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Emerging zoonotic viruses: new lessons on receptor and
entry mechanisms
Denis Gerlier1,2
Viruses enter the host cell by binding cellular receptors that

allow appropriate delivery of the viral genome. Although the

horizontal propagation of viruses feeds the continuous

emergence of novel pathogenic viruses, the genetic variation of

cellular receptors can represent a challenging barrier. The

SARS coronavirus, henipaviruses and filoviruses are zoonotic

RNA viruses that use bats as their reservoir. Their lethality for

man has fostered extensive research both on the cellular

receptors they use and their entry pathways. These studies

have allowed new insights into the diversity of the molecular

mechanisms underlying both virus entry and pathogenesis.
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Mankind is under a permanent threat from novel patho-

gens qualified as emerging [1,2��,3]. Here I review the

receptors and mode of entry of three emerging zoonotic

viruses, responsible for rare but deadly diseases, whose

natural reservoir is the bat: severe acute respiratory syn-

drome coronavirus (SARS-CoV), Hendra (HeV), Nipah

(NiV), Ebola (EboV), and Marburg (MarV) viruses.

SARS-CoV: a dangerous affinity
SARS-CoV has a �30 kb positive RNA genome and the

crown-like shape typical of the Coronavidae. A regular array

of viral spike glycoprotein (S) trimers constitutes the viral

envelope. S mediates binding to the cellular receptor

Angiotensin Converting Enzyme 2 (ACE2) [4��], and

ensures the viral-cell membrane fusion that allows

virus entry.

As an ectometalloprotease with monocarboxypeptidase

activity, ACE2 cleaves the vasoconstrictor Angiotensin

II octapeptide into the vasodilatator Ang1-7 heptapeptide.
www.sciencedirect.com
ACE2 protects the heart, lung and kidney from deleterious

vasoconstriction and prevents the onset of an acute respir-

atory distress syndrome [4��,5–8]. The tissue distribution

of ACE2 (pneumocytes I and II, lung epithelium progeni-

tor cells, small intestine enterocytes, kidney, heart cardi-

omyocytes and endothelium) mostly correlates with the

known replication sites of SARS-CoV, and could explain

the poor lung repair following SARS infection [4��,9].

The ectopeptidase Type II transmembraneproteaseserine

subfamilymember2(TMPRSS2)was recently identifiedas

a companion molecule of ACE2 [10�,11�,12�]. TMPRSS2 is

detected on the epithelium of the small intestine and

respiratory tract, that is the major cell targets of SARS-

CoV, but not on the endothelium, which is refractory to

SARS-CoV infection [13,14]. TMPRSS2 and ACE2 phy-

sically interact [10�]. Only a few S proteins get cleaved by

TMPRSS2 to allow a pH- and cathepsin-independent

efficient entry of SARS-CoV [10�,12�]. TMPRSS2 cleaves

S protein at sites distinct from those ascribed to trypsin and

cathepsin L [12�]. Upon contact of ACE2 with S protein,

ACE2 is also cleaved by TMPRSS2 [10�]. When expressed

on opposing membranes, SARS-CoV S and the

ACE2 + TMPRSS2 complex induce intercellular fusion

[11�]. However, newly expressed S proteins escape clea-

vage by TMPRSS2 allowing the production of virions

decorated with uncleaved S [10�,11�,12�], possibly because

the tripartite association is prevented intracellularly.

The present model of virus entry predicts the following

(Figure 1a): SARS-CoV S protein binds to the ACE2 re-

ceptor via the concave S424–494 region of the receptor

binding site (RBD) that cradles over 17 nm2 of the outer

surface of the N-terminal lobe of the ACE peptidase

domain, that is outside the enzymatic site [15��]. This

activates TMPRSS2 to cleave a few S proteins into fusion-

competent S1-S2 homodimers [10�,11�,12�,16], which

immediately undergo typical class I fusion protein struc-

tural changes [17] which permit the viral envelope to fuse

with the plasma membrane. S1-S2 heterodimers are prob-

ably too unstable to be incorporated into infectious virus

particles [16,18]. Moreover, activated TMPRSS2, and

possibly ADAM17/TACE (TNFa converting enzyme)

[4��,19], concomitantly cleave ACE2. This results in the

massive shedding of ACE2 ectodomains [10�], probably

due to amplification of the constitutive pathway [5].

