinating directly via hyphae (Crane & Schoknecht 1978, Psurtseva et al. 2016). The genus consists of two species: the type species Rogersiomyces okefenokeensis J.L. Crane and Schokn. which was described from the USA and the Vietnamese species R. malaysiana. Phylogenetic analysis shows Rogersiomyces grouping with Sistotrema oblongisporum in the family. In our molecular analysis, it was recovered in Hydnaceae and forms a weakly supported group with the bulbilliferous and lichenicolous genus Burgel*lopsis* (Fig. 1), however, there are no common morphological or ecological features that verify the phylogenetic relationship between the two genera. The status of Rogersiomyces in Hydnaceae should be further clarified.

Sistotrema Fr., Syst. Mycol. (Lundae) 1: 426. 1821. MycoBank MB 18551.

Synonym: Galziniella Parmasto, Consp. System. Corticiac. (Tartu): 39. 1968. MycoBank MB 17637.

Heptasporium Bref., Unters. Gesammtgeb. Mykol. (Liepzig) 14: 167. 1908. MycoBank MB 17738.

Hydnotrema Link, Handb. Erk. Gew. 3: 298. 1833. MycoBank MB 17796.

Type species: Sistotrema confluens Pers., Neues Mag. Bot. 1: 108. 1794. MycoBank MB 215678.

Notes: There are *ca.* 55 recognised species of *Sistotrema* with a worldwide distribution according to the notes of He *et al.* (2019). It is a morphologically, ecologically diverse, and polyphyletic genus in *Hydnaceae* (Larsson 2007, Hibbett *et al.* 2014). Only the type species, *S. confluens,* and *S. subconfluens* form stipitate basidiocarps on the ground, while other species in the genus have resupinate basidiocarps on wood (Kotiranta & Larsson 2013, Zhou & Qin 2013, Crous *et al.* 2014, Gruhn *et al.* 2017, Kaur *et al.* 2019). The hymenophore configuration in the genus also various from smooth, poroid to hydnoid (Eriksson *et al.* 1984). The genus is often characterised by the urniform basidia mostly with 6–8 sterigmata. Ecologically, species of *Sistotrema* have ectomycorrhizal, saprotrophic, or endophytic nutritional modes (Eriksson *et al.* 2014, Di Marino *et al.* 2008, Münzenberger *et al.* 2012, Hibbett *et al.* 2014).

In phylogeny, Sistotrema was retrieved as highly polyphyletic (Binder et al. 2005, Moncalvo et al. 2006, Nilsson et al. 2006). The type species, Sistotrema confluens, and S. muscicola as well as S. alboluteum are closely related to the stipitate-ECM lineages Cantharellus, Craterellus and Hydnum, while other species of Sistotrema are distributed over several genera in Hydnaceae including Clavulina, Multiclavula and Membranomyces or form single lineages in the family (e.g., S. adnatum and S. coronilla) (Pine et al. 1999, Hibbett & Binder 2002, Larsson et al. 2004, Moncalvo et al. 2006). To avoid immoderately missed data at more loci, only six species of Sistotrema (including the type species and five other species) are involved in our present study. We confirmed the Sistotrema is a highly polyphyletic genus nested in Hydnaceae. The six Sistotrema species form three well-supported groups in the family viz., Sistotrema confluens-subconfluens and Hydnum group, S. brinkmannii-oblongisporum and Burgella group, as well as the S. eximum-octosporum and Burgoa group (Fig. 1). We do not intend to discuss and solve the comprehensive phylogeny of the entire genus Sistotrema in the present paper due to insufficient samples. It should be done elsewhere pending both morphological and molecular evidences.

Sistotremella Hjortstam, Cortic. N. Eur. (Oslo) 7: 1379. 1984. MycoBank MB 25849.

Type species: Sistotremella perpusilla Hjortstam, Cortic. N. Eur. (Oslo) 7: 1381. 1984. MycoBank MB 115329.

Notes: Sistotremella is typified by S. perpusilla and characterised by resupinate, effuse and dry crustaceous basidiocarps, a monomitic hyphal system, basidia with 6–8 sterigmata and ellipsoid, cyanophilous basidiospores (Eriksson *et al.* 1984). There are three species in the genus, the type species, *Sistotremella perpusilla*, and S. *hauerslevii* Hjortstam and S. *paullicorticioides* Boidin & Gilles. They are all wood-decaying fungi and mainly distributed in Europe (Sweden, Denmark, and

Genera traditionally recognised in *Hydnaceae* but in need of modern interpretation

Corallofungus Kobayasi, J. Jap. Bot. 58: 174. 1983. MycoBank MB 17667.

Type species: Corallofungus hatakeyamanus Kobayasi, J. Jap. Bot. 56(6): 174. 1983. MycoBank MB 107676.

Gloeomucro R.H. Petersen, Mycologia 72(2): 303. 1980. MycoBank MB 17667.

Type species: Gloeomucro nodosus (Linder) R.H. Petersen, Mycologia 72(2): 303. 1980. MycoBank MB 113838.

Ingoldiella D.E. Shaw, Trans. Br. Mycol. Soc. 59(2): 258. 1972. MycoBank MB 8631.

Type species: Ingoldiella hamata D.E. Shaw, Trans. Br. Mycol. Soc. 59(2): 258. 1972. MycoBank MB 315815.

Parastereopsis Corner, Nova Hedwigia 27: 331. 1976. Myco-Bank MB 18186.

Type species: Parastereopsis borneensis Corner, Nova Hedwigia 27: 331. 1976. MycoBank MB 319210.

Osteomorpha G. Arnaud ex Watling & W.B. Kendr., Naturalist (Hull), Ser. 104(no. 948): 1. 1979. MycoBank MB 517859.

Type species: Osteomorpha fragilis G. Arnaud ex Watling & W.B. Kendr., Naturalist (Hull), Ser. 104(no. 948): 1. 1979. MycoBank MB 302109.

