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In the era of digits and internet, massive data have been continuously gener-
ated from a variety of sources, including video, photo, audio, text, internet of
things, etc. It is intuitive that more accurate patterns can be obtained by feeding
more data for effective analysis; despite the data redundancy, a clearer picture
can be delineated for better decision-making. However, traditional methods,
even in machine learning, do not benefit from the expanding amount of data,
whose performance nearly saturates when the data collection is large enough
(Figure TA). Such a dilemmma emerges due to their limited capability and insuffi-
cient supply of computation power in the past.

A breakthrough was pinned in 2012 with deep learning: a deep neural network
(DNN) can be effectively trained on graphics-processing units (GPUs) of phenom-
enal performance.’ The DNN mimics the biological neural networks in brains with
layer-stacked transformations of sufficient complexity to approximate arbitrary
functions. Major mathematical operations in DNNs, such as matrix multiplication,
convolution, and other customized repetitive computations, can be engineered
into an in-parallel configuration, which matches well with the computational
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mechanism of GPUs. Processing efficiency is therefore boosted and outperforms
previous realizations done with serial computation units (e.g., central-processing
units [CPUs]). Deep learning has inspired a broad range of applications in com-
puter vision (CV), natural language processing (NLP), biomedicine, games, and
many others. Computational requirements from these fast-expanding applica-
tions of DNNs, on the other hand, significantly outstrip the development of the
chips on silicon (i.e, Moore's law). The current computational facilities of deep
learning are accompanied with huge energy costs. Therefore, DNN accelerators
are urgently demanded for fast processing and energy efficiency.

The learning accelerators can be either general- or specific purpose, with imple-
mentations based on microchip/conventional electronics (digital) or physical
systems (analog) by tackling the notorious “memory wall” and “power wall.” Or-
ders-of-magnitude improvements have been achieved regarding both processing
speed and energy efficiency. These achievements significantly shorten the imple-
mentations of large DNNs, even fed with millions or trillions of data. For now, an
accelerated DNN for image classification or a language translator can be trained
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Figure 1. Diagram of deep learning realizations (A) Comparisons between deep-learning and conventional methods on how the amount of the data affects the performance. (B)

Procedures (inference, backward propagation including error/gradient calculation and parameter update) contained in deep learning could be accelerated. The side bar denotes the
energy cost for the inference (90%) and training (10%) phases. (C) Development trend of the DNN accelerator from pure microchip to physical system. MZI, Mach-Zehnder in-
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to work within a couple of hours; without these accelerators, the same task may
take several weeks. Such convincing efficiency has made these artificial intelli-
gence (Al)-specific technologies more accessible and significantly accelerates
the transfer of deep-learning-based products toward commercialization.

Two essential phases, namely training and inference (Figure 1B), are targeted
to speed up the learning process. Different requirements pose for these two
phases. The training phase involves the feeding of massive data into the DNN
for designed tasks to update and finalize the parameters of the DNN via back-
ward propagation optimization. After training, the DNN with fixed (or optimized)
parameters comes into the inference phase to predict the desired result with
the input data. In many applications, training is a one-time effort, but the func-
tioning of the trained DNN in inference occupies significantly longer durations.
Hence, inference consumes up to 90% of the energy cost in deep learning,” which
is the very concern for most accelerators.

In inference, most of the processing time is occupied by matrix multiplication,
whose mathematical isomorphism has been devised for hardware acceleration.
The most widely used and easiest-to-access chips are the general GPUs, which
can perform at least an order-of-magnitude faster when Tensor Cores are
customized by Nvidia to boost the matrix-multiplication efficiency. Moreover, to
further improve the energy efficiency, DNN-specific computing units are devel-
oped, such as the tensor-processing units (TPUs) announced by Google. A
TPU is designed for its own deep-learning framework (TensorFlow) and neural-
processing units (NPUs), which “hardwarelizes” the architecture of the DNN on
the chips. Because DNN computations in these highly specific customized con-
figurations are not interrupted by other tasks, energy efficiency can be improved
by several folds for the same computational tasks.