ACE2 shedding is not required for SARS-COV entry

[5,20], but is probably responsible for the associated major

lung failure. Indeed, soluble S both induces ACE2 shed-
Current Opinion in Virology 2011, 1:27–34
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(a) Entry steps of SARS-CoV and pathogenic consequences, with (1) virus attachment to the cell via binding of S to ACE2, (2) activation of TMPRSS2

ectoprotease that leads to the cleavage and activation of virus S envelope protein into the fusion competent S1–S2 heterodimer, (3) fusion of the virus

envelope with the plasma membrane to deliver the nucleocapsid into the cytoplasm and allow virus replication, (4) proteolytic cleavage by TMPRSS2

(and/or ADAM17/TACE) ectoprotease with shedding of the ectodomain of the majority of ACE2 molecules independently of their use by SARS-CoV

leading to (5) lung failure. (b) Relationship between the affinity of SARS-CoV S protein with the ACE2 receptor, entry efficiency, pathogenicity and inter-

human transmission.
ding and worsens the clinical signs of SARS [21]. In

humans and according to virus strain diversity, S/ACE2

affinity correlates with the efficacy of virus entry, the level

of ACE2 cleavage and the intensity of the pathology.

Furthermore, the highest affinity is associated with inter-

human transmission [20,22��] (Figure 1b). Antibodies

targeting the S binding site on ACE2 strongly inhibit

viral infection [23]. The correlation between S/ACE2

affinity and SARS-CoV pathogenicity extends to the host

range for other mammal species (except bats) in deter-

mining whether a particular ACE2 protein can act as a

receptor for SARS-CoV or not (including among bats)

(Figure 2b) [23–27]. Consequently, the accuracy of an

animal model of human infection critically depends on

the capacity to mimic the affinity between the human

ACE2 and viral S protein. In mammals, except bats,

SARS-CoV induces a ‘toxic-like’ syndrome by triggering

a devastating massive cleavage of the cellular receptor
Current Opinion in Virology 2011, 1:27–34
used for entry, the molecular basis of which remains to be

documented. Why bats do not exhibit clinical signs of

infection by SARS-CoV remains puzzling.

Henipaviruses: a universal receptor?
NiV and HeV constitute the Henipavirus genus of the

Paramyxoviridae family and are responsible for fatal

respiratory and neurological diseases. Their non-segmen-

ted negative strand RNA genomes code for two envelope

glycoproteins. The fusion protein F is synthesized as a

precursor maturated into a functional F1–F2 heterodimer

by cathepsin L via a clathrin-mediated recycling endo-

somal pathway [28,29]. The attachment protein G is a

tetramer consisting of two disulfide bridged dimers. Like

the morbillivirus H and parainfluenzae HN proteins, its C-

terminal globular head is folded into a six b-sheet blade

propeller surmounting a stalk, transmembrane region and

cytosolic tail. The sugar-free b1–b6 dimer interface is
www.sciencedirect.com
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Figure 2
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Crystal structure of ephrinB2 in complex with EphA4, EphB2, EphB4, HeV and NiV G showing nearly identical binding modes and affinity ranking of

ligands. Structures (PDB identification codes indicated in parenthesis) were drawn using FirstGlance in Jmol (http://molvis.sdsc.edu/fgij/). Phe120,

Asn123, Trp125 and Leu129 of the F–G loop of ephrinB2 are decorated with golden circles for easier perception.
conserved. The two heads rotate relative to each other by

08, 638 and 30–408 for henipavirus G, measles virus H and

HN, respectively, while the buried area is 9–10 nm2 for G

and H against 18 nm2 for HN [30]. The sugars of G are

poor in the DC-SIGN ligand oligomannose but rich in the

sugar moiety recognized by LESCtin, a lectin specifically

expressed on the sinusoidal endothelial cells of lymph

node and liver [31].

G protein attaches to the cellular receptors ephrinB2 and

ephrinB3 [32]. Ephrins are ligands of Eph receptor tyro-

sine kinases involved in cell homeostasis [33�]. EphB4

and its ligand ephrinB2 are expressed on the endothelial

cells of veinules and small arteries, respectively [34].

