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Abstract Traditionally, drug dosing is based on a concentration-response relationship estimated

in a population. Yet, in specific individuals, decisions based on the population-level effects

frequently result in over or under-dosing. Here, we interrogate the relationship between

population-based and individual-based responses to anesthetics in mice and zebrafish. The

anesthetic state was assessed by quantifying responses to simple stimuli. Individual responses

dynamically fluctuated at a fixed drug concentration. These fluctuations exhibited resistance to

state transitions. Drug sensitivity varied dramatically across individuals in both species. The amount

of noise driving transitions between states, in contrast, was highly conserved in vertebrates

separated by 400 million years of evolution. Individual differences in anesthetic sensitivity and

stochastic fluctuations in responsiveness complicate the ability to appropriately dose anesthetics to

each individual. Identifying the biological substrate of noise, however, may spur novel therapies,

assure consistent drug responses, and encourage the shift from population-based to personalized

medicine.

Introduction
One of the great promises of personalized medicine is the delivery of a maximally efficacious and

minimally harmful dose of appropriate medication to every patient (Fitzgerald et al., 2006). Tradi-

tionally, dosing decisions are based on the relationship between drug concentration and the magni-

tude of effect observed in a population expressed as the sigmoidal dose-response curve

(Goodman, 1996). An implicit assumption of this approach is that population averages adequately

reflect the processes operating within each individual patient. This is not always true. For many drug

classes such as antiepileptics, anesthetics, and antiarrhythmics, the response is binary at the level of

an individual—the desired effect is either present or not (Löscher, 2011; Sunderam et al., 2001;

Jürgens et al., 2003; Sonner, 2002). The population-based dose-response curve, in contrast, is a

smooth graded function of drug concentration. Therefore, in order to deliver on the promise of opti-

mal drug dosing at the individual level, the relationship between individual binary responses and the

population-based graded estimates of drug potency have to be more rigorously defined (Koch-

Weser, 1975).

Many examples of graded population-level responses co-existing with discrete, binary individual

responses are seen in biophysics. A priori, one might have expected that the current flow through a
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single ion channel molecule would simply be a scaled version of the current recorded in a cell con-

taining many such ion channels. Yet, this is not the case (Sakmann and Neher, 1984). While at the

whole cell level, current varies smoothly as a function of voltage and time (Hodgkin and Huxley,

1952), each ion channel molecule stochastically switches between conductive and nonconductive

states (Fukushima, 1982; Hoshi et al., 1990; Aldrich et al., 1983). Ligand-gated ion channels also

stochastically fluctuate between discrete conductive and non-conductive states at a constant concen-

tration of a ligand (Brickley et al., 1999; Swanson et al., 1996; Papke et al., 1989). Stochastic tran-

sitions between discrete states extend to higher levels of organization. For example, synaptic

transmission is mediated by stochastic vesicular fusion events (del Castillo and Katz, 1954;

Kuffler and Yoshikami, 1975; Rizzoli and Betz, 2005). At the cellular level, stochastic fluctuations

in gene expression and protein abundance are observed even in a clonal population of cells

(Elowitz et al., 2002; McAdams and Arkin, 1997; Newman et al., 2006; Raser and O’Shea, 2004).

For instance, stochastic forces influence differentiation patterns across identical cells and give rise to

drastically different proteomic responses of clonal cancer cells to drugs (Cohen et al., 2008;

Losick and Desplan, 2008). Thus, stochastic fluctuations among discrete states even in a constant

environment are the rule at the microscopic level in many, if not all, biological processes.

Detailed quantitative models of stochastic switching between different states of an individual

molecule (Hille, 2001; Colquhoun and Hawkes, 1995) are required to forge the relationship

between discrete microscopic events and graded responses in the population. Macroscopic con-

structs such as pharmacologic efficacy depend upon drug-induced changes in discrete states of sin-

gle molecules as well as stochastic switches among them. Yet, drug efficacy does not uniquely

specify responses of individual molecules (Colquhoun, 1998). Thus, while discrete responses at the

eLife digest Every year, millions of patients undergo general anesthesia for complex or life-

saving surgeries. In the vast majority of cases, the drugs work as intended. But a minority of patients

take longer than expected to regain consciousness after anesthetic, and a few wake up during the

surgery itself. It is unclear what causes these unintended events.

When choosing an anesthetic dose for each patient, physicians rely on data from large clinical

studies. These studies expose many patients to different doses of an anesthetic drug. At higher

doses, fewer and fewer patients remain conscious. This enables physicians to identify the dose at

which an average person will lose consciousness. But this approach ignores the difference between

the response of an individual and that of the population as a whole. At the population level, the

likelihood of a patient being awake decreases smoothly as the concentration of anesthetic increases.

But within that population, each individual patient can only ever show a binary response: awake or

not awake.

To compare anesthetic effects on individuals versus populations, McKinstry-Wu, Wasilczuk et al.

exposed mice to a commonly used anesthetic called isoflurane. During prolonged exposure to a

constant dose of the drug, each mouse was sometimes unconscious and sometimes awake. These

fluctuations in responsiveness seemed to occur at random. Exposing zebrafish to propofol, an

anesthetic that works via a different mechanism, had a similar effect.

Notably, the responses of both species to anesthesia showed a phenomenon known as inertia. If

an individual was unresponsive at one point in time, they were likely to still be unresponsive when

assessed again after three minutes. The amount of inertia was similar in mice and zebrafish. This

suggests that the mechanism responsible for inertia has remained unchanged over more than 400

million years of evolution.

The results reveal similarities between how individuals respond to anesthetics and how individual

anesthetic molecules act on cells. When a molecule binds to its receptor protein on a cell, the

receptor fluctuates spontaneously between active and inactive states. Studying how individuals

respond to drugs could thus provide clues to how the drugs themselves work. Future studies should

explore the biological basis of fluctuations in anesthetic responses. Understanding how these arise

will help us tailor anesthetics to individual patients.
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individual level can be linked to the smooth population-level responses using techniques from statis-

tical mechanics, individual responses cannot be readily inferred from population-level analyses.

Here, we asked whether stochastic fluctuations among discrete states, similar to those postulated

to act at the level of individual molecules, organelles, and cells influence the responses of intact mul-

ticellular organisms exposed to a constant drug concentration. For this purpose, we chose to focus

on anesthetics. Anesthesia is thought to consist of four basic components: amnesia, immobility, anal-

gesia, and unconsciousness. Responses to stimuli are typically used to quantify the various compo-

nents of anesthesia. At lower anesthetic doses that produce light sedation, a patient can respond to

salient verbal commands and less noticeable auditory commands (Wong et al., 2014), albeit with

longer latency. When the state of general anesthesia is attained, the patient is unresponsive even to

a painful surgical stimulus (Miller, 2014). Clinical assessment of anesthetic depth ultimately collapses

to binary outcomes: amnestic or not, immobile or not, and conscious or not. We consequently stud-

ied binary responses to a simple stimulus at a fixed anesthetic concentration across individuals to

determine whether they are anesthetized or not. These all-or-none responses can be assessed by

determining whether a human patient reacts to a simple verbal command (Sanders et al., 2017;

Russell, 2013; Flaishon et al., 1997). The concentration of anesthetic at which 50% of patient lose

their ability to respond to verbal commands is known at MAC-awake (Franks, 2008). In rodent litera-

ture, the righting reflex (RR) is typically used to establish whether a mouse is awake or not

(Figure 1A) (Wasilczuk et al., 2018; Franks, 2006). MAC-awake and the EC50 for loss of RR are

closely correlated across mechanistically distinct anesthetics (Franks, 2008). Discrete responses to

simple stimuli can be used in other organisms such as larval zebrafish to assess anesthetic potency

(Yang et al., 2018). In contrast to discrete measures used in individual subjects, anesthetic potency

at a population level is expressed as a smooth sigmoid function (Miller, 2014). Traditionally, the

dichotomy between the graded population-level response on the one hand, and the binary

responses of individuals on the other, has been interpreted as inter-subject variability (Sonner et al.,

2000). For instance, at the population level half maximal effective concentration (EC50), it is assumed

that half of all the subjects will be able to consistently respond to the stimulus while the other half

will consistently fail to do so (Figure 1B). Yet, this is not the only possibility. It is possible that at

EC50, each individual subject will respond to 50% of stimuli (Figure 1C). Finally, it is possible that the

probability of response is influenced by the state of the subject at the moment when the stimulus is

applied (Figure 1D).

