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Extracellular vesicles (EVs) mediate intercellular communica-
tions in the tumor microenvironment and contribute to the
aggressive phenomenon of cancers. Although EVs in body
fluids are supposed to be ideal biomarkers for cancer diagnosis
and prognosis, it remains difficult to distinguish the tumor-
derived EVs from those released by other tissues. We hypothe-
sized that analyzing the EV-related molecules in tumor tissues
would help to estimate the prognostic value of tumor-specific
EVs. Here, we investigate the expression of coding genes of pro-
teins carried by small EVs (sEVs) in primary lung adenocarci-
noma. Based on the protein-protein interaction network, we
identified three network modules (3-PPI-Mod) as a signature
that could predict recurrence. This signature was validated in
three independent datasets and demonstrated better prog-
nostic value than signature generated from gene expression
alone. Meanwhile, the high-risk subgroup assigned by the
signature could benefit from adjuvant chemotherapy, although
it was not beneficial in unselected patients. Two out of three
modules were enriched by proteins identified in sEVs from
non-small-cell lung cancer cells. Furthermore, the two modules
were remarkably correlated with intratumoral hypoxia score.
These results suggest that the 3-PPI-Mod signature was en-
riched in tumor-derived sEVs and could serve as a prognostic
and predictive biomarker for lung adenocarcinoma.
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INTRODUCTION
Lung cancer is one of the most common malignancies worldwide.1

According to pathomorphology, nearly 85% of all lung cancers are
non-small-cell lung cancers (NSCLCs).2 Lung adenocarcinoma
(ADC) accounts for 35% of NSCLCs. Despite the improvement of
treatment, the 5-year overall survival of NSCLC is below 20%.3

Loco-regional and distant relapse are the major causes of cancer-
related death for NSCLC. Even in stage I NSCLC, about 30% of
patients would suffer recurrent disease, and many patients would
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die of it after surgical treatment.3,4 Although adjuvant chemotherapy
(ACT) improves outcome in late-stage NSCLC, the survival benefit of
ACT in early-stage patients remains controversial.5 Thus, exploring
novel prognostic biomarkers would be helpful to select patients for
ACT and improve prognosis in early-stage NSCLCs.

Extracellular vesicles (EVs) are cell-released membrane particles that
regulate intercellular communication by transporting functional mol-
ecules (e.g., proteins, nucleic acids, and lipids) to recipient cells.6 Cells
can secret diverse types of EVs with a wide range of sizes and different
cellular origins. Exosomes mainly range from 50–150 nm in diameter,
which are generated inside multivesicular endosomes.7 Other EVs
(with a diameter from 100 to 1,000 nm), such as microvesicles
(MVs), ectosomes, or microparticles, are directly budded from
cellular membrane.7 Given that the specific subcellular origin was
not strictly demonstrated in many literatures, the generic term EVs
is used in this study, as recommended by the International Society
for Extracellular Vesicles (ISEV).8

In recent years, increasing evidences have suggested that EVs
play an important role in cancer development and progression.
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Figure 1. The Workflow of This Study

The PPI network of sEV proteins isolated from PEs was

integrated with the gene expression profile of the training

dataset. Candidate modules with locally maximal relapse

scores were identified by a greedy searching approach.

Random forest algorithm was used to establish a

network-based signature for relapse risk. The signature

3-PPI-Mod was further validated for prognosis in three

independent datasets. Moreover, the predictive value for

adjuvant chemotherapy in ADCs was evaluated in a

prospective dataset conducted from the JBR.10 trial.

Biological validation was performed by comparing the

signature with various databases. Abbreviations: PPI,

protein-protein interaction; sEVs, small extracellular vesi-

cles; 3-PPI-Mod, 3 PPI modules; ADC, adenocarcinoma;

RFS, relapse-free survival; DSS, disease-free survival; OS,

overall survival.
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Cancer-derived EVs are implicated in various carcinogenesis pro-
cesses, including malignant transformation, angiogenesis, immuno-
suppression, invasion, and treatment resistance.9–11 On the other
hand, EVs released by the tumor microenvironment could also influ-
ence the traits of cancer cells.12 Hypoxia, a common feature of tumor
microenvironment, was demonstrated to induce cancer EVs that
transport aggressive and metastatic phenomenon to the recipient
cells.13–16 Moreover, cancer-released EVs could modify the distant
microenvironment to form a pre-metastatic niche to facilitate the for-
mation of metastatic lesions, suggesting that cancer EVs could act as
both local and distant effects.17