Their reciprocal trans-endocytosis acts as a repulsive

signal during vasculogenesis [33�]. EphrinB2 is also

expressed in the smooth muscle cells of vessels [34].

The tissue distribution of ephrinB3 is restricted to the

spinal cord and the corpus callosum. [35]. EphrinB2/B3

expression correlates with the tropism of NiV in infected

humans [32].

Ephrin binding sites on NiV and HeV G map to the top of

the globular head over the b5 and b6 blades [36��], that is

away from the center and side of the propeller, where
www.sciencedirect.com
sialic acid and protein receptors bind parainfluenza HN

proteins and measles H, respectively [37]. Astonishingly,

both the physiological ligands of ephrinB2, EphB2,

EphB4 and EphA4, and the G proteins of NiV and

HeV bind the same site (F113–K131) on the G–H loop

[30,31,36��,38,39] (Figure 2). However, the henipavirus G

proteins exhibit the highest affinity to ephrinB2 [38,40�].

EphrinB2 from mammal species, including human, horse,

mouse, pig, cat, dog, and bat, can act as efficient cellular

receptor for NiV. Indeed, the G–H loop FTIKFQE(-

F,Y)SPNLWG(L,H)EF sequence is highly conserved

between ephrinB2 and ephrinB3 including in those from

the distantly related species zebrafish and chicken as

supported by successful replication of NiV in chicken

embryo [41]. Bronchial epithelium gets infected in the

pig and cat [42–44] but not in human [45] suggesting

ectopic expression of ephrinB2/3 in the former species. A

LW/YM substitution prevents ephrinB1 from acting as a

receptor for NiV and HeV and binding to EphB4 and

EphB2 receptor [35,46,47]. Correlatively, (i) all ligands

compete with each other, (ii) the ephrinB2/3 binding site

on NiV-G is exquisitely neutralized by specific antibodies

in vitro and in vivo [48,49�] and (iii) there is a cross-

protection between NiV and HeV [50]. The affinity of
Current Opinion in Virology 2011, 1:27–34
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NiV-G and HeV-G for ephrinB2/B3 correlates with the

efficiency of virus entry [48,51].

Interestingly, whereas NiV G and F induce fusion of cells

expressing ephrinB2/B3, NiV preferentially enters after

internalization via macropinocytosis [52��], though acidic

pH is not required [52��,53]. Virus entry, but not mem-

brane fusion, is inoperative when the cytosolic tail of

ephrinB2 has its PDZ-binding motif deleted or Tyr304

mutated [52��]. These two motifs recruit Grb4 and the

P21-activated kinase 1 (Pak1)/CdC42/Rac1 complex that

govern macropinocytosis [33�,54,55,56�,57–59]. The need

for macropinocytosis while the fusion machinery is oper-

ative at the cell surface is puzzling. Macropinocytosis

occurs very rapidly upon contact [60] and could be faster

than the fusion step but then macropinocytosis inhibitors

would not be expected to prevent virus entry. Several

hypotheses can be proposed: (i) fusion requires a specific

Ca++ [61] and/or Na+ ionic environment as documented

for Semliki Forest virus [62]. (ii) NiV replication requires

a specific conditioning of the cytoplasm induced by con-

tacting ephrinB2/B3. (iii) The nucleocapsid needs to

reach a particular cytoplasmic location deeper in the cells,
Figure 3
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more favorable for viral polymerase activity. The latter

would not be unprecedented since forced rerouting of

virus normally entering by fusion at the cell surface into

the endocytic pathway results in hampered infectivity as

shown for pseudotyped measles virus and lentivectors

[63–65].

