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Abstract

We study the controllability of networks in the process of cascading failures under two different attacking strategies,
random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-
Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law
exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability
under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the
robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-
free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be
more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges
amount in strongly connected components.
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Introduction

Many natural and manmade systems can be modeled as a

network structure which is consisted by the nodes and links [1,2].

In the view of complex networks, the individuals in systems are

presented by nodes, while the edges among nodes symbol the

specific relations, such as they can sensor and transfer information

between each other. For past decades, the dynamics on complex

networks have been studied to understand the underlying

mechanisms of systems [3–8]. With the deep understanding of

basic principle, recently, people focus on the ultimate goal which is

to develop the capability to control the systems. The dynamical

system is controllable if it can be driven from any initial state to

any desired final state with external inputs in finite time[9–11].

Though most of real systems are nonlinear systems, however, the

controllability of nonlinear systems is in many aspects structurally

similar to that of linear systems[12–15]. Liu et al.[9] studied the

controllability of various real systems and proposed a method to

find the minimal driver nodes which could control the whole

network, the main conclusion is that the controllability of networks

is determined by the degree distributions of networks. To further

study this problem, Wang et al.[16] give a solution of exact

controllability to find the minimum set of driver nodes required to

fully control the networks with arbitrary structures and link-

weights.

Generally, the systems are always confronting with the random

or intentional edges attacks, for example, in power grids networks

[17], the edges attacks can be interpreted as that the connections

of substations are cut off so the power cannot be transmitted from

one substation to others. For Internet networks, the attack on

edges can be interpreted as the two Gnutella hosts cannot share

Gnutella peer-to-peer file. These damages usually depend on the

importance of attacked edges[18–20]. There are many measure-

ments to capture the prominence of a node or an edge in the

network, the betweeness centrality is a frequently used one [21].

To study the invulnerability of networks, the load of an edge or a

node is conveniently defined as the betweeness centrality [18,22].

Because of the close connections among nodes, the breakdown of

nodes or edges will lead to the redistribution of physical flows or

loads over other nodes or edges, then some nodes or edges break

down once they are overloaded. This process is repeated until

there are no overloaded nodes or edges. These cascades usually

cause great losses in Internet [23], power grid [17], transportation

networks [24]and so on. Sometimes, the destruction of few

individuals could affect the normal daily life and result in chaos in

the society, so the methods to study and reduce the damage of

cascades have been proposed [25–27]. In Recent years, the

robustness of interdependent networks has been also studied

[23,28,29], in these networks, each node in one network depends

on one node in other network, due to the existence of dependence

links, the percolation transition in interdependent networks is the

first-order transition which is different from the single network and

the robustness of these interdependent networks under targeted

attack is also different from that in single network [30].

For some networks which are easier to be controlled may be

more robust to the attacks, whereas for others are opposite. Such

as heterogeneous networks are harder to control and they are less

robust to the intentional attacks [9,31], because a large-scale
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cascading failure may be triggered by disabling a single key edge

such as the highest-load one. However, from the aspect of control,

the edges in network can be divided into three categories: critical,

ordinary, and redundant [9], so the change of controllability under

different attacking strategies will be influenced by the robustness of

control [32–34].

In this paper, we analyze the evolution of controllability for

networks in the process of cascading failures with the specific edge

attacks, we find that the cascading failures are more likely to

happen in the strongly connected components(SCC). Then we

study the evolution of the controllability of networks with the

increasing of removal fraction under two different edge attacks,

random and intentional, respectively. The results show that the

robustness of controllability behave differently with the increasing

of removal fraction.

The paper is organized as follows: In section II, we describe the

background of network controllability and the model of cascading

failure. Section III are the numerical results and analysis of the

networks controllability in cascading failure. Section IV is the

conclusion.

Model

Structural controllability
For a linear, time-invariant dynamics, without the consideration

of intrinsic dynamic, the node’s state is governed by the following

equation:

_xx(t)~Ax(t)zBu(t) ð1Þ

where the vector x(t)~(x1(t),:::,xN (t)) is the state of a system of N
nodes at time t, the adjacency matrix A denotes the interaction

strength between nodes. B is input matrix, which defines how the

input signals are connected to the nodes of networks. The system

(1) is also denoted as (A,B), and the system is controllable if and

only if controllability matrix

C~(B,AB,A2B, . . . ,AN{1B) ð2Þ

has full rank. This criteria is called Kalmans controllability rank

condition [35]. The rank(C) provides the dimension of the

controllable subspace of the system (A,B). In order to fully control

the network, we should choose right B and u(t) to make the matrix

C has full rank. For most real networks, it is hard to get weight of

each link in adjacency matrix A, and the computation is also a

prohibitive task for large networks. Therefore, the structural

controllability is suitable to solve the problem, which is to choose

nonzero weights in A and B to satisfy the full rank of C, and the

system can be shown to be controllable for almost all weight

combinations, except for some pathological cases [9].

