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There is a significant difference in prognosis among different risk groups. Therefore,
it is of great significance to correctly identify the risk grouping of children. Using the
genomic data of neuroblastoma samples in public databases, we used GSE49710 as
the training set data to calculate the feature genes of the high-risk group and non-
high-risk group samples based on the random forest (RF) algorithm and artificial neural
network (ANN) algorithm. The screening results of RF showed that EPS8L1, PLCD4,
CHD5, NTRK1, and SLC22A4 were the feature differentially expressed genes (DEGs) of
high-risk neuroblastoma. The prediction model based on gene expression data in this
study showed high overall accuracy and precision in both the training set and the test
set (AUC = 0.998 in GSE49710 and AUC = 0.858 in GSE73517). Kaplan–Meier plotter
showed that the overall survival and progression-free survival of patients in the low-risk
subgroup were significantly better than those in the high-risk subgroup [HR: 3.86 (95%
CI: 2.44–6.10) and HR: 3.03 (95% CI: 2.03–4.52), respectively]. Our ANN-based model
has better classification performance than the SVM-based model and XGboost-based
model. Nevertheless, more convincing data sets and machine learning algorithms will
be needed to build diagnostic models for individual organization types in the future.
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INTRODUCTION

Neuroblastoma (NB) is an embryonal tumor derived from
immature embryonic cells of paravertebral sympathetic ganglia
or adrenal medulla, accounting for 15% of all childhood cancer
deaths (1, 2). The biological heterogeneity of NB is very obvious,
and some cases can regress spontaneously, but most of the tumors
show occult onset and progress rapidly (3). The International
Neuroblastoma Staging System (INSS) divides patients into low,
intermediate, and high-risk groups based on prognostic factors
(4). There is a significant difference in prognosis among different
risk groups (5). The overall survival rate of patients in the low-
moderate risk group could be greater than 95% by surgery alone
(6), while high-risk children have a poor prognosis, the long-term
disease-free survival rate is less than 50%, and the risk of later
metastasis and recurrence is higher (7). Therefore, it is of great
significance to correctly identify the risk grouping of children.
The development and use of the INSS guideline have provided
consistency in the staging of NB patients around the world, but
the guideline staging is postoperative, and the level of surgery can
affect the staging grade of the tumor.

With the rapid development of bioinformatics technology, we
have a deeper understanding of neuroblastoma. A large amount
of biological data has exploded, various biological databases
have been established, and various prediction models can be
established using mathematical knowledge (8–11). But there are
thousands of genetic data, and screening out the signature genes
will help us more quickly and easily distinguish between high-risk
and non-high-risk neuroblastoma patients. In order to improve
the accuracy and efficiency of tumor pathological diagnosis,
Marya et al. (12) proposed an artificial intelligence diagnostic
model to identify benign and malignant tumors. Experimental
studies found that the diagnostic model had an accuracy of 90%
in identifying benign and malignant tumors.

Both random forest (RF) (13) and artificial neural network
(ANN) (14) algorithms belong to machine learning. RF algorithm
can filter eigengenes and calculate the importance of each
eigengene to classification and is suitable for processing large
amounts of data (15). RF algorithm is an ensemble machine
learning algorithm and an extended variant of bagging (16).
First, use the random resampling method Bootstrap and
node random splitting method to generate multiple decision
trees, and on the basis of building Bagging ensemble with
decision tree as the base learner, further introduce random
attribute selection in the training process of decision tree,
and then adopt the classification results are obtained by
voting. Moreover, RF has the ability to analyze complex
interaction classification features, has good robustness to data
with missing values, and has a very fast learning speed. Its
feature importance measure can be used to perform feature
selection on high-dimensional data, which has been widely
used in various data classifications (17). ANN is a non-
linear function model that imitates the behavioral characteristics
of biological neural networks and has strong self-learning
and adaptive capabilities. There is also a layer of hidden
neurons between the input and the output in ANN. Each
input node is assigned a weight, and then the sum of the

weighted values is added to calculate the output amount for
discrimination (18).