Cancer-derived EVs detected in various body fluids are proposed as
novel noninvasive biomarkers. For instance, circulating small EVs
(sEVs, with a diameter less than 200 nm) carried microRNAs
(miRNAs)18,19 and proteins,20–22 which are promising diagnostic
and prognostic biomarkers forNSCLC. Park et al.23 examined the pro-
teomics of sEVs isolated in malignant pleural effusions (PEs) from
metastatic lung ADCs. The study identified a lot of well-known can-
cer-related proteins, such as EGFR, RAS, and Src-family kinase.23

However, the sEVs identified in body fluids may represent a mixed
population released by both tumors and other tissues. To date, it re-
mains a great challenge to distinguish tumor-specific sEVs from those
released by other tissues due to the lack of specific biomarkers.24 It was
reported that the protein levels in sEVs released to body fluids was
880 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
consistent with protein expression of theNSCLC
tissues.25 Therefore, we proposed that integra-
tive analysis of primary tumors with secreted
sEVs may be feasible to identify tumor-specific
sEV-related biomarkers for NSCLC.

In this study, we analyzed the intratumoral gene-
expression profile of the coding genes of sEV pro-
teins identified in malignant PEs from advanced
lung ADC.23 Based on a protein-protein interac-
tion (PPI) network approach, a sEV-associated
gene signature was established for recurrence prediction. This signature
was further validated for its prognostic value in three retrospective data-
sets and one prospective dataset from the public database (Table S1).
Moreover, the gene signature was further compared with proteomics
of sEVs isolated from conditionalmedium of NSCLC cells as well as pe-
ripheral blood from NSCLC patients. The association between the
signature and tumor microenvironment, including hypoxic status and
stromal cell abundance, were also investigated.

RESULTS
Identifying Relapse-Associated PPI Modules from sEV Proteins

Figure 1 depicts an overall flow chart of this study. For the sEV pro-
teins identified in malignant PEs, 568 proteins were mapped onto the
reference PPI network. The sEV-associated PPI network was inte-
grated with the gene-expression profile of the training dataset.
Next, the module searching procedure identified 144 modules, which
showed locally maximal discriminative scores for recurrent status.
Three permutation methods were used to estimate the significance
of the discriminative score for each module. As a result, 21 modules
showed significantly higher discriminative scores for recurrence
than those by chance (p < 0.001 for all three methods, Figure S1).
Details of 21 candidate modules are presented in Figure S2.

The expression score profiles of the 21 PPI modules are presented in
Figure 2A. All modules were clustered into two major clusters by



Figure 2. Establishing a Prognostic Signature Based

on a sEV-Associated Network

(A) Expression score profiles of candidate PPI modules.

The upper heatmap shows the expression scores of the

21 PPI modules. Unsupervised hierarchical clustering

analysis was performed for modules (rows) and samples

(columns). The lower panel indicates clinicopathological

variables of the tumor samples. The p value was calcu-

lated by chi-square test and then adjusted by FDR for

multiple testing. (B) Feature selection based on RF algo-

rithm. The x axis indicates the number of used variables

(modules). The y axis is the out-of-bag (OOB) error of each

prediction model. The arrow indicates that the combina-

tion of 3 PPI modules achieved the selection criteria with

the smallest feature number and maximal prediction ac-

curacy. (C) Expression scores of the 3 modules that were

selected in (B). The p value was calculated by t test. (D)

The recurrent risk predicted by 3-PPI-Mod was used to

perform ROC analysis. AUROC and 95% CI are pre-

sented. (E) Scatterplotting of the predictive risk of

recurrence. The x axis indicates patient index. The y axis

indicates the predictive risk of recurrence (OOB). A cutoff

of 0.5 was used to classify patients into low- and high-risk

subgroups. Red and green colors indicate patients with

and without recurrent disease, respectively. (F and G)

Survival analysis for 3-PPI-Mod in all patients (F) and in

stage I only (G). Kaplan-Meier curves and log-rank test

were used to compare OS between different risk sub-

groups identified in (E). Abbreviations: PPI, protein-protein

interaction; ADC, adenocarcinoma; FDR, false discovery

rate; RF, random forest; ROC, receiver operating char-

acteristic curve; AUROC, area under the receiver oper-

ating characteristic curve; CI, confident interval; OS,

overall survival.
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unsupervised clustering algorithm. One cluster with 14 modules was
more likely upregulated in recurrent tumors, and another cluster with
7modules was inversely correlated with recurrence. Patients were also
grouped into two major subgroups, which were significantly associ-
ated with recurrent status (adjusted p < 0.001) and EGFR mutation
(adjusted p = 0.036) (Figure 2A). However, there was no statistically
significant association of patient subgroups with other clinicopatho-
logical factors, such as age, sex, smoking index, tumor stage, KRAS
status, or TP53 status.