Physical systems provide analog solutions to mimic the above-mentioned neu-
ral processing and computation, in which data transformation is dictated by phys-
ical mechanisms and requires negligible power consumption. This forms a sharp
contrast to microchip systems, where digital and/or Boolean operations of high
precision and low noise ensure computational accuracy. Deep learning is able
to deal with data of low precision and high noise, which usually arises in physical
systems. Therefore, noise can be conquered, to some extent, by introducing noise
in the training phase. And, to be more rigorous, system stability can be physically
strengthened by adding stabilizer into the packing of the system, though sophis-
ticated engineering is necessary. Optics (or photonics), for example, is of partic-
ular interest since the light-matter interaction essentially companies Fourier trans-
forms, matrix multiplication, convolution, and many other operations such as
nonlinearity.® An optical system is therefore inherently empowered to fulfill the
tasks in CV, such as image classification and transformation, at the speed of light.
To achieve multiple convolutional kernels, an optical component, enabling mod-
ulation in amplitude and/or phase in multiple channels, needs to be embedded
into the system. This criterion matches well with optical components, such
as ground glass diffusers, diffractive layers, multimode fibers, and specifically
designed metasurfaces. The weights of the DNN kernels represented by these
components are fixed with certain physical configurations (e.g., customized
three-dimensional [3D]-printed layers®) based on the training simulated in a com-
puter. Free-space optics therefore focuses on the inference phase of deep
learning. With proper manipulation, an optical system becomes versatile in
deep learning, with applications not limited to CV but also NLPs such as vowel
classification. In addition to mimicking mathematical operations in DNNs by
the physical system, it is also feasible to train the hardware’s physical transforma-
tion to match specific task/applications, such as ultrafast optical second-har-
monic generation, multimode mechanical oscillations, and the analog dynamics
of a nonlinear triode. Thanks to continuous development, the inference perfor-
mance for the same task is approaching the state-of-art results provided by
microchip systems.

Another approach to extend the applications of the physical system lies in the
training phase, which accounts for the rest of the energy cost in deep learning
(~10%). Physical systems are not commonly designed to speed up the training

phase because their configurations are usually passively determined and the
embedded DNN parameters are not trainable (or changeable) without re-config-
uration. The poor flexibility poses obstacles to fine-tune the physical networks for
better performance and transfer the function of system to other applications. In
neuromorphic computing, tunable units (e.g., phase-change components in pho-
tonics circuits) are designed to store the weights of the synapse, accompanied by
control circuits.® Trainable parameters can also be encoded or combined with the
input data; the physical systems here merely serve as an operator (e.g., adders,
multipliers, or nonlinear transformations) actuated by physical mechanisms.
More presentations of the physical systems are expected to inspire and incubate
more Al-specific edge modules or smart sensors, especially for scenarios where
low latency is necessary. The internet of things (IoT), like self-driving cars, smart
home systems, etc., could be more beneficial as it inherently processes physical
data from the environment and desires fast processing.

Achieving trainable physical systems is not the end goal (Figure 1C). Micro-
chips are inevitable accessories for analog-to-digital/digital-to-analog conversion
(ADC/DAC), data processing, data storage, and workflow control. Heat dissipa-
tion and temporal latency of those electronics could loop back as the bottleneck
of physical systems in deep learning. Seamless interactions between the physical
mechanism and the accessories are expected, which necessitates specific
design and sophisticated engineering for their integration. Furthermore, co-pack-
ing and miniaturization for them is also a critical challenge since not all physical
systems can be engineered and manufactured in small size. These bulky sys-
tems limit the number of neurons in a single network and, hence, the network’s
complexity. Currently, the largest number of neurons in a reported trainable phys-
ical system ina chip-based realization occurs in the photonics circuit (on the scale
of 10%), while the numbers in large DNNSs, like ResNet101 and Unet, are on the
scale of 10°. Such restrictions are expected to be addressed so that the ability
of Al-specific physical systems can be equivalent to the DNNs running on com-
puters, which will enable considerably more complex tasks, such as image seg-
mentation, image style transformation, language translation, etc.

In summary, various accelerators have been developed to improve DNN
computation regarding processing speed as well as energy efficiency. An overall
tendency of the computation platforms has been seen, evolving from conven-
tional electronics to physical systems, with progressive reductions in energy con-
sumption. While there are limitations for current realizations of physical systems,
vigorous development is strongly looked forward to to continuously improve en-
ergy efficiency with the desired performance.
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