Based on the genomic data of neuroblastoma samples in
public databases, we used the training set data to calculate
the differential genes of the high-risk group and non-high-
risk group samples, performed biological function analysis, and
assessed the differences in the tumor microenvironment of the
two groups of patients, and subsequently, we used RF to find
the feature genes of high-risk group in the DEGs between high
and non-high risk neuroblastoma, and then used ANN to build
a disease prediction model, and then used the test set to verify
the accuracy of the model. In addition, we also validated the
prognosis of the groupings according to our model, including
overall survival (OS) and progression-free survival (PFS), with a
dataset with survival data.

MATERIALS AND METHODS

Datasets
The gene profiles of GSE49710 (19) and GSE73517 (20)
[GPL16876, Agilent-020382 Human Custom Microarray 44k
(Feature Number version)] were obtained from Gene Expression
Omnibus (GEO1), which is an open functional genomics
database. We set GSE49710 as the training cohort, including
176 primary neuroblastomas samples with high-risk category
and 322 primary neuroblastomas samples with low-risk category,
and we set GSE73517 as the test cohort, including 56 primary
neuroblastomas samples with high-risk category and 49 primary
neuroblastomas samples with low-risk category. The gene profiles
of GSE85047 (21) (GPL5175 Affymetrix Human Exon 1.0 ST
Array [transcript (gene) version]) with survival data were also
obtained as validation data to validate the prognosis of the
groupings according to our model. GSE85047 included 283
primary neuroblastoma samples, of which 276 had overall
survival data and 275 had progression-free survival data.

Identification of Differentially Expressed
Genes
After processed and standardized raw data, DEGs between low-
risk category and high-risk category primary neuroblastomas
samples in the training cohort were identified by “limma” R
package (22). The threshold for significant DEGs was as follows:
|log2 fold change (FC)| > 2 and adjusted p-value < 0.05.
A volcano plot and a heatmap were drawn to visualize the
analysis results.

Functional Enrichment Analysis
The “clusterProfiler” R package (23) was applied to carry out
Gene Ontology (GO) which included biological process (BP),
cellular component (CC), molecular function (MF), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
for DEGs. Besides, we used metascape.org2 to perform GO and
KEGG analyses for DEGs again. A p < 0.05 was considered as the

1https://www.ncbi.nlm.nih.gov/geo/
2https://metascape.org/
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threshold. The bar plot was generated to visualize the enrichment
analysis results and a Network Diagram was generated to
visualize the relationship between enriched terms.

Construction of Protein–Protein
Interaction Network
STRING database3 (24) was used to construct the Protein–
Protein Interaction (PPI) network to analyze the functional
interactions of DEGs. An interaction score > 0.9 was set as
significant differences and isolated nodes were removed.

Comparison of 22 Tumor Immune Cell
Subtypes Between Low- and High-Risk
Category Groups
“CIBERSORT” R package (25) was used to determine the
proportions of 22 tumor immune cell (TIC) subtypes of each
sample, and we set the perm at 1000. A p-value < 0.05 was
considered a significant result. A violin plot and a bar plot were
drawn to show the differences in relative expression of 22 TICs
between low- and high-risk category groups. The correlation
between TICs in TME of primary neuroblastomas was visualized
by “corrplot” R package.

Feature Genes Screened by Random
Forest
A balanced iterative random forest algorithm was constructed by
“randomForest” R package (26) to select the feature genes from
DEGs for the high-risk category of primary neuroblastomas. For
the first step, we calculated the average model miscalculation
rate of all DEGs. Six nodes was selected as the best variable
number for the binary tree, and the best number of trees
contained in the random forest was set at 500. For the second
step, we used the decreasing accuracy method, also called the
Gini coefficient method, to construct a random forest model
and obtain the dimensional importance value from the model.
The DEGs with an importance value > 2 were chosen as the
high-risk category of primary neuroblastomas feature genes for
the subsequent analysis. A heatmap was drawn to show the
result of the unsupervised hierarchical clusters of the feature
genes in the training cohort using “pheatmap” R package.
Subsequently, we converted the expression data of the feature
genes into a score table called Gene Score. the expression value
of feature genes will be converted to 1, when the expression
value of an upregulated/downregulated gene in a certain sample
is higher/lower than the median expression value of the gene in
all samples, otherwise 0.