Repetobasidiellum J. Erikss. & Hjortstam, Cortic. N. Eur. (Oslo) 6: 1247. 1981. MycoBank MB 25481.

Type species: Repetobasidiellum fusisporum J. Erikss. & Hjortstam, Cortic. N. Eur. (Oslo) 6: 1247. 1981. MycoBank MB 116023.

DISCUSSION

In the phylogenetic tree (Fig. 1), *Hydnaceae* is the sister clade of *Tulasnellaceae*. The two families together with *Botryobasidiaceae* and *Ceratobasidiaceae* form the *Cantharellales* with high support. The result provides phylogenetic evidence based on a multiple-marker dataset for the division of the *Cantharellales* as in Hibbett *et al.* (2014). *Cantharellus* is a sister clade of *Craterellus* while *Hydnum* groups with *Sistotrema confluens-subconfluens*. The cantharelloid and ECM genera *Cantharellus*, *Craterellus* and *Hydnum* together with *Sistotrema sensu stricto* form a well-supported subclade in the *Hydnaceae* (Fig. 1).

We suggest that *Hydnaceae* is equivalent to the "core cantharelloid clade" which was supported by Moncalvo *et al.* (2006). In that study, the family was phylogenetically delimited to include

seventeen genera according to the analysis based on a fivemarker combined dataset. Fifteen genera are confirmed as monophyletic lineages in our tree (Fig. 1). Sistotrema is confirmed as polyphyletic in accordance with Moncalvo et al. (2006). Although Burgoa species form a fully supported lineage with Sistotrema octosporum and S. eximum in the tree, whether Burgoa is monophyletic requires further research since Burgoa turficola is nested in the Agaricales (Diederich & Lawrey 2007, Lawrey et al. 2007). The six genera Corallofungus, Gloeomucro, Ingoldiella, Parastereopsis, Osteomorpha and Repetobasidiellum are traditionally recognised as members of Hydnaceae (He et al. 2019, http://www.indexfungorum.org 2021) but they all lack a modern interpretation, and their sequence data are unavailable. Thus, the status of the six genera is still unsolved. In addition, Paullicorticium J. Erikss. was also placed in Hydnaceae (http://www.indexfungorum.org 2021) though several phylogeny analyses have suggested the genus placed outside of the Cantharellales (Hibbett & Binder 2002, Larsson et al. 2004, Larsson 2007). Hibbett & Binder (2002) and Binder et al. (2005) show that Sistotremastrum niveocremeum is in the cantharelloid clade and it is closely related to Sistotrema brinkmannii, however, Moncalvo et al. (2006) deem that the sequence labeled Sistotremastrum niveocremeum that nested in this clade represents a misidentification; the true Sistotremastrum niveocremeum belongs to the trechisporoid clade. In the case of Repetobasidium J. Erikss., the phylogeny of Nilsson et al. (2006) has placed the genus in the Rickenella clade of the Hymenochaetales. Here, we follow the previous studies and consider the genera Paullicorticium, Sistotremastrum and Repetobasidium do not belong to Hydnaceae.

The morphology of the taxa in Hydnaceae is highly diverse. Several morphologically related lineages have been recognised in our tree. The "Cantharellus-Craterellus" lineage share the cantharelloid and colourful basidiocarps, smooth, wrinkled to veined hymenophore, relatively long basidia (sometimes up to 100 µm long) and mostly 2-6 sterigmata (Wilson et al. 2012, Buyck et al. 2014, Henkel et al. 2014). The "Hydnum and Sistotrema confluens-subconfluens" lineage share the stipitate basidiocarps and hydnoid hymenophore (Eriksson et al. 1984, Zhou & Qin 2013, Niskanen et al. 2018, Swenie et al. 2018); although the shape of basidiocarps in "Clavulina-Membranomyces" lineage range from clavarioid (Clavulina) to corticioid (Membranomyces), they share the monomitic hyphal system and two-spored basidia (Jülich 1975, Thacker & Henkel 2004). Species in the "Burgella and S. oblongisporum-brinkmannii" lineage share the feature of forming bulbils (Hallenberg 1984, Diederich et al. 2014). Corticioid species of Sistotrema and Sistotremella, clavarioid species of Multiclavula and Bryoclavula, bulbil-forming species Bergerella, Bulbilla, Burgella, Burgellopsis, Minimedusa, Neoburgoa, Burgoa as well as hypochnoid species in Rogersiomyces are alternately distributed in the lower middle position of the tree (Fig. 1). The result that stipitate-pileus species are placed at the top, clavarioid species in the middle and corticioid or bulbil-forming species at the bottom of the tree may intimate the morphological evolution in Hydnaceae.

Ecologically, there are two distinct ECM group, the "Cantharellus, Craterellus, Hydnum and Sistotrema sensu stricto" group and the "Clavulina and Membranomyces" group (clade with blue branches in Fig. 1), they are both well-supported in the tree. In addition, other genera with the lichenicolous and lichenised (green branches), saprotrophic (pink branches) nutritional modes (Table 2) are throughout the clade and there is no ecological evidence for their status in the tree of *Hydnaceae* (Fig. 1). This result is similar to the study of Lawrey *et al.* (2016) which was based on nLSU.

The phylogenetic relationships within *Hydnaceae* are partially elucidated and we have provided a more accurate delimitation in the sense of genus for the family. However, although our study contains a relatively comprehensive dataset of the genus in *Hydnaceae*, more material and additional molecular markers are necessary for more comprehensive studies of some specific clades.