Establishing a Predictive Signature for Cancer Recurrent Risk

We then thought to establish an optimal model to predict recurrent
risk for patients using the 21 PPI models. By using the random forest
(RF) algorithm, we found that the combination of three PPI modules
achieved the criteria of the smallest feature number and the best pre-
diction accuracy (Figure 2B, out-of-bag [OOB] error = 0.216 ±

0.038). Two out of three modules (Mod_8 and Mod_10) were upre-
gulated, and the last module (Mod_137) was downregulated in
recurrent tumors (Figure 2C). Next, the three PPI modules were
used to construct a prediction model, which was named 3-PPI-
Mod signature. The recurrent risk of patients was predicted by the
signature, with an area under the receiver operating characteristic
curve (AUROC) of 0.84 (95% confident interval [CI], 0.77–0.91)
(Figure 2D). Using 0.5 as the cut-off, patients were divided into
two groups with high or low risk for recurrence, respectively (Fig-
ure 2E). Overall, 78.4% (91/116) of patients were correctly classified
when compared with the true recurrent status. Kaplan-Meier curves
confirmed that the 3-PPI-Mod signature could predict overall
survival (OS) for all patients and those with stage I disease (both
p < 0.001, Figures 2F and 2G). Multivariate Cox regression
demonstrated that the 3-PPI-Mod signature was an independent
prognostic factor for OS (adjusted hazard ratio [HR] = 6.58, 95%
CI, 3–14.4, p < 0.001, Table S2).

Within the 3-PPI-Mod signature, 5, 6, and 5 genes were included in
Mod_8, Mod_10, and Mod_137, respectively. One gene (Cofilin-1
[CFL1]) was overlapped by Mod_8 and Mod_10. Mod_10 was con-
nected with Mod_8 and Mod_137 within the PPI network (Fig-
ure 3A). Gene Ontology (GO) and pathway enrichment analysis
showed that all three modules were significantly correlated with focal
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 881
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Figure 3. Biological Characteristics of the 3-PPI-

Mod Signature

(A) The view of interaction of 3-PPI-Mod signature. The

presented network was generated by mapping the

signature proteins on the reference PPI network. Three

modules are shown by different colors. (B) Enrichment

analysis for three modules. The significant GO terms or

KEGG pathways were listed on the left. Bars indicate the

enrichment significance (log10-transformed FDR). The

color legend indicates different modules. Abbreviations:

PPI, protein-protein interaction; 3-PPI-Mod, 3 PPI mod-

ules; GO, gene ontology; FDR, false discovery rate.
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adhesion (Figure 3B). Notably, genes inMod_8 andMod_10 were en-
riched in extracellular exosome (Figure 3B). Mod_137 showed asso-
ciation with diverse biological processes, including protein kinase
binding, membrane raft, and T cell receptor signaling pathway
(Figure 3B).

Validation of the 3-PPI-Mod Signature in Independent Cohorts

For each validation dataset, the recurrent risks of patients were pre-
dicted by the 3-PPI-Mod signature, which was established in the
training dataset. Kaplan-Meier curves demonstrated that patients
who were classified as high risk had significantly shorter relapse-
free survival (RFS) time than those classified as low risk (log-rank
test: Gene Expression Omnibus [GEO]: GSE50081, p = 0.005; GEO:
GSE30219, p = 0.003; GEO: GSE31210, p < 0.001) (Figures 4A–4C).
The adjusted HRs (95% CI) for high-risk versus low-risk subgroups
were 2.24 (1.07–4.67), 3.74 (1.54–9.07), and 3.34 (1.81–6.15) in
GEO: GSE50081, GSE30219, and GSE31210, respectively (Table
S3). Similarly, the high-risk subgroup was significantly correlated
with unfavorable OS compared with the low-risk subgroup
(GEO: GSE50081, HR [95% CI] = 1.92 [1.03–3.58], p < 0.001; GEO:
GSE30219, HR [95% CI] = 2.41[1.25–4.63], p = 0.006; GEO:
GSE31210, HR [95% CI] = 2.46[1.09–5.58], p = 0.001) (Figures
4D–4F; Table S3). Subgroup analysis revealed that the 3-PPI-Mod
signature remained significant in distinguishing RFS and OS for
patients with stage I disease (Figures S3A–S3F).