Construction of Artificial Neural Network
Model
We used “neuralnet” R package (27) to construct an artificial
neural network model of the feature genes (important variables),
which was composed of one input layer, one hidden layer, and
one output layer, to be used in classification and prediction of

3https://string-db.org/

the high-risk category of primary neuroblastomas. Five hidden
nodes were set and rectified linear unit was exploited as an
activation function in the hidden layer. And two nodes (Low-
/high-risk category of primary neuroblastoma) were set and a
softmax function was the activation function of each node in
the output layer. In this ANN model, the high-risk category
classification score was represented by the sum of the expression
levels of the feature genes multiplied by the product of the
weight scores. Area under ROC curve (AUC) (28) was calculated
using “pROC” R package (29) to assess the discriminative
ability of the model. AUC values vary from 0.5 to 1.0, where
0.5 represents random chance and 1.0 indicates a perfect fit.
Typically, AUC values greater than 0.70 suggest a reasonable
estimation (30).

Verification of Artificial Neural Network
Model
The training cohort (GSE49710) was used to train the ANN
model, and the test cohort (GSE73517) was used to test the
model. Next, we verified the prognostic effect of the ANN
model. According to this model, the validation set (GSE85047)
was divided into two groups, which were, respectively, defined
as high-risk subgroup and low-risk subgroup. Kaplan–Meier
analysis (31) was performed for the high-risk and low-risk
subgroups of the validation set using “survimer” R package,
and log-rank tests were used to assess statistically significant
differences. We evaluated the performance of the ANN model
by comparing the predictive results of the extreme gradient
boosting (XGBoost) model (32) and Support Vector Machines
(SVM) (33) model. All the three classifiers employed in the study
are state-of-the-art machine learning techniques that show good
performances in various applications. Statistical analyses were
conducted using R (version 4.0.5, R Core Team, Vienna, Austria).
All machine learning modeling was performed using the Caret
package, (34) and the application was built and deployed using
the Shiny package and server (35).

RESULTS

Identification of Differentially Expressed
Genes
After standardization of the microarray results from GSE49710,
DEGs were identified. (|log2 fold change (FC)| > 2 and adjusted
p-value < 0.05, Supplementary Table 1) Ultimately, 94 DEGs
were detected, most of which (88/94) were downregulated genes
in high-risk category primary neuroblastomas samples, while
6 were upregulated genes. The results were validated with a
volcano plot of all downregulated genes and upregulated genes
(Figure 1A). Figure 1B shows the DEG expression heatmap. The
heatmap illustrates the expression profiles of the 94 DEGs in the
low-risk and high-risk category groups, with red representing the
high-risk category groups, green the low-risk category groups,
red the upregulated DEGs, and blue the downregulated DEGs.
The volcano plot validated all downregulated genes in the green
plot and upregulated genes in the red plot.
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FIGURE 1 | Identification of differentially expressed genes (DEGs) in the training dataset. (A) Heat map of the DEGs; (B) volcano map of the DEGs.

Functional Enrichment Analysis and
Protein–Protein Interaction Network
Construction
In order to further investigate the biological functions of
the 94 DEGs, GO and KEGG analyses were performed. In
GO functional enrichment analysis, the DEGs were highly
enriched in the modulation of chemical synaptic transmission,
regulation of transsynaptic signaling, and neurotransmitter
transport/uptake/reuptake (BP); distal axon, vesicle, neuron
projection terminus, axon terminus, and terminal bouton (CC);
metal ion transmembrane transporter activity, sodium:chloride
symporter activity, neuropeptide receptor binding, and organic
cation transmembrane transporter activity (MF; Figure 2A).
The shared term level and the cluster of the overlap between
DEG lists are shown in circos (Figure 2B). In the KEGG
enrichment analysis, the DEGs were highly enriched in
Neuroactive ligand receptor interaction and Cocaine addiction
(Figures 2C,D). Furthermore, the enrichment analysis of the
DEGs was performed by metascape, which revealed that these
DEGs were markedly enriched in chemical synaptic transmission,
neurotransmitter transport, neuron projection morphogenesis,
cell junction assembly, Neuroactive ligand-receptor interaction,
and regulation of kinase activity (Figure 3A). The PPI network of
the DEGs was analyzed by using STRING. The PPI analysis of the
DEGs was performed by STRING, which revealed that there were
84 nodes and 46 edges (Figure 3B).