Filoviruses: an elusive receptor
The Filoviridae EboV and MarV cause severe hemorrha-

gic fevers and septic-like shock in humans [66]. Their

non-segmented negative RNA genomes code for the

envelope glycoprotein GP which ensures both attach-

ment to a (still elusive) cellular receptor and membrane

fusion. GP is cleaved by a furin-like protease into mature

GP1–GP2 heterodimers [67]. Curiously, mutation of the

furin-cleavage site does not abolish GP-mediated virus

entry due to alternative cleavage [68]. GP is heavily

glycosylated with sugar moieties recognized by LESCtin

and DC-SIGN/R lectins that can enhance but not med-

iate infection [69–72]. This high glycan content shields

MHC class I and b-integrin from antibody recognition

[73,74], a finding that explains the previously reported

apparent downregulation of the latter [75].
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r moieties (blue branches) of GP1 by DC-SIGN or LECStin (light green) (1)

the endocytic pathway (3) until the mucin-like domain (mucin) is cleaved

tar) being accessible for binding to the postulated receptor (dark green

) occurs (5). This triggers the conformational changes of GP2 (yellow) that

of the nucleocapsid (NC) into the cytosol (pale yellow background) where

edicted to be expressed at the cell surface, it has been included in every

res 4 to 6 may successively represent early, maturing, late and possibly

d membrane fusion steps.
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A cellular receptor of glycoprotein nature is predicted on

the basis of saturable binding of soluble GP [76] and loss

of binding after protease, periodate or tunicamycin treat-

ment [76,77]. In infected animals, the virus disseminates

in many tissues [66]. The EboV receptor is stocked in

trans-Golgi network membranes in all cell types including

the non-permissive T and B lymphocytes. It is exported

to the cell surface upon cell adhesion and internalized via

a microtubule-dependent and actin-dependent pathway,

respectively [78�,79�]. EboV and MarV GP cross-compete

for binding suggesting the use of a common receptor

[76,80]. However, 3 out of 4 key lysines (at positions

114,115 and 140) defining the receptor binding region

(RBR) of EboV GP1 [76] are not conserved in MarV GP1

[81��]. The structure of a soluble trimeric form of GP1–
GP2 reveals a GP1-based chalice form, lined by the RBR.

The fusion competent GP2 trimers cradle the chalice

stem, with the internal fusion peptide flanked by two b-

sheets. The RBR is mostly shielded by a glycan cap and a

mucin-like domain [82��], the cleavage of which by

cathepsins strongly enhances GP1–GP2 binding to the

cell surface [76,83]. However, lowering the pH neither

allows EboV entry at the cell surface, nor cell–cell fusion

by mucin-deleted GP1–GP2, and the GP/receptor inter-

action is stable at acidic pH [76,77,84��].

In effect, EboV mostly enters by macropinocytosis with a

requirement for lipid rafts, the Na+/H+ exchanger, Pak 1,

Rac1, Rab5, Rab7, RhoC GTPase and the vacuole closure

protein C-terminal binding protein 1 of E1A, CtBP/BARS

[59,85��,86��,87–89]. Constitutive macropinocytosis in

dendritic cells and macrophages fits with their permis-

siveness to EboV infection [90,91]. Activation of Ax1

enhances both macropinocytosis and EboV entry [92]

although the latter may be mediated by serum Gas6,

which was recently reported to mediate non-specific entry

for several enveloped viruses [93].

The EboV (and MarV) entry process lasts for about 1 h

[94,95] and can be schematized as follows (Figure 3):

Firstly, (i) EboV attaches to the cells via the GP1/GP2

interaction with DC-SIGN/R and/or LECStin and is (ii)

immediately internalized by constitutive and/or virus-con-

tact-induced macropinocytosis. (iii) After �30 min of

endocytic trafficking, EboV reaches a late endosomal

compartment, where (iv) the resident cathepsin B cleaves

off the mucin-like domain [83,84��,96] to (v) expose GP1’s

RBR so that the putative receptor can be recruited; then,

(vi) a late pH-dependent activation step of the mucin-

deleted GP1/GP2 complex triggers the fusion activity of

GP2, possibly via the reduction of a disulfide bridge [84��].

In conclusion, several lessons can be taken home. (i)

Susceptibility to a disease can be driven by the affinity

level between the viral attachment glycoprotein and its

cellular receptor. (ii) Evolutionary conserved orthologs of

a viral receptor can allow an extended host-range. (iii) A
www.sciencedirect.com
timely proteolytic activation of membrane fusion can

occur only upon binding to the receptor. (iv) A viral

glycoprotein may follow a complex maturation pathway

during endosomal trafficking.
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