KEY TO GENERA IN HYDNACEAE

1a.	Basidiocarps mucous to watery gelatinous	Gloeomucro
1b.	Basidiocarps not watery gelatinous	2
2a.	Clavarioid basidiocarps present	3
2b.	Clavarioid basidiocarps absent	6
3a.	Basidiocarps with distinct fragrance	Corallofungus
3b.	Basidiocarps without special odour	4
4a.	With ECM nutritional model	Clavulina
4b.	Lichen-associated	5
5a.	Lichenised, globular thallus present	Multiclavula
5b.	Lichenised, globular thallus absent	Bryclavula
6a.	Conidia present	7
6b.	Conidia absent	9
7a.	Conidia with subglobal form, basidiocarps tubeform	Parastereopsis
7b.	Conidia without subglobal form, basidiocarps unknow	n8
8a.	Conidia with narrow form and often branched; conidio	phores long, up to
	120 µm long	Ingoldiella
8b.	Conidia cylindrical, conidiophores short, < 10 µm pre	sent10
9b.	Bulbills absent	16
10a.	Clamps present	
10b.	Clamps absent	Burgella
11a.	Bulbills < 110 um wide	
11b.	Bulbills > 300 µm wide	4
12a.	Bulbills loosely attached to the substratum	13
12b.	Bulbills tightly attached to the substratum	Neoburgoa
13a.	Bulbills up to 450 µm wide, whitish bulbils present	Burgoa
13b.	Bulbills < 300 µm wide, whitish bulbils absent	Brvclavula
14a.	Bulbills < 200 µm wide	
14b.	Bulbills 200–500 µm wide	Bulbilla
15a.	Bulbills pure white, 100-200 µm wide	Burgellopsis
15b.	Bulbills dark reddish brown, 25-35 µm wide	Bergerella
16a.	Dendrohyphidia present	
16b.	Dendrohvphidia absent	
17a.	Cystidia present. spores ellipsoid	Sistotremella
17b.	Cystidia absent. spores subfusiform	Repetobasidiellum
18a.	Synnematous basidia absent	
18b.	Synnematous basidia present	Rogersiomvces
19a.	Clamps present.	
19b.	Clamps absent	Membranomvces
20a.	Hvdnoid hvmenophore present.	
20b	Hydnoid hymenophore absent	- 22
21a.	Corticioid basidiocarps absent	Hvdnum
21b.	Corticioid basidiocarps present	Sistotrema
22a.	Pileus non-perforation, stipe often solid.	Cantharellus
23b.	Pileus sometimes perforation, stipe often hollow	Craterellus

ACKNOWLEDGEMENTS

This research was financed by the National Natural Science Foundation of China (Project Nos. 31970017, 31770028 & 31470148), the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences (Project No. ZSBR-015) and the Biodiversity Investigation, Observation and Assessment Program (2019–2023) of Ministry of Ecology and Environment of China.

REFERENCES

- Agerer R, Kraigher H, Javornik B (1996). Identification of ectomycorrhizae of *Hydnum rufescens* on Norway spruce and the variability if the ITS region of *H. rufescens* and *H. repandum (Basidiomycetes). Nova Hedwigia* **63**: 183–194.
- An DY, Liang ZQ, Jiang S, *et al.* (2017). *Cantharellus hainanensis*, a new species with a smooth hymenophore from tropical China. *Mycoscience* **58**: 438–444.
- Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, et al. (2017). Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27: 53–65.
- Bahram M, Põlme S, Kõljalg U, *et al.* (2012). Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. *New Phytologist* **193**: 465–473.
- Banker HJ (1901). A preliminary contribution to a knowledge of the *Hydnaceae*. Bulletin of the Torrey Botanical Club **28**: 199–222.
- Berkeley MJ, Curtis MA (1860). Characters of new fungi, collected in the North Pacific exploring expedition by Charles Wright. *Proceedings of the American Academy of Arts and Sciences* **4**: 111–130.
- Bi ZS, Zheng GY, Li TH (1994). *Macrofungus flora of Guangdong Province*. Guangdong Science and Technology Press, Guangdong.
- Bigelow HE (1978). The cantharelloid fungi of New England and adjacent areas. Mycologia **70**: 707–756.
- Bijeesh C, Kumar AM, Vrinda KB, et al. (2018). Two new species of Craterellus (Cantharellaceae) from tropical India. Phytotaxa 346: 157–168.
- Binder M, Hibbett DS, Larsson KH, et al. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity 3: 113–157.
- Boa E (2004). Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization 17: 1–147.
- Boidin J, Gilles G (1994). Contribution à la connaissance des Corticiés à basides urniformes ou suburniformes (*Basidiomycotina*). Bulletin de la Société Mycologique de France 110: 185–229.
- Buyck B (2014). Exploring the diversity of "smooth chanterelles" (Cantharellus, Cantharellales). Cryptogamie Mycologie 35: 23–40.
- Buyck B, Duhem B, Das K, et al. (2017). Fungal biodiversity profiles 21–30. Cryptogamie Mycologie 38: 101–146.
- Buyck B, Hofstetter V, Ryoo R, et al. (2020). New Cantharellus species from South Korea. MycoKeys 76: 31–47.
- Buyck B, Kauff F, Eyssartier G, et al. (2014). A multilocus phylogeny for worldwide Cantharellus (Cantharellales, Agaricomycetidae). Fungal Diversity 64: 101–121.
- Buyck B, Kauff F, Cruaud C, et al. (2012). Molecular evidence for novel Cantharellus (Cantharellales, Basidiomycota) from tropical African miombo woodlands and a key to all tropical African chanterelles. Fungal Diversity 58: 281–298.
- Buyck B, Moreau PA, Courtecuisse R, et al. (2016a). Cantharellus coccolobae sp. nov. and Cantharellus garnieri, two tropical members of Cantharellus subg. Cinnabarinus. Cryptogamie Mycologie 37: 391–403.
- Buyck B, Olariaga I, Justice J, et al. (2016b). The dilemma of species recognition in the field when sequence data are not in phase with phenotypic variability. Cryptogamie Mycologie 37: 367–389.
- Cairney JWG, Chambers SM (1999). Ectotnycorrhizal fungi key genera in profile. Springer-Verlag Berlin Heidelberg, New York: 253–268.
- Cao T, Yu JR, Hu YP, et al. (2021). Craterellus atrobrunneolus sp. nov. from southwestern China. Mycotaxon 136: 59–71.
- Chen JJ, Cui BK, Dai YC (2016). Global diversity and molecular systematics of Wrightoporia s.l. (Russulales, Basidiomycota). Persoonia 37: 21–36.
- Chiu WF (1973). Ten new species of Agaricales from Yunnan, China. Acta Microbiologica Sinica 13: 129–135.
- Contu M, Vizzini A, Carbone M, et al. (2009). Identity and neotypification of *Craterellus cinereus* and description of *Cantharellus atrofuscus sp. nov. Mycotaxon* **110**: 139–149.
- Corner EJH (1950). A monograph of *Clavaria* and allied genera. *Annals of Botany Memoirs* 1: 1–740.
- Corner EJH (1970). Supplement to "A monograph of *Clavaria* and allied genera". Nova Hedwigia Beih **47**: 22–51.
- Corner EJH (1966). A monograph of cantharelloid fungi. Annals of Botanical Memoirs No. 2. Oxford Univ Press, Oxford, UK: 255.