We further validated the 3-PPI-Mod signature in a prospective data-
set conducted from the JBR.10 clinical trial, which was designed to
evaluate the advantage of ACT in stage IB to II NSCLCs. When all
ADC patients were taken into consideration, the ACT arm showed
no significant improvement of disease-specific survival (DSS)
compared with the observation (OBS) arm (Figure 5A, log-rank
test, p = 0.503). The 3-PPI-Mod signature classified 32 and 39 of 71
ADC patients as low- and high-risk subgroups, respectively. Although
ACT did not improve outcome in the low-risk subgroup (Figure 5B,
log-rank test, p = 0.189), it significantly prolonged DSS in the high-
risk subgroup (Figure 5C, log-rank test, p = 0.019). Similar results
were observed in OS analysis (ACT versus OBS, log-rank test: all
882 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
ADCs, p = 0.907; low-risk subgroup, p = 0.115; high-risk subgroup,
p = 0.064) (Figures 5D–5F). Multivariate Cox’s model revealed a sig-
nificant interaction effect between risk groups and ACT (test for
interaction: DSS, p = 0.011; OS, p = 0.013) (Table S4). For non-
ADC patients, however, there was no evidence demonstrating that
ACT could improve DSS or OS, even if in subgroups stratified by
the 3-PPI-Mod signature (Figure S4; Table S4).

The sEV-Associated Signature Exhibited Better Prognostic

Value Than Signature Derived from Gene Expression Alone

The sEV-associated 3-PPI-Mod signature was compared with an
8-gene signature, which was constructed based on gene expression
alone (Figures S5A–S5D). The 8-gene signature was established by
using the same algorithm as used for the 3-PPI-Mod signature. In
the training dataset, the 8-gene signature showed similar prediction
performance as the 3-PPI-Mod signature in distinguishing relapse
and OS (Figures S5E and S5F). In the validation datasets, however,
the C-index of 3-PPI-Mod signature was higher than that of the
8-gene signature in predicting both RFS and OS (Figures S5G and
S5H). Kaplan-Meier analysis also confirmed that the 8-gene signature
could not consistently distinguish RFS and OS across different valida-
tion cohorts when considering neither all patients nor the stage I sub-
group (Figures S6A and S6B). Meanwhile, the 8-gene signature could
not predict ACT benefit in the JBR.10 dataset (Figure S7). These find-
ings suggest that the sEV-associated signature exhibited improved
prognostic value compared with signature derived from gene expres-
sion alone, especially for independent cohorts.

The 3-PPI-Mod Reflects Tumor-Stroma Interaction and Hypoxic

Tumor Microenvironment

The proteins within the 3-PPI-Mod signature were further validated
by the proteomics of sEVs isolated from NSCLC cell supernatants26

and serums of NSCLC patients.22 Overall, 10 and 8 proteins of the
signature were overlapped with those identified in sEVs from NSCLC
cells and circulating serums, respectively (both p < 0.001, by hyper-
geometric test) (Figures 6A and 6B).More than 90% of the overlapped
proteins came from Mod_8 and Mod_10. For Mod_137, only
one protein (CTNNB1) was overlapped with proteomics of



Figure 4. Survival Analysis of 3-PPI-Mod Signature in Three Validation Datasets

(A–F) In each dataset, patients were predicted to be in low- or high-risk subgroups by the signature. Kaplan-Meier curves and log-rank test were used to compare RFS (A–C)

and OS (D–F) of patients in different risk subgroups: GEO: GSE50081 (A and D), GSE30219 (B and E), GSE31210 (C and F). Survival data within 10 years are shown.

Abbreviations: 3-PPI-Mod, 3 PPI modules; RFS, relapse-free survival; OS, overall survival.
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NSCLC-derived sEVs and none with that of circulating sEVs
(Figures 6A and 6B).

We hypothesized that Mod_137 may be associated with non-cancer
cells. The abundance of different stromal cells was estimated by
microenvironment cell population (MCP)-counter.27 Surprisingly, a
higher expression score of Mod_137 was correlated with elevated
abundance of fibroblasts, endothelial cells, and diverse types of im-
mune cells (Figure 6C). In contrast, Mod_8 and Mod_10 expression
scores did not show a remarkably positive correlation with those of
the stromal components. Similar results were observed when analysis
was conducted by using individual genes within each module
(Figure 6C).

The association of 3-PPI-Mod signature with tumor microenviron-
ment status was analyzed. We found that Mod_8 and Mod_10 were
positively correlated with hypoxia, while Mod_137 was associated
with angiogenesis and inflammation (Figure 6C). The hypoxia meta-
gene was significantly enriched in high-risk tumors predicted by the
3-PPI-Mod signature (new enrichment score [NES] = 1.88, q value =
0.005) (Figure 6D). There was a significant correlation between
intratumoral hypoxic score and hypoxia inducible factor 1 (HIF1)
expression level, which were both upregulated in the high-risk sub-
group identified by the 3-PPI-Mod signature (Figures 6E–6G). How-
ever, the angiogenesis and inflammation status was not associated
with 3-PPI-Mod subgroups, based on gene set enrichment analysis
(GSEA) (Figures S8A and S8B) or expression scores (Figures S8C
and S8D).