Immune Cell Infiltration in Primary
Neuroblastomas
We investigated the difference in immune infiltration
between high-risk category and low-risk category primary
neuroblastomas tissues by using the CIBERSORT algorithm.

Figure 4A shows the proportion of 22 subpopulations of
immune cells in individual samples, which revealed that there are
differences in the infiltration of each sample. Figure 4B shows
that compared with low-risk category primary neuroblastomas
tissues, a higher proportion of Plasma cells, memory B cells,
activated memory CD4 T cells, Neutrophils, and a lower
proportion of resting memory CD4 T cells, M2 macrophages,
activated mast cells were generally contained in high-risk
category primary neuroblastomas tissues. Subsequently, we
explored the relationship between each immune cell subtype in
the tumor microenvironment (TME; Figure 4C).

Feature Genes Screened by Random
Forest
Next, the 94 DEGs wad input into the RF classifier. The
relationship plot between the number of decision trees and the
model error is shown in Figure 5A; 500 trees were selected
as the parameter of the model. Finally, we chose 290 trees
which showed a minimum error in the model. And then, 32
DEGs with an importance greater than 2 were identified as the
candidate genes for further analysis. Among the 32 variables,
EPS8L1, PLCD4, CHD5, NTRK1, and SLC22A4 were the most
important (Figure 5B). The k-means unsupervised clustering was
performed in the training cohort based on these 32 important
variables. Figure 5C displays that the 32 feature genes could
be used to distinguish between the low- and high-risk category
samples in 498 samples.

Construction and Validation of Artificial
Neural Network Model
We used a training cohort to construct an ANN model
based on the ANN algorithm by using “neuralnet” R package
(Figure 6A). First, the expression data of feature genes were
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FIGURE 2 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional enrichment analysis. (A) Biological process,
cellular component and molecular function annotation diagram of differentially expressed genes (DEGs); (B) ring plot showing GO enrichment. The left side indicates
the DEGs, the red gene band indicates upregulation, and blue indicates downregulation. The band on the right with different colors represents different GO terms.
The connecting line indicates that the gene is included in the GO term; (C) KEGG annotation diagram of the DEGs; (D) ring plot showing KEGG enrichment. The left
side indicates the DEGs, the red gene band indicates upregulation, and blue indicates downregulation. The band on the right with different colors represents different
KEGG terms. The connecting line indicates that the gene is included in the KEGG term.

normalized. And then, the weight value of each feature gene
was converted into Gene Score. Supplementary Table 2 shows
the Gene Weight of each feature gene. One hidden layer and
five neurons were selected in the model. Using the “ROCR” R
package, the model classification performance was displayed by
the receiver operating characteristic (ROC) curve (Figure 6B).
The areas under the ROC curves (AUC) of our model were
close to 1 (AUC: 0.998 95% CI: 0.995–1.000), confirming the
robustness of the model.

Verification of Artificial Neural Network
Model
We used another dataset as the testing cohort to verify the
classification efficiency of the model score. In the same way as
the training cohort (GSE73517), the gene score of the testing

cohort was calculated. The AUC was 0.858 (95% CI: 0.774-
0.931), which indicated the stability and validity of the ANN
model (Figure 6C). Subsequently, we divided the validation set
into two groups according to the ANN model, and evaluated
the disease progression and overall survival of the two groups.
Kaplan–Meier plotter was used to analyze the subgroups, named
low-risk subgroup and high-risk subgroup, and the results
showed that the overall survival of patients in the low-risk
subgroup was significantly better than those in the high-risk
subgroup [log rank test, HR: 3.86 (95% CI: 2.44–6.10), p < 0.001;
Figure 7A]. And there was a statistically significant difference
in the cumulative risk of OS between the two subgroups (log-
rank test, p < 0.001; Figure 7B). Additionally, the progression-
free survival was further assessed in the validation set. The
results showed that the high-risk subgroup had significant
short progression-free survival time [log rank test, HR: 3.03
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FIGURE 3 | The enrichment analyses in metascape and protein–protein interaction (PPI) analyses in STRING. (A) Detailed information relating to changes in the
biological function of DEGs in datasets through the enrichment analyses. Network of enriched terms colored by cluster identity, where nodes that share the same
cluster identity are typically close to each other; (B) PPI network of DEGs. An interaction score > 0.9 was set as significant differences and isolated nodes were
removed.
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FIGURE 4 | The landscape of immune infiltration between low- and high-risk category groups. (A) The relative percentage of 22 subpopulations of immune cells in
the training cohort; (B) the difference in immune infiltration between low- and high-risk category groups. (The low-risk category group was marked as blue color and
the high-risk category group was marked as red color; p-values < 0.05 were considered as statistically significant.); (C) The correlation of 22 subpopulations of
immune cells. Red represents positive correlation; blue represents negative correlation.