Figure 1. Different individual behaviors can produce identical population effects. (A) Presence (top) or absence (bottom) of righting reflex is a binary

behavioral measure that distinguishes awake from anesthetized mice. Schematic representations of three qualitatively distinct models that yield 50%

population responsive probability (PRP) are shown in B-D. (B) Responses in each individual remain constant on repeated righting reflex assessments.

Hence, PRP is solely a consequence of individual differences in drug sensitivity. This is the commonly assumed model. (C) PRP is a consequence of a

constant response probability for each animal on each trial; responses on repeated trials fluctuate, but the probability of response is independent of

the state of the animal. (D) PRP is a consequence of a state-dependent fluctuations in responses to repeated presentation of the stimulus. In this

example, animals tend to stay in the previously observed state.
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To distinguish among these possibilities, we exposed both mice and zebrafish to fixed concentra-

tions of two mechanistically distinct anesthetics and repeatedly tested their responsiveness. The

results unequivocally demonstrate that at a fixed drug concentration, each individual mouse or

zebrafish stochastically switches between being responsive and unresponsive. The probability of

response depends upon the subject’s state. Therefore, stochastic state switching is apparently pres-

ent at all organizational levels, from receptor to cell to whole animal. Unlike identical ion channel

molecules, however, individual animals both in highly genetically inbred and across outbred popula-

tions exhibited dramatic variability in parameters that describe the stochastic switching between the

responsive and unresponsive states. The inter-individual variability in parameters of the stochastic

model fit to each individual was highly structured in both mice and in zebrafish. One manifestation

of this structure is that while the overall sensitivity to anesthetics varied among individuals, the

amount of noise that drives state switches was the same across individuals exposed to the same

anesthetic concentration.

As a result of the inter-subject variability and stochastic intra-subject fluctuations in responsive-

ness, the population-level concentration response cannot be used to reliably determine the probabil-

ity that any given individual will (or will not) be anesthetized. Detailed quantification of stochastic

forces that shape the within-subject fluctuations in responsiveness and between-subject variability

lays the foundation for the construction of more informative stochastic models that can reconcile

binary responses of individual organisms with population-based measures of drug potency. These

models can in turn be used to deliver on the promise of personalized medicine to deliver the appro-

priate dose of medication tailored to each individual patient.

Results

Individual responses to anesthetics fluctuate in a state-dependent
fashion at a fixed drug concentration
The presence of the righting reflex (RR) during continuous isoflurane administration was used as the

measure of responsiveness in mice. After 2 hr of equilibration at 0.6% isoflurane, the probability of

an intact RR was 44 ± 6% (mean ± SD across trials). This did not correspond to 44% of mice being

consistently responsive and the rest being consistently unresponsive, as is commonly assumed.

Instead, in every mouse, the outcome of the RR test fluctuated over time at a fixed anesthetic con-

centration (Figure 2A) while the population response probability at 0.6% isoflurane remained stable

over time (Figure 2B). Individual fluctuations in RR at concentrations deviating from EC50 were less

frequent, but nevertheless were reliably observed at concentrations below 0.9% (Figure 2—figure

supplement 1).

In an analogous experiment using a mechanistically distinct anesthetic, propofol, we determined

the responsiveness in larval zebrafish using the startle reflex (SR) triggered by mechanical stimula-

tion. Individual larval zebrafish demonstrated fluctuating responses to identical tap stimuli

(Figure 2C). Zebrafish exposed to no propofol had a significantly higher response probability to the

tap stimulus (Figure 2—figure supplement 2A, U = 55, nE3 = n3mM=360 trials, p<0.0001). Drug con-

centration remained constant in the propofol exposures (Figure 2—figure supplement 2B). The

response probability across the population remained constant (45 ± 5% mean ± SD across trials) for

three hours after an initial hour of equilibration in 3 mM propofol (Figure 2D).

Effective concentration, defined as the concentration of the drug required to produce an effect of

a given intensity, is a universally used population-based measure of drug potency (Goodman, 1996).

We sought to apply this measure to each individual. At the individual level, effective concentration is

equivalent to the average across-trial probability of observing a response to a stimulus at a given

drug concentration. Therefore, we compared the experimental results in Figure 2A and C to simula-

tions of a Bernoulli process (Materials and methods) constructed such that the probability of positive

RR (or SR) was identical on each trial and the same as that observed experimentally for a population

(Figure 3A). In mice for instance, this simulation was constructed such that the probability of

responding to a stimulus is 44% on every trial. As expected, both simulations (Figure 3A) and the

experimental results (Figure 3B) have a similar overall response probability (45 ± 3% and 44 ± 6%

mean ± SD for simulations and mouse experiments, respectively). The median response probability

in simulations was not statistically different from experimental observations in both mice (Figure 3C,
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U = 197.5, nsim = nexp = 20, p=0.95) and in zebrafish (Figure 3D, U = 2276, nsim = nexp = 72,

p=0.34). Note, however, that the experimentally observed switches between positive and negative

RR occur less frequently than in the simulation (Figure 3E, U = 48.5, nsim = nexp = 20, p<0.0001).

This was also true of zebrafish (Figure 3F, U = 300.5, nsim = nexp = 72 p<0.0001).

To further quantify this resistance to state transitions, we compared the probability of becoming

unresponsive after responding to a stimulus on a previous trial, P(U|R) (Figure 3B, red arrow), to the

probability of failing to respond on two consecutive trials, P(U|U) (Figure 3B, purple arrow). In both

mice (Figure 3G, U = 103, nP(U|R) = nP(U|U)=20, p<0.001) and zebrafish (Figure 3H, U = 501, nP(U|R) =

Figure 2. Individual responsiveness fluctuates over time with unchanging population response. (A) Twenty mice were exposed to 0.6% isoflurane for 2

hr, then righting reflex was assessed every 3 min for another 2 hr at the same isoflurane concentration. Fluctuations between responsive (green) and

unresponsive (blue) states on repeated trials are seen in every animal. (B) Population response probability (PRP) remains constant over the duration of

the entire experiment (R2 = 4.3�10�16, p=1 correlation between trial number and response probability averaged across animals for each trial, Pearson’s

R). PRP averaged across animals and trials at 0.60% isoflurane is 0.44 ± 0.06 (mean ± SD, red line). (C) 72 larval zebrafish (five dpf) were exposed to 3 mM

propofol for a total of 4 hr, with startle reflex assessed every 30 s for the final 3 hr of the exposure. Fluctuations between responsive and unresponsive

states on repeated trials are also seen in every animal. (D) PRP remains constant over the duration of the entire experiment (R2 = 1.2�10�14, p=1,

correlation between trial number and response probability averaged across animals for each trial, Pearson’s R). PRP averaged across animals and trials

at 3 mM propofol is 0.45 ± 0.05 (mean ± SD, red line). Scale bars represent 15 min. Source data for population response probabilities used for this

analysis are available in the Figure 2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Mean population response probabilities of righting reflex assays in mice at 0.6% isoflurane and startle reflex assays in zebrafish at 3mM

propofol.

Figure supplement 1. Response probabilities in mice at varying isoflurane concentrations.

Figure supplement 2. Characterization of zebrafish startle response.