DISCUSSION
In the present study, we evaluate the intratumoral gene expression
level of coding genes of sEV proteins in lung ADC. In the training da-
taset, we identified a 3-PPI-Mod signature that could distinguish pa-
tients with high risk of recurrence. This signature was also validated in
three independent datasets and demonstrated better prognostic value
than the gene signature established by using gene expression alone.
Moreover, the patients assigned as high risk by the signature could
benefit from ACT, although no significant benefit was achieved for
unselected patients. Further analysis revealed that the sEV-associated
signature is highly correlated with intratumoral hypoxic status and
might be derived from both cancer cells and stromal cells. To the
best of our knowledge, this is the first comprehensive analysis of
sEV-associated genes in predicting outcome of lung ADC based on
large-number populations from several independent cohorts.

To date, it remains a great challenge to discriminate exosomes from
other sEVs such as MVs.24 Exosomes are derived from endosomal
multivesicular bodies that fused with the cytoplasma membrane,
whileMVs are usually considered to bud directly from the cytoplasma
membrane.9 The PE-derived “MVs”23 and NSCLC cell-released
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 883
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Figure 5. Predictive Value of 3-PPI-Mod Signature for ACT Benefit in ADC Patients from the JBR.10 Dataset

(A–F) Results with lung ADC patients are presented. Postoperative DSS (A–C) and OS (D–F) between ACT arm and observation arm (OBS) were compared by Kaplan-Meier

curves and log-rank test. Patients were stratified by 3-PPI-Mod signature. The survival comparisons were performed in all patients (A and D), low risk subgroup (B and E), and

high risk subgroup (C and F), respectively. Abbreviations: ACT, adjuvant chemotherapy; 3-PPI-Mod, 3 PPI modules; DSS, disease-specific survival; OS, overall survival; OBS,

observation.
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“exosomes”26 were isolated by using differential ultracentrifuge fol-
lowed by density gradient methodology, which recovers mixed EV
populations. For these EVs, the multivesicular body origin or purity
were not further demonstrated. Therefore, we used the general term
sEVs in this study to refer to these EVs, which were characterized
with diameters less than 200 nm.23,26

The sEV cargos are suggested as promising cancer biomarkers for
non-invasive detection due to the presence in various body fluids
(e.g., plasma, PEs, sputum, and urine). However, it remains difficult
to evaluate the role of tumor-specific sEVs, which may be influenced
by those released from other tissues.24 It was reported that the protein
expression of sEVs released to body fluids was consistent with that of
the tumor tissues, suggesting feasibility for analyzing primary tumors
to reflect the status of circulating sEVs.25 In this study, by investi-
gating the intratumoral expression of coding genes of proteins carried
within sEVs,23 we identified a prognostic gene signature for lung
ADC. Most proteins of the signature were confirmed by sEV prote-
omics from NSCLC cells,26 suggesting that the signature may be en-
riched by tumor-specific sEVs. It is possible that the gene expression
in tumor tissues could influence cancer progression. Nevertheless,
secretion of the gene products to circulating blood through sEVs
may further promote recurrence or distant metastasis.17,28 This
may be explainable by our observation that the sEV-associated signa-
ture exhibited better prognostic value than signature that was estab-
884 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
lished from gene expression alone. Therefore, this study provides a
promising strategy to evaluate the prognostic value of tumor-specific
sEVs from complex body fluids.

The human PPI network has been demonstrated to be informative in
biomarker development for cancer when being integrated with gene-
expression profiles.29 Based on the PPI network approach, we identi-
fied three network modules that were highly correlated with cancer
recurrence. Although these modules were established in the training
dataset, their prognostic value was confirmed in external cohorts with
hundreds of patients. As we previously reported, the PPI network
approach could identify vital biological themes that reflect mecha-
nisms underlying cancer behaviors.30 In this study, most of the mod-
ules (e.g., Mod_8 and Mod_10) were associated with exosome, focal
adhesion, and cytoskeleton regulation, which are involved in cancer
invasion and metastasis.31 These results suggest that the 3-PPI-Mod
signature represents malignant traits of cancer and is robust in
outcome prediction across different cohorts.

Hypoxia, a frequent feature in solid tumors, could induce lung cancer
cells to release more sEVs that promote migration via miR-23a deliv-
ery.16 In our signature, Mod_8 and Mod_10 were positively correlated
with a hypoxia score that could predict prognosis of NSCLC as reported
previously.32 This was consistent with our findings that Mod_8 and
Mod_10 were associated with higher recurrent risk. CFL1, a common



Figure 6. The 3-PPI-Mod Reflects Interaction between Cancer Cells and Tumor Microenvironment