(95% CI: 2.03–4.52), p < 0.001; Figure 7C]. And there was
a statistically significant difference in the cumulative risk of
PFS between the two subgroups (log-rank test, p < 0.001;
Figure 7D).

The ROC plots of the SVM-based and the XGBoost-
based models in the training and test datasets are shown in
Figures 8A–D, respectively. Using bootstrapping validation, the
area under the ROC curve values for the SVM model were
found to be 0.988 (95% CI: 0.980–0.995) and 0.795 (95% CI:
0.730–0.860) in the train and test groups, respectively. The area
under the ROC curve values for the XGBoost model were found

to be 1 (95% CI: 1–1) and 0.638 (95% CI: 0.568–0.708) in the
train and test groups, respectively. This indicates the two models
performed well in the train groups, but not in the test groups.

DISCUSSION

Early and accurate differentiation of neuroblastoma patients
between high-risk and non-high-risk groups has good clinical
value, as there are significant differences in treatment and
prognosis between the two groups (36). At present, the grouping
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FIGURE 5 | The results of the top 30 genes screened by random forest. (A) The plot of performance in log scale against epoch number; (B) the importance of the
top 30 genes ranked by the mean decrease of accuracy; (C) heat map of the top 30 genes.

is mainly based on histology and immunohistochemistry, but
such diagnosis is often based on surgery and the accuracy is
still insufficient (37). In addition, the changes in cancer first
appear at the gene level, and histological changes are always

a dynamic process, so the results are prone to bias. In recent
years, the development of machine learning algorithms and
the explosion of gene expression data in public databases have
provided new biomarker approaches to disease diagnosis or
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FIGURE 6 | Construction of artificial neural network (ANN) model. (A) ANN model has 30 inputs, 5 hidden neurons, and 2 outputs. In this case, the 30 inputs
represent the category values of 30 feature DEGs; (B,C) the receiver operating characteristic curve of the predictive model in (B) training dataset and (C) validation
dataset.

prognosis. In this study, we established a disease grouping
model based on high-risk grouping characteristic genes using
random forest combined with the artificial neural network,
providing a complementary tool for elucidating the biological
process of high-risk neuroblastoma and risk stratification of
cancer. Our goal is to establish a prediction model that can
accurately assess the risk of patients before treatment, accurately
predict the prognosis of patients, help us develop a more
appropriate self-management program, and rationally allocate
medical resources.

First, we identified 88 down-regulated DEGs and 6 up-
regulated DEGs in the dataset GSE49710 between the

high-risk and non-high-risk samples. GO and KEGG
enrichment analysis revealed that high-risk neuroblastoma-
associated DEGs were involved in multiple GO terms and
pathways, reflecting the dynamics and complexity of their
pathogenesis, modulation of chemical synaptic transmission,
regulation of transsynaptic signaling, and neurotransmitter
transport/uptake/reuptake. The modulation of chemical
synaptic transmission, regulation of transsynaptic signaling, and
neurotransmitter transport/uptake/reuptake are important in
the function of the nervous system. We assessed differences in
immune cells in the tumor microenvironment between high-risk
and non-high-risk groups and found a higher proportion of
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FIGURE 7 | The Kaplan–Meier survival analysis for neuroblastoma patients divided into high-risk subgroup and low-risk subgroup. (A) Kaplan–Meier survival curves
(log-rank test, HR: 3.86 (95% CI: 2.44–6.10), p < 0.001) and (B) cumulative risk curves (log-rank test, p < 0.001) of OS for high-risk and low-risk subgroup in
validation set; (C) Kaplan–Meier survival curves [log-rank test, HR: 3.03 (95% CI: 2.03–4.52), p < 0.001] and (D) cumulative risk curves (log-rank test, p < 0.001) of
PFS for high-risk and low-risk subgroup in validation set.