- Crane JL, Schoknecht JD (1978). Rogersiomyces, a new genus in the Filobasidiaceae (Homobasidiomycetes) from an aquatic habitat. American Journal of Botany 65: 902–906.
- Crous PW, Wingfield MJ, Schumacher RK, et al. (2014). Fungal planet description sheets: 281–319. Persoonia 33: 212–289.
- Gruhn G, Hallenberg N, Courtecuisse R (2017). Sistotrema macabouense (Cantharellales, Hydnaceae), a new corticioid fungus from Martinique. *Phytotaxa* **303**: 65–70.
- Dahlman M, Danell E, Spatafora JW (2000). Molecular systematics of Craterellus: cladistic analysis of nuclear LSU rDNA sequence data. Mycological Research 104: 388–394.
- Dai YC, Zhou LW, Yang ZL, *et al.* (2010). A revised checklist of edible fungi in China. *Mycosystema* **29**: 1–21.
- Darriba D, Taboada GL, Doallo R, et al. (2012). jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* **9**: 772.
- Das K, Ghosh A, Chakraborty D, et al. (2017). Fungal biodiversity profiles 31–40. Cryptogamie Mycologie 38: 353–406.
- Das K, Rossi W, Leonardi M, et al. (2018). Fungal biodiversity profiles 61–70. Cryptogamie Mycologie 39: 381–418.
- De Kesel A, Amalfim M, Ngoy BKW, et al. (2016). New and interesting Cantharellus from tropical Africa. Cryptogamie Mycologie 37: 283–327.
- De Kesel A, Yorou NS, Buyck B (2011). Cantharellus solidus, a new species from Benin (West-Africa) with a smooth hymenium. Cryptogamie Mycologie 32: 277–283.
- Deepika K, Upadhyay RC, Reddy MS (2012). *Craterellus indicus sp. nov.*, a new species associated with *Cedrus deodara* from the western Himalayas, India. *Mycological Progress* **11**: 769–774.
- Di Marino E, Scattolin L, Bodensteiner P, et al. (2008). Sistotrema is a genus with ectomycorrhizal species confirmation of what sequence studies already suggested. Mycological Progress 7: 169–176.
- Diederich P, Lawrey JD (2007). New lichenicolous, muscicolous, corticolous and lignicolous taxa of *Burgoa s.l.* and *Marchandiomyces s.l.* (anamorphic *Basidiomycota*), a new genus for *Omphalina foliacea*, and a catalogue and a key to the non-lichenized, bulbilliferous basidiomycetes. *Mycological Progress* 6: 61–80.
- Diederich P, Lawrey JD, Capdet M, et al. (2014). New lichen-associated bulbilforming species of Cantharellales (Basidiomycetes). Lichenologist 46: 333–347.
- Diederich P, Lawrey DJ, Ertz D (2018). The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. *The Bryologist* **121**: 340–425.
- Donk MA (1961). Four new families of *Hymenomycetes. Persoonia* 1: 405–407. Douanla-Meli CM (2007). *Fungi* of Cameroon. *Bibliotheca Mycologica* 202:
- 1–410.
 Duhem B, Buyck B (2007). Edible mushrooms from Madagascar 2. Clavulina albiramea comb. nov. (Cantharellales), an edible clavarioid fungus shared
- albiramea comb. nov. (Cantharellales), an edible clavarioid fungus shared between African miombo and Malagasy Uapaca woodland. Nova Hedwigia 85: 317–330.
 Durbar SM, O'Dell TE, Meline B (2002). Analysis of prDNA accuraces and
- Dunham SM, O'Dell TE, Molina R (2003). Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species Cantharellus cascadensis sp. nov. from the American Pacific Northwest. Mycological Research 107: 1163–1177.
- Earle FS (1909). The genera of the North American Fungi. *Bulletin of the New York Botanical Garden* **5**: 373–451.
- Eriksson J, Hjortstam K, Ryvarden L (1984). *The Corticiaceae of North Europe:* **7**: 1282–1449.
- Eyssartier G, Buyck B (1999). Notes nomenclaturales et taxinomiques sur deux espèces françaises de *Cantharellus (Basidiomycotina)*. *Cryptogamie Mycologie* **20**: 107–111.
- Feibelman TP, Doudrick RL, Cibula WG, *et al.* (1997). Phylogenetic relationships within the *Cantharellaceae* inferred from sequence analysis of the nuclear large subunit rDNA. *Mycological Research* **101**: 423–430.
- Felipe W (2012). Clavulina incrustata, a new species from Pernambuco, Brazil. Cryptogamie Mycologie 33: 105–114.
- Feng B, Wang XH, Ratkowsky D, *et al.* (2016). Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the hedgehog mushrooms (*Hydnum* L.). *Scientific Reports* **6**: 55–86.
- Fischer E, Ertz D, Killmann D, et al. (2007). Two new species of *Multiclavula* (lichenized basidiomycetes) from savanna soils in Rwanda (East Africa). *Botanical Journal of the Linnean Society* **155**: 457–465.
- Fries EM (1821). Systema Mycologicum. Ex Officina Berlingiana, Lundae: 1–318.