(A and B) Comparison of 3-PPI-Mod signature with other proteomic databases of sEVs from NSCLCs. The venn diagram shows the overlapping of proteins of three modules

with those identified in sEVs from NSCLC cell supernatants (A) and circulating serum (B). (C) Correlation analysis of the signature with stromal cell abundance and

microenvironment status. The abundance of 8 immune cells and 2 non-immune cells were calculated by MCP-counter. The microenvironment status for hypoxia, angio-

genesis, and inflammation were estimated as described in Materials and Methods. Circles in the matrix indicate the correlation coefficient r, and red and blue colors indicate

positive and negative correlations, respectively. A larger circle size represents a higher correlation. The raw p value was adjusted by FDR. Correlations with FDR > 0.05 were

not presented. (D) GSEA of hypoxia metagene against the risk subgroups classified by 3-PPI-Mod. The NES and q value (adjusted p value) are presented. (E) Diagram shows

Pearson’s correlation between hypoxic score and HIF1A expression level. (F) Boxplot shows intratumoral hypoxic scores between low- and high-risk subgroups. The p value

was calculated by t test. (G) Boxplot shows HIF1A expression levels between tumors with low and high risk. The p value was calculated by t test. Abbreviations: PPI, protein-

protein interaction; 3-PPI-Mod, 3 PPI modules; FDR, false discovery rate; NSCLC, non-small cell lung cancer; MCP, microenvironment cell populations; GSEA, gene set

enrichment analysis; NES, new enrichment score.
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gene between Mod_8 and Mod_10, was correlated with invasiveness
and unfavorable outcome in NSCLC.33,34 Functional analysis revealed
that CFL1 participates in actin dynamics and contributes to membrane
extension direction in cell migration.35 Moreover, many other genes
(WYHAG, NCKAP1, ACTB, GNA13, and RDX) identified in Mod_8
and Mod_10 also play an important role in cancer invasion and
metastasis.36–40 However, the association with hypoxia of these genes
in NSCLC remains unclear. We found that most of these genes were
positively correlatedwith intratumoral hypoxic score. Thus, we propose
that the expression and prognostic role of the sEV-associated signature
may be promoted by hypoxic microenvironment, although extended
experimental validation is required.

Unlike Mod_8 and Mod_10, Mod_137 had only one protein that was
presented in sEVs from NSCLC cells. By analyzing the microenviron-
ment cell populations,27 we found that four proteins in Mod_137
were correlated with diverse stromal cells. This observation was sup-
ported by the fact that FYN, PTPRC (CD45), and THY1 (CD90)
might be involved in lymphocytes,41,42 macrophages,43 and fibro-
blasts44 in tumor microenvironment. Moreover, PTPRC was also
identified in sEVs released by dentritic cells.45 Interestingly, four pro-
teins in Mod_137 were significantly correlated with endothelial cell
abundance, which was consistent with the fact that Mod_137 was
associated with angiogenesis score. Overall, the sEV proteins derived
from cancer cells together with stromal cells may contribute to
aggressive microenvironment and influence postoperative recurrence
in lung ADC.

One limitation of this study is the relative small sample set of the sEVs
cohort, which was used to establish the gene signature. To address this
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 885
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issue, the 3-PPI-Mod signature was further compared with prote-
omics of circulating sEVs from another cohort with 26 NSCLC pa-
tients.22 The results confirmed that most proteins of Mod_8 and
Mod_10 were presented in circulating sEVs, which was isolated by
anti-CD9 antibodies.22 Notably, none of the proteins in Mod_137
were identified in these circulating CD9+ sEVs. This could be ex-
plained by the fact that Mod_137 is probably a representative for
sEVs from non-cancer cells. Meanwhile, it was reported that a
subpopulation of major histocompatibility complex (MHC) class
II-bearing sEVs from dentritic cells could escape from anti-CD9
capture.45 Taken together, these findings suggest that the 3-PPI-
Mod signature is consistently present in different sEV proteomic
datasets of NSCLC.

In summary, this study developed a sEV-associated gene-expression
signature (3-PPI-Mod) that could predict prognosis and guide ACT
benefit for lung ADC. The signature was enriched by cancer-secreted
sEVs and was remarkably associated with intratumoral hypoxic sta-
tus. This study provided a promising strategy to evaluate the prog-
nostic value of sEV-related molecules in tumor tissues and shed
new light on the mechanisms underlying metastasis and recurrence
of lung ADC.

