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The inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcer-
ative colitis (UC), are chronic inflammatory conditions of the gastrointestinal tract and 
involve a complicated reciprocity of environmental, genetic, and immunologic factors. 
Despite substantial advances in the foundational understanding of the immunological 
pathogenesis of IBD, the detailed mechanism of the pathological progression in IBD 
remains unknown. In addition to Th1/Th2 cells, whose role in IBD has been previously 
well defined, recent evidence indicates that Th17 cells and Tregs also play a crucial role 
in the development of IBD. Diets which contain excess sugars, salt, and fat may also 
be important actors in the pathogenesis of IBD, which may be the cause of high IBD 
incidence in western developed and industrialized countries. Up until now, the reason 
for the variance in prevalence of IBD between developed and developing countries 
has been unknown. This is partly due to the increasing popularity of western diets 
in developing countries, which makes the data harder to interpret. The enterocrinins 
glucagon-like peptides (GLPs), including GLP-1 and GLP-2, exhibit notable benefits on 
lipid metabolism, atherosclerosis formation, plasma glucose levels, and maintenance 
of gastric mucosa integrity. In addition to the regulation of nutrient metabolism, the 
emerging role of GLPs and their degrading enzyme dipeptidyl peptidase-4 (DPP-4) in 
gastrointestinal diseases has gained increasing attention. Therefore, here we review the 
function of the DPP-4/GLP axis in IBD.

Keywords: incretin, inflammatory bowel diseases, dipeptidyl peptidase-4, glucagon-like peptide-1, liraglutide

iNTRODUCTiON

Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC), 
are chronic intestinal inflammatory conditions that might be caused by environmental, genetic, 
and immunological imbalances (1–3). The clinical treatments for these diseases are very limited 
and inefficient (4, 5). To develop novel therapeutic strategies for IBD, enormous research has been 
focused on exploring the detailed mechanism of IBD pathophysiology. Animal models, including 
trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis, dextran sulfate salt (DSS)-
induced colitis, and a number of genetic mouse models (such as IL-10−/−), have been established to 
study the underlying mechanisms (6).

It is well accepted that dysregulated immune response plays a critical role in colitis (7–10). 
Tumor necrosis factor-α (TNF-α) is a well-studied cytokine that is implicated in the pathological 
progression of human IBD. Inhibition of TNF-α activity by anti-TNF-α antibody has been widely 
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used as a clinical treatment for IBD. Studies also indicate a 
profound role of the Th17/Treg axis in the pathogenesis of IBD 
(11, 12). Therefore, the immune suppressive drugs which can 
inhibit the effector T cells immune response and promoting Treg 
expansion are also being used in IBD patients. However, not all 
patients exhibit an effective response to this therapy (13, 14). In 
addition, serious side effects, including infection, anaphylaxis, 
and malignancy, have been observed during these treatments 
(15). Therefore, alternative therapeutics are imperative for the 
treatment of IBD.

Glucagon-like peptides (GLPs), including GLP-1 and GLP-2, 
are secreted by the endocrine cells in the gut up on nutrient uptake 
(16–18). Through stimulating the islet β cells to secret insulin, 
inhibiting gastric emptying, and reducing food ingestion, GLP-1 
plays a crucial role in lowering blood glucose and controlling body 
weight (19, 20). Therefore, GLP-1 was used in human subjects 
with type 2 diabetes, especially in obese patients with type 2 dia-
betes (21, 22). In contrast, GLP-2 is used as a therapy for intestinal 
injury and short bowel syndrome due to its effects of promoting 
mucosal epithelium expansion, and crypt cell proliferation and 
improving intestinal adaptation and nutrient absorption (23–27). 
Because GLPs are degraded by dipeptidyl peptidase-4 (DPP-4) 
very quickly, resulting in very short half-lives (minutes) in vivo 
(28–31), the DPP-4 inhibitors have recently gained increasing 
attention (19, 21).

The role of incretin hormones in bowel disease has not been 
demonstrated until recently (32, 33). In DSS-induced colitis, the 
severity of intestinal injury was increased in GLP-1R−/− mice (34). 
In consistency with this, administration of GLP-2 led to significant 
improvements in animal weight loss and intestinal inflammation 
in IL-10-deficient mice, a spontaneous colitis mouse model (35). 
Here, we will discuss in-depth the actions of DPP-4/GLP axis in 
IBD.