- Goidànich G (1937). Studi sulla microflora fungina della pasta di legno destinata alla fabbricazione della carte. *Bolletino della Stazione di Patologia Vegetale di Roma* **17**: 305–399.
- Grebenc T, Martín MP, Kraigher H (2009). Ribosomal ITS diversity among the European species of the genus *Hydnum (Hydnaceae). Anales del Jardín Botanico de Madrid* **66S1**: 121–132.
- Gulden G, Høiland K (1989). Craterellus konradii and an intermediate form between C. cornucopioides and C. konradii. Opera Botanica **100**: 85–91.
- Hall T (2005). *BioEdit: biological sequence alignment editor for Win95/98/NT/2K/* XP. Ibis Therapeutic, Carlsbad, CA.
- Hallenberg NA (1984). A taxonomic analysis of the *Sistotrema brinkmannii* complex (*Corticiaceae, Basidiomycetes*). *Mycotaxon* **21**: 389–411.
- Hansen L, Knudsen H (1997). Nordic macromycetes: Vol. 3. Nordsvamp, Copenhagen.
- He G, Chen SL, Yan SZ (2016). Morphological and molecular evidence for a new species in *Clavulina* from southwestern China. *Mycoscience* 57: 255–263.
- He MQ, ZhaoRL, Hyde KD, et al. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105–367.
- Heinemann P (1958). Champignons recoltes au Congo Belgepar Madame Goossens-Fontana III. Cantharellineae. Bulletin du Jardin botanique de l'État a Bruxelles 28: 335–438.
- Hembrom ME, Das K, Adhikari S, et al. (2017). First report of *Pterygellus* from Rajmahal hills of Jharkhand (India) and its relation to *Craterellus (Hydnaceae, Cantharellales)*. *Phytotaxa* **306**: 201–210.
- Henkel TW, Aime MC, Mehl HK (2009). *Craterellus excelsus sp. nov.* from Guyana. *Mycotaxon* **107**: 201–208.
- Henkel TW, Aime MC, Mehl HK, *et al.* (2006). *Cantharellus pleurotoides*, a new and unusual basidiomycete from Guyana. *Mycological Research* **110**: 1409–1412.
- Henkel TW, Aime MC, Uehling JK, et al. (2011). New species and distribution records of *Clavulina (Cantharellales, Basidiomycota)* from the Guiana Shield. *Mycologia* **103**: 883–894.
- Henkel TW, Meszaros R, Aime MC, *et al.* (2005). New *Clavulina* species from the Pakaraima Mountains of Guyana. *Mycological Progress* **4**: 343–350.
- Henkel TW, Wilson AW, Amie MC, et al. (2014). Cantharellaceae of Guyana II: New species of Craterellus, new South American distribution records for Cantharellus guyanensis and Craterellus excelsus, and a key to the neotropical taxa. Mycologia 106: 307–322.
- Hibbett DS, Bauer R, Binder M, et al. (2014). Agaricomycetes. In: The mycota VII part A (McLaughlin DJ, Spatafora JW, eds). Springer-Verlag, Berlin: 373–412.
- Hibbett DS, Binder M (2002). Evolution of complex fruiting-body morphologies in homobasidiomycetes. *Proceedings of the Royal Society B-Biological Sciences* **269**: 1963–1969.
- Hobbie E, Weber N, Trappe J (2001). Mycorrhizal vs. saprotrophic status of fungi: the isotopic evidence. New Phytologist 150: 601–610.
- Hobbie E, Weber N, Trappe J, *et al.* (2002). Using radiocarbon to determine the mycorrhizal status of fungi. *New Phytologist* **156**: 129–136.
- Hotson JW (1912). Culture studies of fungi producing bulbils and similar propagative bodies. *Proceedings of the American Academy of Arts and Sciences* 48: 227–306.
- Hou W, Lian B, Dong H, *et al.* (2012). Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. *Geoscience Frontiers* **3**: 351–356.
- Hyde KD, Tennakoon SD, Jeewon R, *et al.* (2019). Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Diversity* **96**: 1–242.
- Jian SP, Dai R, Gao J, et al. (2020). Cantharellus albus, a striking new species from southwest China. Phytotaxa 470: 133–144.
- Jülich W (1975). Studies in resupinate basidiomycetes–III. Persoonia 8: 291–305.
- Katoh K, Rozewicki J, Yamada KD (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings* in *Bioinformatics* 20: 1160–1166.
- Kaur M, Kaur R, Singh AP, et al. (2019). Sistotrema macrosporum sp. nov. from India. Mycotaxon 133: 675–680.
- Kirk PM, Cannon PF, Minter DW, et al. (2008). Ainsworth & Bisby's dictionary of the fungi, 10th edn. CABI, Wallingford.
- Kirk PM, Larsson KH (2013). A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. *IMA Fungus* 4: 381–443.
- Kornerup A, Wanscher J (1981). Methuen handbook of colour Fletcher: 252. Norwich.