Figure supplement 3. Chamber equilibration occurs within 5 min.
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P(U|R)P(U|U)Trial Number (Righting Reflex) P(U|R)P(U|U)

Figure 3. Response probability is state-dependent. (A) Twenty simulations of a Bernoulli process where the response probability is 44% for all trials

(identical to the average PRP in mice at 0.6% isoflurane) were performed. Each simulation consisted of the same number of trials as the experimental

data from (B). Similar simulations were conducted for zebrafish using PRP of 0.45. Simulated (A) and experimentally observed (B) transition probability

matrices are shown schematically above traces. The population response probability in simulations is not statistically different from experimental

observations across mice (C) (U = 197.5, nsim = nexp = 20, p=0.95) or across zebrafish (D) (U = 2276, nsim = nexp = 72, p=0.34). Both mice (E) (U = 48.5,

nsim = nexp = 20, p<0.0001) and zebrafish (F) (U = 300.5, nsim = nexp = 72 p<0.0001) have fewer state transitions than simulations of the Bernoulli

process. Both mice (G) (U = 103, nP(U|R) = nP(U|U)=20, p<0.001) and zebrafish (H) (U = 501, nP(U|R) = nP(U|U)=72, p<0.0001) are more likely to stay

unresponsive if they failed to respond in the previous trial (purple arrow in B) than if they were able to respond to the previous stimulus (red arrow in B).

In plots (C–H) box plots show inter-individual differences in estimated parameters (central mark indicates the median, box shows interquartile range,

whiskers extend to the most extreme data points). Statistical significance is shown by ***p<0.001 ****p<0.0001. Source data for all quantitative analyses

described are available in the Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Individual simulated and experimental response probabilities and probability of transitions (total, P(U|U), and P(U|R)).
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nP(U|U)=72, p<0.0001), the probability of being unresponsive on the next trial was significantly higher

if the animal was found to be unresponsive on the preceding trial. Hence, fluctuations in responsive-

ness under constant anesthetic concentration are inconsistent with a Bernoulli process. Therefore,

while effective concentration is a useful measure of population-based drug potency, it cannot be

adequately applied to an individual. Specifically, effective concentration cannot account for the

apparent resistance to state transitions.

Individual differences are highly structured
We now turn to the relationship between trial-to-trial fluctuations and population level variability.

One common assumption is that observing a single mouse over long period of time is equivalent to

observing a snapshot of the population of mice. In other words, an experiment on each individual

mouse can be thought of as a different realization of the same process. In an apparent departure

from this assumption, we observed high inter-individual variability in responsiveness in mice and in

zebrafish. For instance, at 0.6% isoflurane some mice were able to right themselves on fewer than

20% of trials, while other mice within the same highly inbred population, exposed to the same anes-

thetic concentration, during the same experiment, were able to right themselves on ~70% of trials

(Figure 3C). Experimentally observed inter-individual variability was significantly higher than in simu-

lations constrained to have the same number of trials (Figure 3C, F(1, 38)=27.8, p<0.0001 for mice,

Figure 3D, F(1,142)=52.5, p<0.0001 for zebrafish, Brown-Forsythe test). This implies that the

observed inter-subject variability in responsiveness is unlikely to be solely due to finite sample size.

Rather, anesthetic sensitivity can differ significantly between individuals.

We then sought to determine how inter-individual variability is reflected in the parameters of a

model of trial-to-trial fluctuations in responsiveness fit to each animal individually

(Materials and methods). The dwell times in responsive and unresponsive states for both mice (Fig-

ure 4—figure supplement 1A) and zebrafish (Figure 4—figure supplement 1B) were approxi-

mately exponential. No significant autocorrelations in fluctuations were observed (Figure 4—figure

supplement 1C,D). Thus, switching between states of responsiveness and unresponsiveness in each

individual can be well approximated by a two-state transition probability matrix

(Materials and methods). Because the sum of transition probabilities in each row of this matrix is

exactly one, the two-state transition probability matrix is completely specified by knowing the two

transition probabilities along the diagonal, P(U|U) and P(R|R). The plane spanned by these two diag-

onal transition probabilities, therefore, is the parameter space for models of stochastic fluctuations

in responsiveness in mice and in zebrafish (Figure 4A). Movement along the x-axis to the right,

results in decrease in the overall probability of response (e.g. from I to II and from III to IV,

Figure 4A). Conversely, movement up along the y-axis results in the increase in the overall probabil-

ity of response (e.g. from III to I and from IV to II, Figure 4A). Moving along the dotted lines within

the parameter space does not affect the overall probability of being responsive – that is systems II

and III have the same overall probability of response. The key difference between II and III is the

number of transitions between the responsive and the unresponsive state. In contrast, movement

from I to IV does not affect the sum of P(U|U) and P(R|R). As a result, while the overall probability of

responsiveness in I and IV is different, the amount of noise that drives state transitions between the

responsive and the unresponsive states is the same. To realize why this is the case, we can visualize

the two-by-two transition probability matrix as an energy landscape with two wells which correspond

to the responsive and the unresponsive states (Proekt and Hudson, 2018). Conservation of the sum

of P(U|U) and P(R|R) reflects the fact that the sum of the depths of the wells is conserved.

To characterize inter-individual variability, we estimated transition probability matrices for each ani-

mal individually. This yields a single estimate of P(U|U) and P(R|R) for each individual. The simplest

model of inter-individual variability is that the transition probability matrix, M, for each individual is a

random sample taken independently from the distribution of P(U|U) and P(R|R). This null hypothesis

corresponds to a cloud of points in Figure 4B. Yet, in stark departure from this prediction, the

observed joint distribution of transition probabilities in individual mice lies on a diagonal (Figure 4C).

Therefore, P(U|U) and P(R|R) are strongly negatively correlated among individuals (R2 = �0.85,

p<0.0001, Pearson’s R). The same relationship was observed in larval zebrafish (Figure 4E,

R2 = �0.77, p<0.0001, Pearson’s R). A similar strong negative correlation is observed when comparing

decay rates of the responsive and unresponsive states estimated from individual dwell time
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Figure 4. Stability of responsiveness and unresponsiveness are linked. (A) (Left) The transition probability matrix for each individual can be represented

as a point on a plane spanned by the diagonal elements P(U|U) and P(R|R) denoting the probability of staying in the previously observed state. The

plane is colored according to the across-trial response probability given by the transition probability matrix at each location in the plane. (Center)

Examples of simulations constructed by creating transition probability matrices from the corresponding locations in the parameter plane. (Right)

Figure 4 continued on next page
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distributions fit to single exponential decay functions (dwell times from Figure 4—figure supplement

1A,B, R2
mouse = �0.64, p=0.002, Pearson’s R, R2

zebrafish =�0.71, p<0.0001, Pearson’s R).

Note that P(U|U) and P(R|R) quantify the propensity of the system to stay in its previously observed

state. The fact that their sum is constant across individuals implies that the amount of noise that drives

state transitions between responsive and unresponsive states was consistent in all individuals exposed

to a fixed anesthetic concentration. Yet, sensitivity to anesthetics measured as the overall probability

of responding to a stimulus varied broadly in the same population of individuals. Altogether these

results indicate that, while transitions between states of responsiveness are noise-driven and therefore

unpredictable, the amount of noise is tightly controlled in all individuals. Too little noise would result in

individuals being trapped in a single state, whereas too much noise would overpower the intrinsic

dynamics of the brain, leading to a noise dominated process characterized by rapid state switching.

Individual differences in drug sensitivity complicate decoding of drug
concentration from drug responses
Sigmoid dose-response curves are one-to-one functions—knowing drug concentration is sufficient to

estimate probability of a response in a population. Critically, the converse is also true; knowing the

probability of a response in a population is sufficient to determine the concentration of the drug to

which this population is exposed. While this one-to-one relationship may hold for a population, we

sought to determine whether the large inter-individual variability (Figures 4–5) complicates this one-

to-one relationship at the level of an individual. We compared individual transition probability matrices

estimated at 0.6% and 0.3% isoflurane. Note that here, mice exposed to 0.6% isoflurane were distinct

from mice exposed to 0.3% isoflurane. Individual matrices estimated for 0.3% isoflurane, much like

those estimated at 0.6% isoflurane, exhibited strong negative correlations (R2 = �0.86, p<0.0001,

Pearson’s R) between the diagonal elements of the transition probability matrices (Figure 6A). At the

level of the population, there were statistically significant differences between righting probability

observed at the two anesthetic concentrations (Figure 6B, U = 54, n0.3% iso = 18, n0.6% iso = 20,

p<0.001). Note, however, that there is significant overlap (57%) between the two distributions. As a

consequence of this overlap, it is not possible to reliably determine whether an individual was exposed

to 0.6% or 0.3% isoflurane over a large range of individual anesthetic sensitivities (Figure 6C). The

same phenomenon was observed for individual zebrafish exposed to medium alone or 3 mM propofol

(Figure 6—figure supplement 1). This observation is in stark contrast to the population-based meas-

ures of anesthetic potency. Hill slopes of the population-based dose-response curves for anesthetics

are some of the steepest among clinically useful drugs (Friedman et al., 2010; Joiner et al., 2013).