MATERIALS AND METHODS
Patients and Clinical Characteristics

The proteomic database of sEVs isolated from malignant PEs from
three patients with lung ADC was obtained from Park et al.’s 23 study.
There were two females and one male. All of the patients suffered
stage IV disease, and two patients had metastases at distant organs.
Another proteomic database of serum sEVs from 26 NSCLC patients
was employed for validation, including 14 cases with lung ADC.22

Gene expression profiles of primary lung ADCs from 623 patients
were collected from five independent datasets in GEO. These datasets
were characterized with geographical and technical diversity
(Table S1). GEO: GSE14814 was conducted from the JBR.10 trial,
which included NSCLC patients who were randomly assigned into
the ACT and OBS arms. For datasets with multiple pathological types
of NSCLC, we analyzed the subgroup of lung ADC only. The clinical
parameters and follow-up information of each cohort were obtained
from GEO. Cases without prognostic information were excluded
from analysis. Finally, there were 116 lung ADC samples in GEO:
GSE13213, 127 lung ADC samples in GEO: GSE50081, 83 lung
ADC samples in GEO: GSE30219, 226 lung ADC samples in GEO:
GSE31210, and 71 lung ADC samples in GEO: GSE14814. Clinical
characteristics of patients from each dataset are summarized in Table
1. The involvement of human subjects from publicly available re-
sources is in accordance with the Declaration of Helsinki.

Proteomic Database of sEVs

The proteomics of sEVs isolated from malignant PEs,23 serum
samples,22 and supernatant of NSCLC cells HCC827 and A54926

were profiled by mass spectrometer. These proteins were mapped
to a PPI network and gene expression profiles by Entrez gene IDs.
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Gene-Expression Data Processing

Raw data from the training dataset (GEO: GSE13213) with the Agi-
lent platform were processed with “median-scaled” normalization
by R package “limma”. Raw data fom four validation datasets
(GEO: GSE50081, GSE30219, GSE31210, and GSE14814) with the
Affymetrix platform were downloaded from GEO. These data were
processed and normalized with “RMA” method by R package
“affy”. Probe annotation of each dataset was downloaded from the
GEO database. All gene expression profiles were log2-transformed.
Processing of PPI Databases

Three public databases were employed to construct the reference PPI
network in this study. PPI network from the Human Protein Refer-
ence Database (HPRD, release 9.0)46 was composed of 9,466 proteins
and 36,895 interactions. Protein-protein relationships labeled with
“Compound/Binding” in Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were extracted, resulting in 2,986 proteins and
31,047 interactions. Protein-protein relationships labeled with
“Direct Complex” in Reactome pathways were extracted (4,885 pro-
teins and 22,763 interactions). These databases were merged into a
reference PPI network, with 11,591 proteins and 77,059 interactions
(after removing duplicated interactions and protein-self loops).
Network mapping across different databases was done by Entrez
gene IDs.
Identification of Relapse-Associated PPI Modules

The sEV proteins from PEs were mapped to the reference PPI
network. The largest component of the mapped network was used
for subsequent analysis, including 568 proteins and 1,632 interac-
tions. This network was integrated with the gene expression profile
of the training dataset (GEO: GSE13213). PPI modules (sub-net-
works) that could discriminate recurrent status were used as previ-
ously described.29 In a given module M with m genes, the expression
score (e) of M in sample j was defined as:

ej =
X

i˛m

Zijffiffiffiffi
m

p ;

where Zij is the Z-transformed gene expression value of gene i.

Then, the discriminative score S(M) of module M was defined as the
mutual information (MI) between e and relapse class (c):

SðMÞ = MI
�
e’; c

�
=
X

x˛e’

X

y˛c
pðx; yÞlog pðx; yÞ

pðxÞpðyÞ;

where e’ represents the discretized form of e, by discretizing expres-
sion score into 8 ðlog2ðnÞ+ 1Þ (where n is sample numbers) equally
spaced bins as described previously.47

A greedy searching program was performed to identify modules
with locally maximal recurrent score S(M) using the similar param-
eters as in the previous study.29 Briefly, each protein in the PPI



Table 1. Clinical Characteristics in Five Datasets of Lung ADC

Training Validation

Variables GEO: GSE13213 GEO: GSE50081 GEO: GSE30219 GEO: GSE31210 GEO: GSE14814

Age

< 60 ys 43 (37.07) 19 (14.96) 46 (55.42) 96 (42.48) 35 (49.3)

R 60 ys 73 (62.93) 108 (85.04) 37 (44.58) 130 (57.52) 36 (50.7)

Gender

Female 57 (49.14) 62 (48.82) 18 (21.69) 121 (53.54) 34 (47.89)

Male 59 (50.86) 65 (51.18) 65 (78.31) 105 (46.46) 37 (52.11)

Smoking

Never 56 (48.28) 23 (18.11) – 115 (50.88) –

Ever 60 (51.72) 92 (72.44) – 111 (49.12) –

N/A 0 (0) 12 (9.45) – 0 (0) –

Stage

I 78 (67.24) 92 (72.44) 79 (95.18) 168 (74.34) 42 (59.15)

II 13 (11.21) 35 (27.56) 3 (3.61) 58 (25.66) 29 (40.85)

III 25 (21.55) 0 (0) 1 (1.20) 0 (0) 0 (0)