OveRview OF GLP FUNCTiON

Glucagon-like peptide-1 exerts pleiotropic function through 
binding to the GLP-1 receptor and is involved in the development 
and progression of many diseases (17, 18). The GLP-1 receptor is 
widely expressed in many organs and tissues, including the endo-
crine pancreas, gastrointestinal tract, heart, and central nervous 
system. More recent work has shown that a defect in cellular 
response to GLP-1, akin to insulin resistance, in combination 
with a diminishment of GLP-1, has a predominant role in the 
pathogenesis of patients with T2DM. Exogenous administration 
of pharmacological doses of GLP-1 receptor agonists have been 
shown to restore β-cell sensitivity to insulin and induce the 
secretion of insulin. Impaired incretin response is associated with 
insulin resistance in both non-diabetic and diabetic individuals 
(36, 37).

The first two amino-acid residues in the N-terminus of GLP-1 
are His–Ala, which causes its susceptibility to DPP-4 degradation. 
The N-terminal His–Ala residues of GLP-1 are rapidly cleaved 
by DPP-4 expressed on surrounding tissues, resulting in the 
inactivation of GLP-1 (38). Exenatide, liraglutide, dulaglutide, 
albiglutide, and lixisenatide are structurally modified GLP-1 
analogs used in the clinical setting, exhibiting relative resistance 

to the cleavage by DPP-4, and a long-circulating half-life (39). 
Exogenous GLP-1 administration potently inhibits gastric emp-
tying in rodent and human studies, which favors body weight 
loss (40). Diabetic patients are prone to develop cardiac disorders; 
the actions of GLP-1 on cardiac function were investigated (41). 
Since GLP-1 receptor is widely expressed in the brain, the role of 
GLP-1 in central nervous system, beyond its regulatory function 
on glycemic control, was explored (42, 43). Expectedly, GLP-1 
possesses a protective effect on neuronal damage by reducing ibo-
tenic acid-induced depletion of choline acetyltransferase immu-
noreactivity (44). GLP-1 receptor-deficient mice were shown to 
have defects in cognitive function (45), synaptic plasticity, and 
memory formation (46), which are recovered by transferring the 
GLP-1R gene in the hippocampus (47). These data reveal that 
GLP-1 may have pleiotropic functions in a multitude of diseases. 
The actions of GLP-1 in IBD will be discussed below.

Glucagon-like peptide-2 is a 33 amino-acid peptide and that 
is cleaved by DPP-4 in rodents and humans, but with a half-life 
that is slightly longer than GLP-1 (17). Unlike GLP-1, which 
plays a role in glucose homeostasis, GLP-2 primarily exerts a 
potential effect in intestinal weight gain, mucosal development, 
and intestinal integrity (17, 27). In view of the above-mentioned 
effects, GLP-2 treatment reduced intestinal inflammation and 
improved intestinal healing after injury (48, 49). In addition to 
the benefits in improving intestinal integrity, GLP-2 also exhibits 
antimicrobial effects by regulating the synthesis and activity of 
Paneth cell-produced antimicrobial peptides (50). In addition, 
GLP-2 reduces bacterial invasion by promoting secretory immu-
noglobulin A (IgA) expression (51). Because GLP-2 receptor is 
widely expressed on many tissues and cells, physiological effects 
of GLP-2 beyond the gut have also been reported. Like GLP-1, 
GLP-2 also regulates the function of central nervous system (52). 
Activation of GLP-2 receptors can reduce stress-induced depres-
sion (53, 54) and improve memory in animal experiments (55). It 
also plays a substantial role in bone metabolism via reducing bone 
reabsorption and improving bone mineral density (56). GLP-2 
has been shown to improve liver regeneration and enhance lung 
recovery in mice (57, 58). Thus, GLP-2 reveals potential effects in 
and out of the gastrointestinal tract.