Thus, small increases in drug concentration are expected to result in a dramatic change in the proba-

bility that an individual will be anesthetized. Yet, as demonstrated here, there is considerable overlap

Figure 4 continued

Movement along the dashed gray lines preserves the overall probability of response (Traces II and III). As one moves along the dashed gray line from

bottom left to top right, the frequency of state transitions decreases but the overall response probability stays the same. In contrast, movement parallel

to the line y = �x results in changes in response probability while conserving the noise driving transition between the responsive and the unresponsive

states (Traces I and IV). This is because the line y = �x preserves the sum of stability of the responsive and the unresponsive states. (B) Transition

probability matrices were empirically estimated for each mouse at 0.6% isoflurane. The empirically derived distributions of P(U|U) and P(R|R) (shown on

the margins) were independently randomly sampled to create simulated individual points in the plane spanned by P(U|U) and P(R|R). Each point’s color

shows the average across- trial response probability estimated empirically using simulations constrained to have the same number of trials as

experimental observations. (C) Distribution of transition probabilities experimentally observed in individual mice at 0.6% isoflurane. Inter- individual

variability is constrained such that the sum of P(U|U) and P(R|R) is approximately the same (R 2 = -0.85, p < 0.0001, Pearson’s R ) in individual mice. (D) A

similar estimation and simulation was computed for zebrafish with P(U|U) and P(R|R) assumed to be independent of each other. (E) Distribution of the

experimentally observed transition probabilities for individual zebrafish (R 2 = -0.77, p < 0.0001, Pearson’s R ). While each individual transition

probability matrix is defined by two parameters, the inter-individual variability in these matrices is well approximated (~90% of variance in both mice

and zebrafish) by a single value corresponding to the projection onto the first principal component (PC1) shown by the dotted line in (C) and (E). Source

data for experimental plots described are available in the Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Individual mouse and zebrafish P(U|U) and P(R|R) values.

Figure supplement 1. Estimates for dwell time distributions and autocorrelation functions from individual behavioral assays.
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in sensitivity to anesthetics. This illustrates the fundamental inconsistency between population-based

and individual-based measures of drug potency.

Because results in Figure 6 were obtained in two separate cohorts of mice each exposed to a sin-

gle anesthetic concentration, we sought to determine whether it is possible to reliably infer drug

Mouse

Mouse

R
2

 = 0.50 R
2

 = 0.53

Zebrafish

R
2

 = 0.53

Permutation Correlation CoefficientsPermutation Correlation Coefficients

Figure 5. Variability in drug sensitivity is a stable characteristic of an individual at steady state equilibrium. Transition probability matrices were

independently estimated for each mouse across the first two and last two of exposures to isoflurane and projected onto the first principal component.

For zebrafish, transition probability matrices were estimated for the first and second halves of propofol exposure. Negative values represent animals

that had a high probability of staying responsive and low probability of staying unresponsive, whereas positive values represent animals that had a high

probability of staying unresponsive and low probability of staying responsive. (A) In mice, individual transition probability matrices estimated separately

for the first two and the last two exposures to 0.6% isoflurane were correlated (R2 = 0.50, p=0.025, Pearson’s R ). (B) In zebrafish, individual transition

probability matrices estimated separately for the first and second halves of the exposure to 3 mM propofol were correlated (R2 = 0.53, p<0.0001,

Pearson’s R ). (C) Permutation test reveals that, in mice, experimentally observed within-subject correlations are significantly higher than in inter-subject

shuffled surrogates (p=0.013). (D) Permutation test computed for zebrafish (p<0.0001). Statistical significance is shown by *p<0.05 ****p<0.0001. Source

data for correlation plots described are available in the Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. PC1 values in mice for exposures 1/2 and 3/4 and in zebrafish for first and second half of exposure.
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concentration from behavioral responses for the same individual exposed to two drug concentra-

tions. To address this, we exposed a separate cohort of 20 mice on eight occasions, four times each

to 0.4% and 0.7% isoflurane. Strong negative correlations between P(U|U) and P(R|R) existed at both

0.4% isoflurane (R2 = �0.69, p<0.0001, Pearson’s R) and 0.7% isoflurane (R2 = �0.79, p<0.0001,

Pearson’s R). Population-level response probability at 0.4% and 0.7% isoflurane differed significantly

(Figure 7A, U = 7, n0.4% iso = n0.7% iso = 20, p<0.0001). Overlap of response probabilities at the pop-

ulation level between different isoflurane concentrations did exist (18%), but was approximately

three times smaller than that observed across separate mouse cohorts exposed to 0.3% and 0.6%

isoflurane (Figure 6A). Overlap at the individual level varied widely, from close to zero to nearly

complete (Figure 7B,C, Figure 7—figure supplement 1). Thus, observing the same individual

exposed to different drug concentrations, improves the reliability of distinguishing between drug

concentrations on the basis of righting probability. Comparing different, albeit highly genetically

similar individuals, exposed to different isoflurane concentrations increases the response variability

and therefore decreases the reliability of classification.

Neuronal network modeling of stochastic state switching confirms that
noise driving state transitions is conserved among individuals
In Figures 4 and 6, we observe a strong negative correlation between the two conditional probabili-

ties that express the tendency of staying in the previously observed state (P(U|U) and P(R|R)). To

investigate the origins of this observation, we constructed a simple mathematical model that can

explain this striking correlation. The Markov process defined by a two-state transition probability

matrix can be thought of as a discrete approximation of a continuous system that fluctuates

0.3% Isoflurane

0.6% Isoflurane

Figure 6. Individual response probabilities between different drug concentrations overlap at a population level. (A) Individual empirically-estimated

transition probability matrices are plotted in the plane spanned by P(U|U) and P(R|R) for animals exposed to 0.3% isoflurane (n = 18, blue dots) and 0.6%

isoflurane (n = 20, red dots). (B) Probability density of the individual across-trial response probabilities were estimated for mice exposed to 0.3%

isoflurane (blue) and 0.6% isoflurane (red). At the population level, distributions of responsiveness at the two isoflurane concentrations are significantly

different (U = 54, n0.3% iso = 18, n0.6% iso = 20, p<0.001). Overlap of the two distributions was 57%. (C) Posterior distributions, representing the

probability that a mouse with a given across-trial response probability was exposed to 0.3% (blue) isoflurane or 0.6% (red) isoflurane. Over a broad

range of response probabilities, the odds of correctly identifying drug concentration on the basis of observed responsiveness is close to chance.

Statistical significance is shown by ***p<0.001. Source data for response probability distributions described are available in the Figure 6—source data

1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. PC1 values for mice exposed to 0.6% and for mice exposed to 0.3% isoflurane.

Figure supplement 1. Individual response probabilities between different drug concentrations overlap in zebrafish.
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stochastically between two stable states. To illustrate how such a multistable system can be embod-

ied in the brain, we consider a simple network consisting of two neuronal populations (a and b

Figure 8A). The two neuronal populations inhibit each other and excite themselves. Moreno-

Bote et al. (2007) demonstrate that activity of such networks can be parameterized as a function of

difference in activity of the two neuronal populations (Figure 8B). Because of self-excitation and

mutual inhibition, the network exhibits two stable activity patterns: one where activity of a domi-

nates, and the other, where activity of b dominates. We operationally define these stable network

patterns as awake and anesthetized respectively. The likelihood of every activity pattern of the net-

work is expressed by an ‘energy function’ (Figure 8B). The more likely activity patterns are associ-

ated with lower energy and the less likely activity patterns are associated with higher energy. In the

absence of noise such networks stay in one of the two stable states indefinitely. When noise is added

to the system, it switches between the two stable network configurations stochastically. While the

amount of noise changes the frequency of switching between the two states (Figure 8C), it does not

have a dramatic effect on the shape of the overall distribution of states. In both cases the distribu-

tion of states of the system is bimodal akin to what we observe in the startle reflex data in the zebra-

fish (Figure 2—figure supplement 2C).