- Kotiranta H, Larsson KH (2013). Sistotrema luteoviride sp. nov. (Cantharellales, Basidiomycota) from Finland. Acta Mycologica 48: 219–225.
- Kotiranta H, Saarenoksa R (1993). Rare Finnish Aphyllophorales (Basidiomycetes) plus two new combinations in Efibula. Annales Botanici Fennici 30: 211–249.
- Kreisel H (1969). Grundzüge eines natürlichen systems der Pilze. Gustav Fischer Verlag/Cramer, Jena.
- Kumari D, Upadhyay RC, Reddy MS (2011). Cantharellus pseudoformosus, a new species associated with Cedrus deodara from India. Mycoscience 52: 147–151.
- Lao DT, TN K, Ngo VT, et al. (2019). First record of Cantharellus minor from Vietnam with identification support from a combination of nrLSU and nrSSU phylogenetic analysis. Advancements in Life Sciences, 125–130.
- Larsson KH (2007). Re-thinking the classification of corticioid fungi. Mycological Research 111: 1040–1063.
- Larsson KH, Larsson E, Köljalg U (2004). High phylogenetic diversity among corticioid homobasidomycetes. *Mycological Research* 108: 983–1002.
- Lawrey JD, Binder M, Diederich P, et al. (2007). Phylogenetic diversity of lichenassociated homobasidiomycetes. *Molecular Phylogenetics and Evolution* 44: 778–789.
- Lawrey JD, Sikaroodi M, Gillevet PM, et al. (2020). A new species of bulbilforming lichenicolous fungi represents an isolated clade in the Cantharellales. Bryologist 123: 155–162.
- Lawrey JD, Zimmermann E, Sikaroodi M, et al. (2016). Phylogenetic diversity of bulbil-forming lichenicolous fungi in *Cantharellales* including a new genus and species. *The Bryologist* **119**: 341–349.
- Leacock PR, Riddell J, Wilson AW, *et al.* (2016). *Cantharellus chicagoensis sp. nov.* is supported by molecular and morphological analysis as a new yellow chanterelle in midwestern United States. *Mycologia* **108**: 765–772.
- Le JZ, Hu XW, Peng YB, et al. (1993). The macrofungus flora of Hunan Province. Hunan Normal University Press, Changsha.
- Lee SS, Watling R, Noraini-Sikin Y (2002). Ectomycorrhizal basidiomata fruiting in lowland forests of Peninsular Malaysia. *Bois et Forêts des Tropiques* 274: 33–43.
- Masumoto H, Degawa Y (2020a). Bryoclavula phycophila gen. et sp. nov. belonging to a novel lichenised lineage in Cantharellales (Basidiomycota). Mycological Progress 19: 705–714.
- Masumoto H, Degawa Y (2020b). Multiclavula petricola sp. nov. (Cantharellales, Basidiomycota), a new clavarioid and lichenised fungus growing on rocks. Mycoscience 61: 155–159.
- Matheny PB (2005). Improving phylogenetic inference of mushrooms with *RPB1* and *RPB2* nucleotide sequences (*Inocybe; Agaricales*). *Molecular Phylo*genetics and Evolution 3: 1–20.
- Matheny PB, Austin EA, Birkebak JM, et al. (2010). Craterellus fallax, a black trumpet mushroom from eastern North America with a broad host range. Mycorrhiza 20: 569–575.
- Matheny PB, Wang Z, Binder M, et al. (2007). Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (*Basidiomycota, Fungi*). Molecular Phylogenetics and Evolution 43: 430–451.
- McNabb RFR (1971). Some new and revised taxa of New Zealand Basidiomycetes (Fungi). New Zealand Journal of Botany 9: 355–370.
- Mel'nik V, Alexandrova A, Zmitrovich I, *et al.* (2015). First record of *Hyphobasidiofera malaysiana* (*Basidiomycota*) from Vietnam. *Mycobiota* **5**: 1–5.
- Miller LW (1933). The genera of *Hydnaceae*. *Mycologia* **25**: 286-302.
- Moncalvo JM, Nilsson RH, Koster B, et al. (2006). The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. *Mycologia* 98: 937–948.
- Morehouse EA, James TY, Ganley ARD, et al. (2003). Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. *Molecular Ecology* 12: 395–403.
- Münzenberger B, Schneider B, Nilsson RH, et al. (2012). Morphology, anatomy, and molecular studies of the ectomycorrhiza formed axenically by the fungus Sistotrema sp. (Basidiomycota). Mycological Progress 11: 817–826.
- Nelsen MP, Lücking R, Umaña L, et al. (2007). Multiclavula ichthyiformis (Fungi: Basidiomycota: Cantharellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. American Journal of Botany 94: 1289–1296.
- Nilsson RH, Larsson KH, Larsson E, et al. (2006). Fruiting body guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycological Research 110: 1426–1432.
- Nilsson RH, Tedersoo L, Abarenkov K, et al. (2012). Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4: 37–63.

- Niskanen T, Liimatainen K, Nuytinck J, *et al.* (2018). Identifying and naming the currently known diversity of the genus *Hydnum*, with an emphasis on European and North American taxa. *Mycologia* **110**: 890–918.
- Oberwinkler F (1970). Die gattungen der basidiolichenen. Berichte der Deutschen Botanischen Gesellschaft 4: 139–169.
- Ogawa W, Endo N, Fukuda M, *et al.* (2018). Phylogenetic analyses of Japanese golden chanterelles and a new species description, *Cantharellus anzutake sp. nov. Mycoscience* **59**: 153–165.
- Olariaga I, Grebenc T, Salcedo I, et al. (2012). Two new species of Hydnum with ovoid basidiospores: H. ovoideisporum and H. vesterholtii. Mycologia **104**: 1443–1455.
- Olariaga I, Jugo B, García-Etxebarria K, et al. (2009). Species delimitation in the European species of Clavulina (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data. Mycological Research 113: 1261–1270.
- Olariaga I, Salcedo I (2012). New combinations and notes in clavarioid fungi. *Mycotaxon* **121**: 37–44.
- Osmundson TW, Robert VA, Schoch CL, *et al.* (2013). Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of a herbarium collection DNA barcode sequencing project. *PLoS One* **8**: e62419.
- Parad GA, Ghobad-Nejhad M, Tabari M, et al. (2018). Cantharellus alborufescens and C. ferruginascens (Cantharellaceae, Basidiomycota) new to Iran. Cryptogamie Mycologie **39**: 1–12.
- Peck CH (1873). Report of the Botanist (1869). Annual Report on the New York State Museum of Natural History 23: 27–135.
- Persoon CH (1825). Mycologia Europaea 2: 1-214.