THe ROLe OF GLPs iN iMMUNe 
ReGULATiON

Recent studies have demonstrated that GLPs exert inflammation 
regulatory functions in metabolic disease. Administration of 
GLP-1 markedly reduced the macrophage infiltration and the 
production of inflammatory cytokines in the adipose tissue in 
ob/ob mice (59). GLP-1 has also been shown to regulate invari-
ant natural killer T  cells (iNKT) and macrophage function in 
humans (60, 61). Animal study carried out in Glp1r−/− mice 
suggested that GLP-1 may play a role in maintaining peripheral 
Treg numbers and suppressing lymphocyte hyperproliferation 
(62). Although GLP-2 can also blunt inflammatory cytokine 
production via inhibition of NF-κB activity and ERK phospho-
rylation (63), enhanced macrophage accumulation was observed 
in the colon of colitic mice (35). A recent study reported that 
GLP-1 controls of gut immunity by regulating the intestinal 
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intraepithelial lymphocyte function, leading to a protective role 
in the DSS-induced colitis (34). In consistency, GLP-2 treatment 
also reduced pro-inflammatory cytokine protein levels in the 
IL-10-deficient mouse model of colitis (35). Taken together, 
GLPs play a crucial role in inflammation regulation and gut 
disorders.

PHYSiOLOGiCAL ROLe OF DPP-4 
FUNCTiON

Dipeptidyl peptidase-4, a type-II integral transmembrane 
glycoprotein, is best known for its catalytic function. A soluble 
form of DPP-4, which lacks the cytoplasmic and transmembrane 
domain, with preserved catalytic activity is also detected in 
the plasma (38, 64). Although the mechanism of regulation of 
DPP-4 expression remains unclear, TNF-α has been implicated 
(65, 66). The primary substrates for DPP-4 are enterocrinins, 
such as GLP-1, GIP, and GLP-2, which are responsible for 
glucose metabolism (17, 39, 67). DPP-4 gene-deficient mice 
show improved postprandial glucose control and are resistant 
to the progression of obesity and hyperinsulinemia. Inhibition 
of DPP-4 enzymatic activity with pharmacological agent admin-
istration improves glucose tolerance in wild-type mice, but not 
in DPP-4 knockout mice (68).

In addition to enterocrinins, some chemokines and cytokines 
could also be cleaved by DPP-4, such as stromal cell-derived fac-
tor-1 (SDF-1, also known as CXCL12), G-CSF, IL-3, GM-CSF, 
and erythropoietin, thereby allowing DPP-4 to regulate immune 
responses (69). DPP-4 also exerts non-catalytic functions via 
interacting with adenosine deaminase (ADA), caveolin-1, 
fibronectin, and CXCR4 (70, 71). The best-known non-catalytic 
function is the interaction between DPP-4 and ADA, which can 
act as a co-stimulatory dyad to promote T-cell activation. Our 
previous work has demonstrated a role of DPP-4 non-enzymatic 
function in regulating dendritic cell (DC)/macrophage-mediated 
adipose tissue inflammation in obesity (64). We also showed 
that long-term DDP-4 inhibition reduces atherosclerosis and 
inflammation via effects on macrophage migration (CD11b+, 
CD11c+, and Ly6Chi) (72, 73). Furthermore, in non-obese dia-
betic (NOD) mice, DPP-4 inhibitors significantly increased the 
TGF-β levels and Treg expansion (74). Beyond that, our recent 
study, as well as others, demonstrated that DPP-4 plays a role in 
the infection of Middle Eastern respiratory syndrome (MERS) 
virus (75).

eFFeCTS OF GLP-1 ON iBD

BP-lowering and anti-atherosclerotic effects of GLP-1R agonists 
have been well demonstrated, while the gastrointestinal effects of 
GLPs are underappreciated. Here, we will discuss the relationship 
between GLP-1 and inflammation in the gastrointestinal tract. 
UC patients with colectomy showed a slower release of GLP-1 
in response to intake of glucose (76). Consistently, postprandial 
GLP-1 response was also impaired in patients with ileostomy 
(77). Yet it was not known whether the colectomy or inflamma-
tory state affects the GLP-1 release in IBD. Subsequent studies 
demonstrated that although GLP-1r mRNA levels was reduced in 

samples harvested from inflamed sites of IBD patients and colitis 
mice (78), GLP-1 levels were increased in sera of IBD patients 
when compared with healthy controls (79, 80). The defective 
GLP-1 release in IBD patients with colectomy might be caused 
by the loss of the colonic endocrine tissue.