To model the effects of anesthetics on different individuals, we assume that anesthetics activate

sleep-active b neurons and inhibit wake-active a neurons. To account for the strong negative correla-

tion between P(U|U) and P(R|R), we assume that the degree of anesthetic-induced excitation and

inhibition is correlated. Thus, individual differences in anesthetic sensitivity can be modeled by mod-

ulating the anesthetic effect on the network. In an attempt to model the results in Figures 4 and

Population
Level

Overlap

Population Level Individual Level

0.4% Isoflurane
0.7% Isoflurane

Figure 7. Varying degrees of overlap in response probability are present at the individual level between different isoflurane concentrations. (A)

Probability density of the individual across-trial response probabilities were estimated for mice exposed to 0.4% isoflurane (blue) and 0.7% isoflurane

(red). In contrast to results in Figure 6B where different populations of mice were used, here the same 20 mice were exposed to both 0.4% and 0.7%

isoflurane. At the population level, distributions of responsiveness at the two isoflurane concentrations are significantly different (U = 7, n 0.4% iso = n

0.7% iso = 20, p < 0.0001). Overlap of the two distributions was 18%. (B) Probability density estimates of response probability to exposures of 0.4%

(blue) and 0.7% isoflurane (red) were computed with a bootstrap resampling technique (1000 bootstraps for 20 trials with resampling). Representative

probability density estimates of the same individual exposed to two drug concentrations highlighting the variability in response probability overlap

across the two concentrations are shown, from marginal overlap (top), to some overlap (middle), to high overlap (bottom). (C) Boxplot representing

fraction of overlap across individual mice. Box plot central mark indicates the median (11%), box shows interquartile range (5% to 27%), whiskers extend

to the most extreme data points (1% and 71%). Statistical significance is shown by ****p < 0.0001. Source data for the response probability distributions

described are available in the Figure 7—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. PC1 values for mice exposed to both 0.4% and 0.7% isoflurane.

Figure supplement 1. Ability to discriminate across two drug concentrations within individuals is highly variable.

McKinstry-Wu et al. eLife 2019;8:e50143. DOI: https://doi.org/10.7554/eLife.50143 12 of 25

Research article Neuroscience Physics of Living Systems

https://doi.org/10.7554/eLife.50143


6, we simulate the behavior of such networks with various amounts of noise. We then approximate

the data of the kind seen in Figure 8C obtained for different anesthetic sensitivities and noise levels

using a Markov model akin to that deployed for analysis of righting and startle reflex throughout this

work. To accomplish this, the continuous fluctuations in the state of the network are binarized using

a threshold (Figure 8C) into the ‘responsive’ and the ‘unresponsive’ states. The transition probability

matrix is then estimated from these binary time-series. The results of this analysis are shown in

Figure 8D. When the noise amounts are small, the system tends to stay in its previously observed

state. Thus, for low-noise simulations, the points are found around the periphery of the plane

spanned by P(U|U) and P(R|R). When the noise is exceedingly high, the dynamics of the system

become independent of the shape of the energy landscape and tends toward the point (0.5, 0.5) in

the plot in Figure 8C. This would be expected if the system behaved like a Bernoulli process at

EC50. In order to reproduce the results in Figures 4 and 6, the amount of noise needs to be tuned

and maintained at an approximately the same level across individuals. In the simulations, this corre-

sponds to Gaussian noise with mean 0 and standard deviation (s)=0.4. These simulations support

our conjecture that while individuals are different in terms of anesthetic sensitivity, the amount of

noise that drives fluctuations between the responsive and the unresponsive states is

conserved. Note, that in the units of trial number, the dwell time distributions were similar in fish

and in mice. However, in mice the trials were spaced 3 minutes apart whereas in fish the inter-trial

interval was 30 seconds. Thus, in units of seconds, mice dwelled signficantly longer in the awake and

the unresponsive state than zebrafish. In order to account for this difference in the characteristic

dwell times, the time scale of fluctuations shown in Figure 8C would have to be scaled by a specie-

specific diffusion constant (Methods).
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Figure 8. A simple bistable neuronal network model with noise, reproduces experimental findings. (A) The network consists of two neuronal

populations (b and a) which are operationally defined as ‘sleep active’ and ‘wake active’ respectively. Neuronal populations are mutually inhibitory and

self-excitatory. Activity of such networks can be parametrized as a function of difference in activity between a and b using an energy function (B). At

population-level EC50 (middle panel) some individuals have low probability of being in the awake state (Sensitive), while others have a high righting

probability (Resistant). These differences in sensitivity are reflected in the depth of the energy wells which correspond to the Anesthetized (b-

dominated) and Awake (a-dominated). The increase in the depth of the anesthetized well is proportional to the decrease in the awake well. (C) Shows

the time evolution of network activity (at equal depths of the awake and the anesthetized wells) with different noise amounts. Trace shows the time

evolution and the marginal distribution shows the probability distribution of states. Noise drives the time-evolution of the system: as more noise is

added, the system fluctuates more rapidly. Since the distribution of states is bimodal, the states of the system can be discretized by applying a

threshold. This is analogous to thresholding the SR responses in the zebrafish. (D) Discretized activity of the network was analyzed using a two-state

Markov process as for experimental results. The parameters of the transition probability matrix are shown for different anesthetic sensitivities (color) and

amounts of noise (symbol size). In order to obtain the data in Figure 4C,E and Figure 6A the amount of noise has to be constrained among individuals

(s = 0.4 matches the results at EC50 for propofol and isoflurane).
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Discussion
Here, we demonstrate that even when an animal is exposed to a fixed drug concentration, its

response fluctuates stochastically. The probability of response depends on the state of the animal at

the moment of stimulation. Specifically, the fluctuations exhibit inertia – the animal is more likely to

be stuck in its current state than to transition between states of responsiveness. In contrast to most

drugs that are administered either intravenously or orally, the route of administration of many anes-

thetics is inhalational. This allows us to assure that the drug concentration in the animal is at equilib-

rium with the ambient concentration in a closed chamber (Friedman et al., 2010). We utilize this

significant experimental advantage to focus on the dynamics of responses within each individual at a

constant drug concentration. However, stochastic fluctuations are not unique to a volatile anesthetic.

An intravenous anesthetic, propofol, administered to zebrafish equilibrated with a fixed concentra-

tion bath, was also associated with dynamic fluctuations in responsiveness. The stochastic processes

that govern the fluctuations observed under two mechanistically distinct anesthetics were remarkably

similar between mice and zebrafish. It is curious to note that while the dwell times in the responsive

and the unresponsive state in mice and in zebrafish were similarly correlated, the absolute duration

of these states varied signficantly between mice and zebrafish. The duration of responsive and unre-

sponsive states was approximately similar to the duration of sleep episodes in these two species

(Zhang et al., 2007; Yokogawa et al., 2007). It is possible that this relationship between duration

of sleep episodes and the duration of the episodes of unresponsiveness arises because similar neuro-

biological mechanisms are responsible for both transitions between sleep and wakefulness and fluc-

tuations between the responsive and the unresponsive states observed under anesthesia.

Our observations of stochastic switching between responsive and unresponsive states are consis-

tent with previous findings showing that at a fixed anesthetic concentration, spectral characteristics

of electrical activity within thalamocortical networks switch stochastically between several discrete

activity patterns (Hudson et al., 2014; Clement et al., 2008). Similar observations have been made

using electroencephalography (EEG) of patients under anesthesia (Chander et al., 2014; Li et al.,

2019; Vlisides et al., 2019). Our findings in this study suggest that such stochastic fluctuations have

a behavioral counterpart expressed as fluctuating ability to respond to a stimulus. It has been sug-

gested previously that anesthetics stabilize neuronal dynamics in humans (Alonso et al., 2014;

Tagliazucchi et al., 2016) and in non-human primates (Solovey et al., 2015; Alonso et al., 2019).