EGFR

Mutation 45 (38.79) – – 127 (56.19) –

Wild type 71 (61.21) – – 99 (43.81) –

KRAS

Mutation 14 (12.07) – – – –

Wild type 102 (87.93) – – – –

TP53

Mutation 38 (32.76) – – – –

Wild type 77 (66.38) – – – –

N/A 1 (0.86) – – – –

Postsurgery Recurrence

No 58 (50) 87 (68.50) 56 (67.47) 162 (71.68) –

Yes 58 (50) 37 (29.13) 27 (32.53) 64 (28.32) –

N/A 0 (0) 3 (2.36) 0 (0) 0 (0) –

ACT

No – – – – 32 (45.07)

Yes – – – – 39 (54.93)

The table shows the number (%) of patients in different groups. ys, years; ACT, adjuvant chemotherapy; N/A, not available.
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network (568 proteins) was seeded and iteratively expanded with a
specified distance d (d = 2 in this study). For each expansion, the
protein that yielded the largest improvement of S(M) among all
candidate proteins was added to the module. The module expansion
stopped when further protein addition did not increase the S(M) by
a specified improvement rate of 10%. Modules with only one pro-
tein were removed, and modules with >80% common proteins
were merged.

Three permutation methods were utilized to estimate the significance
of a candidate module M (withm genes): (1) stimulating random PPI
modules with m proteins in the network; (2) shuffling the expression
value of m genes; (3) shuffling the recurrent class of samples. Each
method was performed by 10,000 times. The random discriminative
scores were used as null distribution of S(M). PPI modules with a
p value < 0.001 by all three methods were considered to be significant.
The gene expression score of candidate modules was used in the
following modeling process.

Development of Predictive Signature for Recurrence

To construct a PPI network-based gene signature, the gene expression
score (as defined above) of candidate modules was used. Feature se-
lection and modeling was performed based on RF algorithm using
the R package “varSelRF”.48 In detail, the predictive importance for
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 887
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recurrence of each candidate module was estimate by an initial RF
with 5,000 trees. A stepwise backward selection procedure was used
to identify the optimal combination of candidate modules for recur-
rence prediction. In each iteration, 10% of features were excluded, and
the remaining features were used to build an RF with 3,000 trees. This
programwas stopped when there were only two features left. The final
RF model was selected with the smallest feature number that achieved
the minimum OOB error among all iterative results. The recurrence
risk of patients was defined by the OOB probability in the final RF
model.

To assess the efficiency of the PPI network-basedmethodology, we es-
tablished a gene-based RF prediction model using the same program
and parameters as used in the sEV network-based method. The pre-
dictive results of the twomethods were compared by ROC curve anal-
ysis. The AUROCs with 95% confidence interval (CI) were calculated
by the R package “pROC”.49 Also, the twomethods were compared by
the Harrell’s C-index in predicting RFS and OS in the independent
datasets. A higher C-index means more accuracy in survival
predicting.

Estimation of Tumor Microenvironment Status

A hypoxia metagene across different cancer types was obtained
from a previous study.32 A core angiogenesis signature for primary
tumor was identified by Masiero et al.50 A set of inflammatory
cytokines51 was used to estimate the intratumoral inflammation
level. The intratumoral hypoxia, angiogenesis, and inflammation
scores were calculated by averaging the Z-normalized expression
value of the corresponding signature genes as we described previ-
ously.52 The abundance of immune and non-immune cells in the tu-
mor microenvironment was calculated by MCP-counter, a robust
estimator for tissue-infiltrating cell populations by gene expression
profiles.27

Other Statistical Methods

GO and KEGG pathway enrichment analysis for PPI modules was
performed by the online tool DAVID.53 The significance of overlap-
ping between two gene sets was calculated by hypergeometric test.
The association between two category variables of patients was calcu-
lated by Chi-squared test or Fisher’s exact test. GSEA of was used to
compare interested gene sets against the patient subgroups classified
by 3-PPI-Mod.54 The correlations of PPI modules with hypoxia,
angiogenesis, and inflammation scores as well as the stromal cell
abundance were calculated by Pearson’s correlation. Multiple testing
was adjusted by false discovery rate (FDR) using the Benjamini and
Hochberg’s method. A comparison of patient survival between low-
and high-risk groups assigned by 3-PPI-Mod was performed by
Kaplan-Meier curve and log-rank test. DSS and OS of patients in
the ACT arm and the OBS were compared by Kaplan-Meier curve
and log-rank test, with stratification by the 3-PPI-Mod signature.
Multivariate Cox’s models were performed to assess the prognostic
and predictive value of 3-PPI-Mod signature. All statistical analyses
were performed by R software (version 3.3.1). A p value < 0.05 was
considered to be significant.
888 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
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