Plasma cells, memory B cells, activated memory CD4 T cells,
Neutrophils and a lower proportion of resting memory CD4
T cells, M2 macrophages, activated mast cells were generally
contained in high-risk category primary neuroblastomas tissues,

suggesting that this is an immune apathetic tumor (38). We then
identified 32 characteristic genes for high-risk neuroblastoma
based on random forest algorithm, among which CHD5 is
a tumor suppressor at 1P36, which is often lost or silenced
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FIGURE 8 | Receiver operating characteristics (ROCs) curve for the SVM-based and the XGBoost-based model in the training and test datasets. (A) The ROC curve
for SVM-based model in training set; (B) the ROC curve for SVM-based model in test set; (C) the ROC curve for XGBoost-based model in the training set; (D) the
ROC curve for XGBoost-based model in the test set.

in poor prognostic neuroblastoma (NB) and many adult
cancers (39). A recent study has confirmed that CHD5 is a
metastasis suppressor in NB. It is well known that amplification

of myC-N proto-oncogene (MYCN) is a major driver of NB
aggressiveness and that high expression of neurotrophic factor
receptor NTRK1/TrkA is associated with mild disease course
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(40). However, the roles of most of the signature genes in
neuroblastoma are still unclear and require further study. Next,
we used the artificial neural network algorithm to calculate the
weight value of 32 features, and calculate the gene score of
each tumor through the weight value of each feature gene of
each patient, to distinguish tumors in high-risk and non-high-
risk groups samples.

The biggest highlight of this study is the innovative
combination of random forest and artificial neural network,
which improves the predictive ability of the high-risk
neuroblastoma prediction model, and creatively achieves good
results in terms of predictive ability. The prediction ANN
model based on gene expression data in this study showed
high overall accuracy and precision in both the training set and
the test set (AUC = 0.998 in GSE49710 and AUC = 0.858 in
GSE73517). Moreover, the SVM-based and the XGBoost-based
model performed well in the train groups, but not in the test
groups (AUC = 0.795 and 0.638, respectively). This indicated
that the classification accuracy of the ANN-based model had a
better predictive ability and generalization ability. In addition,
the ANN-based model divided the validation set into high-risk
subgroup and low-risk subgroup, and survival analysis results
show that OS and PFS of high-risk subgroup were significantly
worse, and cumulative risks were significantly higher. This
proved that our model can predict the prognosis of patients well.
Machine learning is more reliable and accurate in data analysis.
The collection of gene expression profiles of neuroblastoma is
easier than clinical patient information, more objective, and
more cost-effective. The AUC of the independent validation
set prediction model reached 0.858, which also confirmed the
universal applicability of the scoring system we established. The
screening results of the RF classifier showed that EPS8L1, PLCD4,
CHD5, NTRK1, and SLC22A4 were the most characteristic DEG
genes among high-risk neuroblastoma-related genes (39, 41–44).
It is worth noting that the role of these genes in the occurrence
and development of neuroblastoma is still unclear, and more
basic studies are needed in the future to clarify the mechanism of
these genes in neuroblastoma, which will help us to have a deeper
and more accurate understanding of the disease and may find
therapeutic targets for the disease. Importantly, future work will
focus on the application of a disease risk grouping scoring system
based on feature genes in neuroblastoma.

However, there are still some limitations to our study. First
of all, our training set and verification set are small sample

data. Due to the limited sample size, we did not perform 10-
fold cross-validation in the neural network analysis. In addition,
these data are from retrospective studies. Nevertheless, our model
has good classification performance, and more convincing data
sets and machine learning algorithms will be needed to build
diagnostic models for individual organization types in the future.
Furthermore, we used microarray data but not RNA sequencing
(RNA-seq) for validation, but we did not find RNA-seq data
available for analysis. As RNA-seq is more likely to find novel
genes, it should be included in our future work. Last but not
the least, we have evaluated the performance of the ANN model
by comparing the predictive results of the XGBoost model and
SVM model. All the three classifiers employed in the study
are state-of-the-art machine learning techniques that show good
performances in various applications. However, some recent
machine learning or feature selection methods are not discussed
in our study, for example, Huang et al. proposed a novel method
for gene selection and phenotype classification and an efficient
tool for survival analysis and biomarker selection (8, 9).
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