Stabilization of neuronal dynamics may contribute to the behavioral inertia observed in fluctuations

in responsiveness of both mice and zebrafish. This resistance to state transitions may contribute

(Proekt and Hudson, 2018) to anesthetic hysteresis (Friedman et al., 2010; Joiner et al., 2013;

Kuizenga et al., 2018; Warnaby et al., 2017) – a left-shift in a dose-response curve for emergence

relative to induction of anesthesia that has been observed across taxa from Drosophila to humans.

Stochastic responses at a fixed drug concentration help explain several otherwise puzzling phe-

nomena in clinical anesthesiology. On the one hand, Hill slopes of dose-response curves for anes-

thetics are reported between 10 and 40 (Miller, 2014); some of the steepest of the clinically used

drugs. This is traditionally interpreted as a sign of low inter-subject variability in responsiveness.

Nonetheless, approximately ten percent of patients transiently wake up during surgery as measured

by their ability to respond to a verbal command (Sanders et al., 2017; Russell, 2013; Gaskell et al.,

2017). Luckily, incidence of awareness accompanied by post-operative recall is much less frequent

(Avidan et al., 2008). However, even episodes of awareness associated with recall and high risk of

developing post-traumatic stress disorder (Osterman et al., 2001) are not reliably detected by the

existing EEG-based monitors of anesthetic state (Avidan et al., 2011). While anesthetics are thought

to impart dose-dependent effects on neuronal activity (Stanski et al., 1984; Katoh et al., 1998),

only weak correlations are observed between EEG characteristics and anesthetic concentration

(Whitlock et al., 2011). Indeed, both inter-individual differences (Whitlock et al., 2011) and fluctua-

tions of EEG measures of depth of anesthesia at a constant drug concentration (Bloom et al., 2005)

obscure the relationship between drug concentration and the observed state of the EEG. It is likely

that the traditional population-based approach of estimating the relationship between the concen-

tration of the drug and the response dramatically under-represents the within and inter-subject vari-

ability. Indeed, under most circumstances, each animal is tested only once at each drug

concentration. The repeated testing of each animal under a fixed drug concentration is more akin to
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the clinical scenario where the patient is exposed to many surgical stimuli that can elicit stochastic

fluctuations in the level of consciousness.

The Hill slope value observed in our study was approximately an order of magnitude lower than

the previously published data (Friedman et al., 2010; Joiner et al., 2013). This relative decrease in

Hill slope reflects high inter-individual variability and stochastic fluctuations in each individual. There

are several significant differences between our experimental paradigm and those explored in the

previous work. Previous work, guided by purely pharmacokinetic considerations, used shorter isoflur-

ane exposures. In contrast, here we measured anesthetic responsiveness after a two-hour equilibra-

tion time. Under most circumstances, Markov processes lead to a single equilibrium distribution of

states (Roman, 1989). The time it takes to reach this equilibrium, however, is dictated by, among

other things, the degree of resistance to state transitions. Thus, one reason for the discrepancy

between our Hill slope estimate and that published previously is that our analysis assures that the

population of animals is at a behavioral steady state. In order to reliably anesthetize an individual

after a short exposure, higher concentrations of anesthetics are necessary. Indeed, our EC50 estimate

(0.54–0.55% isoflurane) is significantly lower than that published in the previous work (0.9% for

induction and 0.83% for emergence) (Friedman et al., 2010). Another fundamental difference

between our approach and that used in the previous work is that we tested mice repeatedly. In con-

trast, in the previous work, mice are typically tested only once at each concentration. Repeated test-

ing revealed trial-to-trial fluctuations. These fluctuations increase the apparent variability in

responsiveness, thereby decreasing the apparent Hill slope of the population.

The detailed mechanism of these stochastic fluctuations is not known as anesthetics exert effects

on many molecular targets distributed broadly throughout the brain and spinal cord. A number of

lines of evidence converge on the fact that anesthetics at least in part hijack the sleep-wake circuitry

by exciting sleep-promoting and inhibiting wake-promoting neurons (Zhang et al., 2015;

Moore et al., 2012; Vazey and Aston-Jones, 2014; Nelson et al., 2002). Switching between sleep

and wake is thought to be mediated by the reciprocal inhibition between these neuronal popula-

tions. Networks consisting of reciprocally inhibitory neuronal populations tend to exhibit self-rein-

forcing behavior. Once sleep-active neurons activate beyond a certain threshold, they shut down the

wake-active neurons thereby decreasing their inhibitory effects and further strengthen mutual excita-

tion amongst the sleep-active neurons (Saper et al., 2005). The converse happens during wakeful-

ness. In the absence of perturbations, the network consisting of such mutually inhibitory self-

reinforcing neuronal populations will remain in the same state indefinitely. Once sufficient noise is

added, however, the system will stochastically switch between consolidated states of sleep and

wakefulness. Theoretical investigations of bistable neuronal networks suggest that activity within

such mutually inhibitory neuronal populations can be well approximated by a diffusion on an energy

landscape with two potential wells; one for each stable activity pattern (Moreno-Bote et al., 2007).

Anesthetics can therefore be thought of as stabilizing (deepening) the wells associated with unre-

sponsiveness and de-stabilizing the wells associated with wakefulness. The degree to which these

states are stabilized by clinically relevant doses of anesthetics is apparently insufficient to consis-

tently keep all animals in the anesthetized state. Hence, stochastic fluctuations may be responsible

for episodes of awareness that occur during surgeries.

The importance of noise in systems near a bifurcation between two stable behaviors is not limited

to circuits that control sleep and wakefulness (Chialvo, 2010; Destexhe and Contreras, 2006). Neu-

ronal architectures similar to those involved in sleep and wakefulness are thought to play a role in

diverse processes such as sensory perception (Moreno-Bote et al., 2007), decision making

(Wong and Wang, 2006), seizure generation (Suffczynski et al., 2004; Fröhlich et al., 2010), and

working memory (Camperi and Wang, 1998) to name a few. Mathematically similar phenomena

govern transitions between normal sinus rhythm and arrhythmias (Kim et al., 2009). Thus, it is likely

that stochastic fluctuations between distinct responses observed under constant drug concentration

are not unique to anesthetics.

To determine whether a bistable system with noise can explain the striking correlations between

P(U|U) and P(R|R) observed herein, we simulated such a neural-network-inspired system with para-

metrically varied amount of noise. The results of this simulation show that in order to obtain such

correlations, the amount of noise must be conserved among individuals. Another issue addressed by

the modeling approach is the binary nature of behavioral responses in each individual. In zebrafish,

this binarization was motivated by the observation of a bimodal distribution of distances travelled by
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each zebrafish after the tap stimulus. This bimodality naturally suggests that the responses fall into

two distinct classes. Yet, similar measurements are much more difficult to perform for the righting

reflex. Thus, it is not clear from behavioral observations of RR alone, whether the underlying pro-

cesses that give rise to a response on a RR trial are continuous or discrete. Furthermore, even if the

underlying processes are discrete it is not a priori clear that only two states are present. We

observed that dwell times in both the responsive and the unresponsive state are well-approximated

by a single exponential distribution. Thus, we only find empirical evidence for two states. Longer

recordings may be required in future work to determine whether other states are needed to

completely describe the data. The two state Markov model used to analyze behavioral responses,

can be seen as a natural discretization of the continuous bistable system exemplified by our model-

ing approach. For most reasonable choices of threshold, the continuous system and its discrete

approximation will yield similar results.

In some ways, our observations of stochastic switching between different states at a fixed drug

concentration are similar to those well known for single receptor molecules (Hoshi et al., 1990;

Papke et al., 1989; Hille, 2001; Colquhoun and Hawkes, 1995; Tank et al., 1982). There is an

important distinction, however, between molecular scale state transitions and those observed at the

behavioral level in animals. At the molecular scale, differences between receptors are largely imma-

terial—the same stochastic model can be used to describe state transitions in all receptors of a par-

ticular kind. Thus, observing a single receptor molecule over time is sufficient to determine the

response of a population of such receptors. Within intact multicellular organisms, in contrast, we

show that the transition probabilities were significantly different amongst highly genetically similar

(Uchimura et al., 2015) and genetically outbred individuals exposed to the same anesthetic concen-

tration. Observation of one individual on many trials does not equate to observing a population of

individuals. Indeed, at population level EC50, some animals were three times as likely to be respon-

sive as other individuals from the same population. Furthermore, these individual differences were

consistent across time in each individual.