Therefore, these data reveal a link between gut inflammation 
and GLP-1 expression and brings up an emerging question that 
how GLP-1 is implicated in IBD. To explore this question, some 
studies were conducted in experimental animal colitis. In T-cell 
adoptive transfer-induced colitis, the GLP-1 expression in colonic 
tissue was significantly diminished in SCID mice with adoptive 
transfer of CD4+ T cell when compared with control mice (81). 
Furthermore, in DSS-induced colitis, a considerable increase 
of GLP-1 was detected in colitic mice with DPP-4 inhibitor 
treatment (82). Notwithstanding alteration of GLP-1 expression 
in colitis, the exact role of GLP-1in the development of colitis 
remains unknown, in terms of being beneficial or detrimental. 
A recent study showed that the GLP-1 analog liraglutide exerts 
a significant improvement of disease activity endpoints, includ-
ing colonic tissues histological changes and colon weight/length 
ratio, which might be due to its role in reducing inflammatory 
cytokines and chemokines, such as chemokine (C–C motif) 
ligand 20 (CCL20), IL-33, and IL-22 (78). As has been previously 
established, CCL20 is a key chemokine for CCR6 + Th17 cells 
(83), while IL-33 and IL-22 are the representative cytokines for 
Th2 and Th17 immune responses, respectively (84, 85). In line 
with above results, GLP-1 in sterically stabilized phospholipid 
micelles (GLP-1-SSM), showing a long half-life and resistant to 
DPP-4, markedly alleviated the development of DSS-induced 
mice colitis by reducing the expression of pro-inflammatory 
cytokine IL-1β (86). Moreover, intestinal epithelial architecture in 
a colitis model with GLP-1-SSM administration was significantly 
improved. In conclusion, GLP-1 might act as a novel therapeutic 
tool in ameliorating colonic inflammation.

THe iNFLAMMATORY ReGULATiON OF 
GLP-2 ON iBD

Regarding the inhibition of enterocyte apoptosis and stimulation 
of crypt cell proliferation, GLP-2 is thought to be associated 
with tissue repair during injury or infection (17, 23). Therefore, 
in chemically induced enteritis (48) or vascular-ischemia rep-
erfusion injury (87–89), GLP-2 shows a protective effect based 
on reducing epithelial barrier damage and lowering bacterial 
infection. It stands to reason that GLP-2 might be a potential 
therapeutic target in IBD, a condition characterized by destruc-
tion of the gastrointestinal epithelium. In an adoptive CD4+ T-cell 
transfer model of colitis, the amount of GLP-2 in colon tissue 
was also further decreased compared with that in normal mice or 
SCID mice without CD4+ T-cell adoptive transfer (81). However, 
these results were not duplicated in human IBD samples. A study 
showed no changes of GLP-2 levels in fasting plasma between 
IBD patients and controls, which pinpoints L-cell secretion is 
not altered in the pathogenesis of IBD (90). Nevertheless, the 
circulating levels of bioactive GLP-2 (1–33) were markedly 
increased in CD and UC patients (91). The alteration of GLP-2 
(1–33) might be due to an adoptive response to intestinal injury, 
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which promotes mucosal epithelium restoration in a self-repair 
mechanism. The discrepant data might be the causal agent of the 
different inflammatory conditions, because an increase in GLP-
2-immunoreactive L cells was found in remissive status of colitis. 
Another reason is probably due to the detection reagent which 
detects all GLP-2 or bioactive GLP-2 (1–33).

Beyond the promotion of crypt cell proliferation and mucosal 
integrity, GLP-2 also exerts a distinct role in anti-inflammatory 
actions. To mimic anti-inflammatory therapeutic approaches 
in humans, a combination of GLP-2 with aminosalicylates 
(ASAs) or corticosteroids were administrated into mice with 
DSS-induced colitis, while no synergistic effect was observed. 
Interestingly, corticosteroid administration prevented the 
intestinal weight increase when the mice were treated with cor-
ticosteroids and GLP-2 (92), while these treatments exhibited a 
similar anti-inflammatory effect in colonic tissues. However, in 
TNBS-induced ileitis and DSS-induced colitis, GLP-2 treatment 
downregulated expression of inflammatory cytokines, including 
IFN-γ, TNF-α, and IL-1β, while the anti-inflammatory cytokine 
IL-10 was increased (93). Another report also showed that GLP-2 
alleviates the development of colitis through reducing the pro-
inflammatory cytokines in IL-10-deficient mouse model. The 
level of inducible nitric oxide synthase (iNOS), a marker for 
classically activated macrophage, was reduced in GLP-2-treated 
mice (35). This suggests that GLP-2 might alter macrophage 
polarization.