Petersen RH (1967). Notes on clavarioid fungi. VII. Redefinition of the Clavaria vernalis – C. mucida complex. American Midland Naturalist 77: 205–221.

- Petersen RH (1969). Notes on cantharelloid fungi. II. Some new taxa, and notes on *Pseudocraterellus. Persoonia* **5**: 211–223.
- Petersen RH (1975). Notes on cantharelloid fungi. VI. New species of *Craterellus* and infrageneric rearrangement. *Ceska mykologie* **29**: 199–204.
- Petersen RH (1979a). Notes on cantharelloid fungi. IX. Illustrations of new or poorly understood taxa. *Nova Hedwigia* **31**: 1–23.
- Petersen RH (1979b). Notes on cantharelloid fungi. X. Cantharellus confluens and C. lateritius, Craterellus odoratus and C. aureus. Sydowia 32: 198–208.
- Petersen RH (1988). The clavarioid fungi of New Zealand. *Mycologia* **80**: 571–576.
- Pérez-Pazos E, Villegas-Ríos M, Garibay-Orijel R, *et al.* (2019). Two new species of *Clavulina* and the first record of *Clavulina reae* from temperate *Abies religiosa* forests in central Mexico. *Mycological Progress* **18**: 1187–1200.
- Pine EM, Hibbett DS, Donoghue MJ (1999). Phylogenetic relationships of cantharelloid and clavaroid *Homobasidiomycetes* based on mitochondrial and nuclear rDNA sequences. *Mycologia* **91**: 944–963.
- Porter TM, Skillman JE, Moncalvo JM (2008). Fruiting body and soil rDNA sampling detects complementary assemblage of *Agaricomycotina (Basidiomycota, Fungi)* in a hemlock dominated forest plot in southern Ontario. *Molecular Ecology* **17**: 3037–3050.
- Psurtseva NV, Zmitrovich IV, Malysheva VF (2016). Taxonomy and developmental morphology of *Rogersiomyces malaysianus comb. nov.* (*Cantharellales, Agaricomycetes*). *Botany* **94**: 579–592.
- Raja HA, Baker TR, Little JG, et al. (2017). DNA barcoding for identification of consumer-relevant mushrooms: a partial solution for product certification? *Food Chemistry* **214**: 383–392.
- Rambaut A (2012). FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/ figtree.
- Redhead SA, Norvell LL, Danell E, et al. (2002). Proposals to conserve the names Cantharellus lutescens Fr.: Fr. and C. tubaeformis Fr.: Fr. (Basidiomycota) with conserved types. Taxon 51: 559–562.
- Reid DA (1962). Notes on fungi which have been referred to the *Thelephoraceae senso lato*. *Persoonia* **2**: 109–170.
- Rinaldi C, Comandini O, Kuyper T (2008). Ectomycorrhizal fungal diversity: separating the wheat from the chaff. *Fungal Diversity* **33**: 1–45.
- Ronquist F, Teslenko M, van der Mark P, *et al.* (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61**: 539–542.
- Sayers EW, Cavanaugh M, Clark K, et al. (2020). GenBank. Nucleic Acids Research 48: 84-86.
- Schlechte GB, Hoffmann P (2000). Der Torfhäutchenpilz, Athelia turficola sp. nov. (Nebenfruchtform: Burgoa turficola anam. nov.), eine neue Art auf gärtnerischen Kultursubstraten. Gartenbauwissenschaft 65: 144–146.
- Shao SC (2011). Taxonomy and Phylogeny of the genus Cantharellus from Southwestern China with screening primers on Population Genetics of