The inter-individual variability in the transition probabilities that govern switching between

responsive and unresponsive states was constrained such that the sum of the diagonal elements was

a constant. This constraint is evolutionarily conserved across vertebrates from zebrafish to mice.

Note that the sum of the diagonal elements in a square matrix is known as the trace and is equal to

the sum of its eigenvalues. The largest eigenvalue of a transition probability matrix for a reversible

Markov process is 1 (Levin and Peres, 2017). The fact that the trace is approximately the same in all

individuals under similar experimental conditions implies that the spectral gap of the 2 � 2 transition

probability matrix defined as, l1�l2, where ln is the nth eigenvalue is also a constant conserved

among individuals. The spectral gap of the matrix sets its mixing time, or the time it takes for a sys-

tem starting out in a random distribution of states to approach its equilibrium distribution. In this

particular case, the equilibrium distribution is the overall probability that a given animal will be able

to respond to a stimulus. Boltzmann equation asserts that diffusive systems of the kind used in our

model come to a single equilibrium distribution that depends just on the energy function. The time

it takes to reach this equilibrium distribution of states, however, depends on the amount of noise.

The more noise is added to the system, the quicker it reaches the equilibrium distribution. Thus,

there is a fundamental relationship between the conservation of the spectral gap across individuals

and the tightly controlled noise in a continuous system characterized by a two well potential. In a

clear departure from the predictions made by the population-level dose-response curve, our findings

indicate that the equilibrium probability of responding to a stimulus at a given drug concentration is

different for distinct individuals. The time it takes to reach this behavioral equilibrium, however, is

conserved amongst animals. This strongly implies that the noise which drives state transitions

between responsive and unresponsive states is tightly biologically controlled. A similar observation

has been made for stochastic influences on gene expression (Elowitz et al., 2002).

On the one hand, our results may be seen as disappointing for the clinical practice of anesthesiol-

ogy. Because of the strong influence of stochastic forces, it does not appear possible to keep a sub-

ject reliably in an anesthetized state without exposing them to the potentially dangerous high

concentrations of anesthetics associated with subsequently impaired cognition (Whitlock et al.,

2014; Chan et al., 2013; Fritz et al., 2016). Yet, the fact that variability in transition probabilities is

constrained offers a possible novel avenue for improvement by developing therapies specifically

aimed at state stabilization. Selective stabilization of the unconscious state could provide a solution
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to minimize the risk of spontaneously shifting into a brain state where awareness is possible, without

requiring drug concentrations prone to adverse effects. How might this be achieved? One possibility

is to target the mechanisms that are known to affect the stability of the sleep-wake circuitry. For

instance, interference with orexinergic signaling destabilizes both sleep and wake states thereby

increasing the frequency of spontaneous transitions between sleep and wakefulness

(Mochizuki et al., 2004). Interestingly, interference with orexin signaling also affects responses to

anesthetics (Kelz et al., 2008; Shirasaka et al., 2011; Tose et al., 2009; Dong et al., 2009).

Detailed investigation of the synergy between anesthetics and modification of noise inherent in neu-

ronal networks that control sleep and wakefulness may help develop novel therapies that will allow

clinicians better control over the state of each individual patient.

Materials and methods

Animals
Studies were approved by the Institutional Animal Care and Use Committee at the University of

Pennsylvania and were conducted in accordance with National Institutes of Health guidelines. For

larval zebrafish (Danio rerio) experiments, Tübingen long fin wild-type zebrafish were mated (Zebra-

fish International Resource Center, OR), and the embryos raised for 5 days in constant darkness. At

5 days post-fertilization (dpf), the larvae were used for the experiments (n = 120). For mouse experi-

ments, inbred male wild-type C57Bl/6 mice (Jackson Laboratories, ME) aged 16–24 weeks (n = 60)

were used in righting reflex behavioral assays. One group of 20 mice was exposed to 0.6% and 0.9%

isoflurane. A second set of 20 mice were exposed to 0.3% isoflurane. A third set of 20 mice were

exposed to 0.4% and 0.7% isoflurane.

Isoflurane exposure with Righting Reflex evaluation
All mice were acclimatized to sealed, temperature-controlled, 200 mL cylindrical chambers with

100% oxygen flowing at 200 mL/minute, as previously described (Sun et al., 2006). This flow rate

ensures isoflurane chamber equilibration within 5 min (Figure 2—figure supplement 3). Mice were

exposed to 0.90%, 0.7%, 0.60%, 0.4% or 0.30% isoflurane in 100% oxygen for 4 hr, beginning at

ZT12-ZT14, corresponding to the period of maximal activity and wakefulness. Chamber isoflurane

concentrations in all assays were confirmed using a Riken FI-21 refractometer (AM Bickford, NY.). As

tolerance to repeated isoflurane exposures does not occur (Smith et al., 1979), mice were exposed

to each isoflurane concentration a total of four times over the course of 3 weeks. The presence or

absence of the righting reflex (RR) was checked every 3 min, starting after 2 hr of isoflurane exposure

to assure pharmacokinetic equilibration. RR was assessed as described previously (Sun et al., 2006).

A mouse was considered to have an intact righting reflex if it was able to restore its upright posture

twice in a row after being turned on its back by rotating the anesthetic chamber without interrupting

anesthetic delivery. Otherwise, the righting reflex was considered to be absent. Forty RR assess-

ments were performed per animal per exposure. In total, 160 RR assessments were performed on

each mouse at each anesthetic concentration.

Propofol exposure with Startle Reflex evaluation in zebrafish
At 5 days post fertilization (dpf), individual larvae were placed into a 96-well glass plate (JG Fin-

neran, 500 mL volume wells). Seventy-two zebrafish were exposed to 3 mM propofol in E3 medium,

while 48 zebrafish were exposed to E3 alone (Kaufman et al., 2009). Larvae were then placed into

the DanioVision (Noldus, Leesburg VA) behavioral system. Startle reflex experiments were per-

formed at a maximal intensity tap every 30 s for 4 hr. This choice of inter-stimulus interval was based

upon the lack of habituation to acoustic and vibrational stimuli in larval zebrafish when these stimuli

are delivered every 15 s (Burgess and Granato, 2007; Woods et al., 2014). The histogram of the

total distance travelled in the first second after each stimulus was bimodal suggesting an all-or-none

response (Figure 2—figure supplement 2C). A threshold of 0.4 mm (approximately 1/10 of a 5 dpf

zebrafish’s body length), was chosen on the basis of this histogram to distinguish between respon-

sive and unresponsive startle reflex assessments (Kimmel et al., 1995).
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Empirical estimation of transition probability matrices
The outcomes of the behavioral response assays, righting reflex (RR) and startle reflex (SR), are

binary. The output is a series of zeros and ones (one for intact RR or SR and zero otherwise). The

simplest model that describes this time series is a stochastic Markov process. Markov models relate

the state of the system at time t to the state of the system observed at the previous time step t � 1,

as Xt = MX t�1, where the 2x2 transition probability matrix, M, constructed as shown below is the

fundamental quantity of interest.

M ¼
a 1� a

1� b b

� �

In the above matrix, a denotes the probability that the mouse determined to be responsive on

trial one will stay responsive on the next trial. b denotes the probability that an animal found to be

unresponsive on trial one will stay unresponsive on the next behavioral assessment. Note that

because the sum of probabilities in a row of M must be 1, probabilities of transitions between the

awake and the anesthetized state are completely determined by finding a and b in a system with

just two states. The simplest possibility is that the probability of being in a particular state at time t

is the same for all trials (i.e. independent of the state of the system) (Roman, 1989). This corre-

sponds to a scenario where, b = 1 � a. This particular type of process is called a Bernoulli process.