It is noteworthy that chronic colitis is a risk factor for colon 
cancer. Interestingly, a few reports have shown that exogenous 
and endogenous GLP-2 is a potential cancer promoter in mice 
models, although reduced inflammation was also observed (94, 
95). This might be resulted from the strong preference of GLP-2 
for epithelium proliferation. Therefore, the surveillance of dyspla-
sia and colon cancer must be vigilant in GLP-2 treatment.

iNHiBiTiON OF DPP-4 FUNCTiON iN iBD

Regarding a catalytic function of DPP-4 on GLP-1 and GLP-2, 
previous studies have demonstrated that DPP-4 can act as an 
immune regulator via its expression on immune cells and the 
ability to cleave biologically active chemokines and cytokines. 
Hence, DPP-4 involvement in the pathogenesis of colitis has 
been proposed (96). The involvement of DPP-4 might depend 
on two major pathways: the catalytic function and non-catalytic 
function (38, 73, 97). Like GLP-2, DPP-4 inhibitors have a pro-
liferative effect on the colonic epithelium (98). It has also been 
demonstrated that the protective effects of DPP-4 inhibitors in 
IBD might be a result of increased levels of GLP-1 (82). Notably, 
plasma GLP-2 levels were increased in response to DPP-4 inhibi-
tor. Thus, the effect on epithelium expansion induced by DPP-4 
inhibitor probably relies on the indirect elevation of GLP-2 
expression (99). To investigate the influence of DPP-4 in the 
pathogenesis of DSS-induced colitis, DPP-4-deficient mice were 
used in DSS treatment, and an increase of myeloperoxidase (MPO) 
activity and expression of NF-κB p65 subunit in the colonic 
tissues was observed. Furthermore, an increase in the percent-
age of splenic CD8+ cells and NKT  cells in CD26-deficient 
mice was observed (100). In keeping with GLP-2-treated mice, 

DPP-4-deficient mice also showed a significant increase in 
macrophages when compared with wild-type mice (101). These 
data reveal a detrimental role of DPP-4 during the development 
of colitis. Conversely, DPP-4-deficient rats reveal an appar-
ent diminished disease activity index (DAI) in the low-dose  
DSS-induced colitis, especially in 1% DSS-induced colitis (102). 
A similar effect was also investigated in DPP-4 inhibitor anaglip-
tin- and ER-319711-treated mice with DSS-induced colitis (98). 
In addition to ER-319711, anagliptin administration ameliorated 
the body weight loss and DAI. Additionally, a significantly lower 
histological score was observed in the anagliptin-treated group 
(103), which suggests that inhibition of the DPP-4 activity can 
facilitate the resolution of mucosal damage. Taken together, these 
findings suggest a complex and dichotomous biology during the 
development of IBD, which might be due to its multifunction.

CONCLUSiON

Due to the vital role of GLPs in intestinal healing and anti-inflam-
matory function, a sound understanding of the production, regu-
lation, and function of GLPs and their degrading enzyme DPP-4 
will facilitate the treatment of colitis. The potential mechanisms 
(Figure 1) of DPP-4/GLP axis in the IBD may include the fol-
lowing: (1) GLPs promote the tissue repair of injured epithelium; 
(2) GLPs regulate T-cell differentiation and functions (e.g., Treg, 
effector T cells, and intraepithelial lymphocytes); (3) GLPs and 
DPP-4 regulate the function of innate immune cells such as 
macrophages and DCs; and (4) suppression of DPP-4 enzymatic 
activities by pharmacological inhibitors preserves GLP function. 
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Although most studies in this area mainly were carried out on ani-
mal models and there are limited clinical trials, a phase-II clinical 
trial of teduglutide (a GLP-2 analog) observed a remission rate 
of 55.6% in CD patients (104). To what extent GLPs and DPP-4 
contributes to IBD in humans requires further investigation.
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