C. tuberculosporus. Ph.D. dissertation. Kunming Institute of Botany, Chinese Academy of Sciences, China.

- Shao SC, Buyck B, Hofstetter V, *et al.* (2014). *Cantharellus hygrophorus*, a new species in subgenus *Afrocantharellus* from tropical southwestern China. *Cryptogamie Mycologie* **35**: 283–291.
- Shao SC, Buyck B, Tian XF, et al. (2016a). Cantharellus phloginus, a new pinkcolored species from southwestern China. Mycoscience 57: 144–149.
- Shao SC, Liu PG, Tian XF, et al. (2016b). A new species of Cantharellus (Cantharellales, Basidiomycota, Fungi) from subalpine forest in Yunnan, China. Phytotaxa 252: 273–279.
- Shao SC, Liu PG, Wei TZ, et al. (2021). New insights into the taxonomy of the genus Cantharellus in China: epityfication of C. yunnanensis W.F. Chiu and the first record of C. cibarius Fr. Cryptogamie Mycologie 42: 25–37.
- Shao SC, Tian XF, Liu PG (2011). *Cantharellus* in southwestern China: a new species and a new record. *Mycotaxon* **116**: 437–446.
- Smith AH (1968). The Cantharellaceae of Michigan. The Michigan Botanist 7: 143–183.
- Smith AH, Smith HV, Weber NS (1979). How to know the non-gilled mushrooms. Wm. C. Brown, Dubuque: 324.
- Smith ME, Henkel TW, Aime MC, et al. (2011). Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist 192: 699–712.
- Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30: 1312–1313.
- Stamatakis A, Hoover P, Rougemont J (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology **75**: 758–771.
- Stöger A, Schaffer J, Ruppitsch W (2006). A rapid and sensitive method for direct detection of *Erwinia amylovora* in symptomatic and asymptomatic plant tissues by polymerase chain reaction. *Journal of Phytopathology* 154: 469–473.
- Sutton BC, Kuthubutheen AJ, Muid S (1984). Pneumatospora obcoronata gen. et sp. nov. from Malaysia. Transactions of the British Mycological Society 83: 423–429.
- Swenie RA, Baroni TJ, Matheny PB (2018). Six new species and reports of *Hydnum* (*Cantharellales*) from eastern North America. *MycoKeys* 42: 35–72.
- Tedersoo L, Naadel T, Bahram M, et al. (2012). Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afro-tropical rain forest. New Phytologist **195**: 832–843.
- Tedersoo L, Smith ME (2013). Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. *Fungal Biology Reviews* 27: 83–99.
- Thacker JR, Henkel TW (2004). New species of *Clavulina* from Guyana. *Mycologia* **96**: 650–657.
- Thorn RG, Kim JI, Lebeuf R, et al. (2017). The golden chanterelles of Newfoundland and Labrador: a new species, a new record for North America, and a lost species rediscovered. Botany 95: 547–560.
- Tian XF, Buyck B, Shao SC, *et al.* (2012). *Cantharellus zangii*, a new subalpine basidiomycete from southwestern China. *Mycotaxon* **120**: 99–103.
- Tibpromma S, Hyde J, Jeewon R, et al. (2017). Fungal diversity notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1–261.
- Tibuhwa DD (2018). Inventory of the genus *Craterellus* Persoon from Kigoma Region, Tanzania. *Tanzania Journal of Science* **44**: 24–36.
- Trappe JM, Castellano MA (2007). Clavulina lilliputiana, a diminutive new species from Tasmania. Australasian Mycologist 25: 87–89.
- Uehling JK, Henkel TW, Aime MC, et al. (2012a). New species and distribution records for *Clavulina* (*Cantharellales, Basidiomycota*) from the Guiana Shield, with a key to the lowland neotropical taxa. *Fungal Biology* **116**: 1263–1274.
- Uehling JK, Henkel TW, Aime MC, *et al.* (2012b). New species of *Clavulina* (*Cantharellales, Basidiomycota*) with resupinate and effused basidiomata from the Guiana Shield. *Mycologia* **104**: 547–556.
- Veldre V, Abarenkov K, Bahram M, et al. (2013). Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology 6: 256–268.
- Vilgalys R, Hester M (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* **172**: 4238–4246.
- Vizzini A, Picillo B, Ercole E, et al. (2013). Detecting the variability of Hydnum ovoideisporum (Agaricomycetes, Cantharellales) on the basis of Italian collections, and H. magnorufescens sp. nov. Mycosphere 4: 32–44.

- Wang XH, Das K, Horman J, *et al.* (2018). Fungal biodiversity profiles 51–60. *Cryptogamie Mycologie* **39**: 211–257.
- Wartchow F (2012). Clavulina incrustata, a new species from Pernambuco, Brazil. Cryptogamie Mycologie 33: 105–113.
- Ważny R (2014). Ectomycorrhizal communities associated with silver fir seedlings (*Abies alba Mill.*) differ largely in mature silver fir stands and in Scots pine forecrops. *Annals of Forest Science* **71**: 801–810.
- Weresub LK, LeClair PM (1971). On *Papulaspora* and bulbilliferous basidiomycetes *Burgoa* and *Minimedusa*. *Canadian Journal of Botany* 49: 2203–2213.
- White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR protocols, a guide to methods and applications* (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic, San Diego.
- Wilson AM, Aime MC, Dierks J, Mueller GM, Henkel TW (2012). Cantharellaceae of Guyana I: new species, combinations and distribution records of Craterellus and a synopsis of known taxa. Mycologia 104: 1466–1477.
- Wright SH, Berch SM, Berbee ML (2009). The effect of fertilization on the belowground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (*Tsuga heterophylla*). *Mycorrhiza* 19: 267–276.
- Wu CL, He Y, Yan J, et al. (2019). Two new species of Clavulina (Cantharellales) from southwestern China based on morphological and molecular evidence. Mycological Progress 18: 1071–1078.
- Yanaga K, Sotome K, Ushijima S, et al. (2015). Hydnum species producing whitish basidiomata in Japan. Mycoscience 56: 434–442.

- Yomyart S, Watling R, Phosri C, et al. (2012). Two interesting cantharelloids from Nan and Kanchanaburi provinces, Thailand. *Mycotaxon* 122: 413–420.
- Yuan HS, Lu X, Dai YC, *et al.* (2020). Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. *Fungal Diversity* **104**: 1–266.
- Zang M (1980). Some new species of *Basidiomycetes* from the Xizang autonomous region of China. *Acta Microbiologica Sinica* **20**: 29–34.
- Zang M, Li B, Xi JX, The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences (1996). *Fungi of Hengduan Mountains*. Science Press, Beijing.
- Zeller B, Brechet C, Maurice JP, *et al.* (2007). 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. *Annals of Forest Science* **64**: 419–429.
- Zhang J, Wu D, Deng CY, et al. (2020). A new species of Craterellus (Cantharellales, Hydnaceae) from Guizhou Province, China. Phytotaxa **472**: 259–268.
- Zhong XR, Li TH, Jiang ZD, et al. (2018). A new yellow species of Craterellus (Cantharellales, Hydnaceae) from China. Phytotaxa **360**: 35–44.
- Zhou LW, Qin WM (2013). Sistotrema subconfluens sp. nov. (Cantharellales, Basidiomycota) from Changbaishan Nature Reserve, northeastern China. Mycoscience 54: 178–182.
- Zhurbenko MP, Pino-Bodas R (2017). A revision of lichenicolous fungi growing on *Cladonia*, mainly from the Northern Hemisphere, with a worldwide key to the known species. *Opuscula Philolichenum* **16**: 188–266.