Conversely, the future outcome of a behavioral trial may depend on the outcome of the previous

trial. One manifestation of this history-dependence is inertia; the system tends to persist in a particu-

lar state. Inertia increases as the diagonal elements (a and b) of the transition probability matrix

approach one. a and b were empirically estimated from the binary sequence of behavioral outcomes.

For instance, to calculate a, we computed the fraction of trials where the animal responded to the

stimulus on two consecutive trials. Formally, this corresponds to P(Rt|Rt�1) or P(R|R).

Comparison between Bernoulli process and behavioral response
By definition, a Bernoulli process is a stochastic process in which the probability of a given outcome

(positive RR or SR) is the same for every trial. This is equivalent to adapting the concept of effective

concentration to an individual. For a given effective concentration, ec, computed as the overall prob-

ability of positive RR or SR, the Bernoulli process can be expressed as the following transition proba-

bility matrix.

Mb ¼
ec 1� ec

ec 1� ec

� �

Mb is completely specified by a single experimentally determined parameter, ec. For the pur-

poses of simulations, we experimentally determined drug potency as the average response probabil-

ity across all RR or SR trials and simulated the Bernoulli process given by Mb. Mbwas used to

simulate 80 experiments consisting of 40 trials each to mimic experimental conditions in mice (72

experiments each consisting of 360 trials were simulated for the zebrafish experiments). Initial states

were randomized in each simulated experiment. To verify that the simulated Bernoulli process and

experimental observations give rise to similar drug potency, we compared the simulated and

observed ec. To test the hypothesis that behavioral observations exhibit inertia or resistance to state

transitions, we compared the observed probability of state transitions, PðUjRÞþPðRjUÞ
PðRjRÞþPðUjUÞþPðUjRÞþPðRjUÞ, in the

observed and the simulated time series. As an additional test of adequacy for describing experimen-

tally observed time series by a Bernoulli process, we compared the tendency of the system to stay in

the unresponsive state, P(U|U), to probability of becoming unresponsive after being responsive on

the previous trial, P(U|R).

Inter-individual variability
The transition probability matrix for a two-state Markov process has two free parameters. A transi-

tion probability matrix estimated for each specific individual can therefore be represented by a point

on a plane spanned by the diagonal elements of the matrix. Principal component analysis (PCA) was

used to capture the maximal inter-individual variance between transition probability matrices. To

determine whether the transition probability matrix is a consistent trait of each individual animal, we
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determined the correlation in position of each individual along the first principal component (PC)

across time. Statistical significance of this correlation was assessed using a permutation test (10,000

permutations).

Decoding drug concentration from individual responsiveness
To quantify how reliably the drug concentration can be inferred from the observed behavioral

responses of each individual, we applied Bayes’ theorem:

PðDrugjResponseÞ ¼
PðResponsejDrugÞPðDrugÞ

PðResponseÞ

This analysis was performed to determine how reliably one can distinguish between exposures to

0.6% and 0.3% isoflurane in mice or 0 vs. 3 mM propofol in zebrafish.

Since mice exposed to 0.6% and 0.3% isoflurane were from two separate populations, we wanted

to further investigate whether it is possible to infer drug concentration from behavioral responses

within an individual exposed to two drug concentrations. For this purpose, we exposed a separate

cohort of twenty mice on eight occasions, four times each to 0.4% and 0.7% isoflurane. Here, the

collective trials at each concentration were pooled together for each individual (160 trials), and a

bootstrap resampling technique with replacement was used to generate a response probability dis-

tribution for each concentration for each individual mouse. 1000 bootstraps consisting of 20 ran-

domly chosen trials were taken, where the average response probability of each bootstrap was

recorded. Probability distribution functions were then fit to each mouse’s bootstrapped response

probabilities for both isoflurane concentrations. Overlap between the two concentrations was com-

puted for each mouse by finding the union of the two distributions. At the population level,

response probability distributions were computed based on average response probabilities for each

animal, and overlap was computed in a similar fashion.

Hill slope estimation from steady state population response
probabilities
The population response probabilities observed in Figure 2B and Figure 2—figure supplement 1

suggest a shallower dose-response as compared to previously published population-based dose-

response curves (Friedman et al., 2010; Joiner et al., 2013; Sun et al., 2006). In order to compute

the aggregate dose-response, we fit sigmoid curves to jackknifed subsamples across all tested iso-

flurane concentrations. Data from one animal at each concentration was removed for each subsam-

ple, and the remaining subset of data was fitted to a sigmoidal curve:

1�R¼
1

1þ EC50=Isoð ÞH

where R is the righting probability, Iso is the isoflurane concentration and the two paramters EC50

and H are the half-maximal effect concentration and the Hill slope respectively. Fits were calculated

such that the sum of the squared error was minimized between the subsample values and sigmoid.

We constrained the fit such that the sigmoid value was 1 at 0.0% isoflurane, and 0 at 0.9% isoflurane.

Mean and 95% confidence intervals were calculated for the EC50 and the Hill slope.

Modeling of a bistable neuronal network
The modeling approach here is essentially identical to that in Proekt and Hudson (2018) and Mor-

eno-Bote et al. (2007). Activity patterns of the bistable neuronal network consisting of two neurons

can be parametrized as a function of the difference between activity of a neurons and b neurons

x = Activitya-Acivityb. To express the fact that mutual inhibition and self-excitation give rise to the

winner-take-all behavior, Moreno-Bote et al. (2007) used the following energy function that we

adapt here:

EðxÞ ¼ x2
X2

2
� 2

� �

This function has two energy minima x=(�1, 1) corresponding to b-dominated (‘anesthetized’)
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and a-dominated (‘awake’) activity states, respectively. To add the effects of anesthetics we modi-

fied this function as follows (Proekt and Hudson, 2018)

Eðx; iÞ ¼ x2
X2

2
� 2

� �

þ iðx� 1Þ2þð1� iÞðxþ 1Þ2

where i is the anesthetic concentration i 2 [0, 1] in arbitrary units. Note that in this equation, the

effect of anesthetic on stabilizing the anesthetized state is proportional to that destabilizing the

awake state. This was done to reflect the results shown in Figures 4 and 6 which show strong nega-

tive correlation between P(U|U) and P(R|R) in both mice and zebrafish. Individual differences in right-

ing probability were simulated by changing i. This results in deepening the energy well in the vicinity

of x=-1 and making the well in the vicinity of x = 1 proportionally shallower. Time evolution of the

state of the network, x, was simulated as diffusion on an energy function using the standard

approach:

dx

dt
¼�D

qEðx; iÞ

qx
þ �

where D is the diffusion constant (assumed to be one in all simulations for simplicity). The first term

in the equation reflects the energy gradient. This assures that the system tends towards energy min-

ima. The second term, e, is zero mean Gaussian noise. To modulate the amount of noise in the sys-

tem, the standard deviation, s, of noise was altered parametrically. Simulations of this diffusion

equation were performed for 1,000,000 time steps. While x varies continuously, the distribution of x

is bimodal with peaks near the energy troughs x=(�1, 1). To compare simulations to our experimen-

tal results on RR and SR modeled using a two-state Markov process, we binarized x such that x > 0

was classified as ‘anesthetized’ and x � 0 was classified as ‘awake’. To further mimic the fact that RR

and SR are performed intermittently, the binarized time series from the simulation was decimated

100 fold. This binary time series was modeled by a two-state transition probability matrix using the

same methods as for the analysis of the RR and SR. The results of these simulations for different

anesthetic concentrations and s’s is shown in Figure 8D.

Statistical analyses
Analyses were performed using custom code written in Matlab using the Statistics and Machine

Learning toolboxes (Mathworks, MA). Steady state population response probabilities were con-

firmed through Pearson correlation coefficient analysis between the trial index and the response

probability averaged across animals. R2 values approaching zero indicate that the population is near

a steady state. Statistical comparisons of medians were performed using the nonparametric Mann-

Whitney U test. The Brown-Forsythe test for equal variances was used to compare variability in simu-

lated and experimental response probabilities. p<0.05 were considered statistically significant for all

comparisons.
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