The exact controllability of network is determined by the

maximum multiplicity of eigenvalue [16], however, the specific

link-weights are not known totally in fact. Considering the

computational efficiency, we choose the method of structural

controllability based on the maximum matching in Ref [9]. The

comparison between exact controllability and structural control-

lability are presented in File S1.

The maximum matching includes all edges, and none of them

shares a common starting or ending node. A node is matched if an

inbound edge from the maximum matching points to it, otherwise

it is unmatched. The number of nodes without inbound edges

from the maximum matching in network is equal to the number of

input signals required for structural controllability. The system is

fully controlled over a directed network while we directly control

each unmatched node and there are directed paths from the input

signals to all matched nodes, we call the unmatched nodes are

driver nodes. Though the patterns of maximum matching may be

various, the number of unmatched nodes is the same in every

matching. The number of driver nodes nD can be used to measure

the controllability of network and it could be calculated by the

maximum matching algorithm [9].

Meanwhile, according to the different roles in controllability of

networks, the edges can be clarified into three categories [9]:

‘critical’, its removal needs to increase the number of driver nodes

to maintain fully control; ‘redundant’, its removal cannot affect the

current set of driver nodes; ‘ordinary’, if it is neither critical nor

redundant.

The cascading dynamics
We suppose that each edge eij is assigned with a capacity

according to its load. The load on edge eij is the total number of

shortest paths in network passing through the eij at time t. The

capacity of an edge is the maximum load that the edge can handle.

We assume the capacity Hij of edge eij is proportional to its initial

load Lij(0) [18]:

Hij~(1za)Lij(0) ð3Þ

where aw0 is a tolerant parameter. As we remove one or some

edges in network, the distribution of shortest paths will be changed

and the loads on some edges may increase and become larger than

their capacity, then the overloaded edges fail and result in a new

distribution of loads on edges. Finally, the cascading failure will

stop as there are no overloaded edges after a few steps. Note that

the loads on edges in cascades are different from the link weights of

adjacency matrix in structural controllability theory.

We consider two different attacking strategies: (1) random attack

(RA): a fraction of edges is randomly removed. (2) intentional

attack (IA): a fraction of edges is removed in descending order of

the initial loads. As demonstrated in Fig. 1, the network of a given

degree distribution with size of N~5, as the highest load edge e34

is removed, the loads of edges e54, e15, e25 become larger than the

capacities which they could handle, so they fail and be removed,

then this process will be repeated until the loads of all edges are

less than their capacities. Because of the change of topological

structure, the pattern of maximum matching changes and the

number of driver nodes grows up.

Analysis

Firstly, we investigate the controllability of directed ER

networks at different stages of the cascading failures, as triggered

by removal of the highest load edge. As shown in Fig. 2(a), for

small average degree, the number of the shortest paths through an

edge is small, and the removal of the highest load edge produces

some unreachable pairs nodes, so the loads of edges which were on

the former paths between these pairs nodes decrease and the edges

will not overload. In this case, there are only a small fraction of

failed edges, and these edges may belong to ordinary and

redundant edges, so the increment of driver nodes is small.

For the moderate average degrees, the networks need more

iteration steps to reach the stable state with the increasing of

average degree, which indicates more edges are failed and the

networks need more driver nodes to achieve fully control. As the

highest load edge is removed, most of nodes can also reach each

other, however, the loads of edges on the alternative shortest paths

Robustness of Controllability for Networks
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usually exceed their capacities, the redistribution of loads makes

cascade can spread in networks. It can be seen in Fig. 2(a), at the

beginning of cascade, the network with average degree vkw~6
needs few driver nodes, but finally, the cascading failure makes it

to need more driver nodes. While, for large average degrees, the

enough alternative paths cannot change the balance of loads in

cascading failures and hardly leads to a global redistribution of

loads over all the network, then, there are few overloaded edges

and the controllability of networks changes slightly.

The size of the largest connected component is usually used to

quantify the damage caused by a cascade, and it may relate to the

controllability of network, so we study the number of edges in

strongly connected component of the network in cascading failure.

As shown in Fig. 2(b), the number of driver nodes in the process of

cascading relates to the number of edges in SCC, especially at the

critical stage of cascade, in which the largest scale of cascades

occurs and the increment of driver nodes is maximum.

Compared with ER networks, we can find that the cascading

failure also occur even for small average degree in SF networks as

shown in Fig. 3(a) and Fig. 3(c). The network exists the strongly

connected component even for small average degree because of

the existence of hub nodes, then the cascades can be triggered by

the removal of the highest load edge. In addition, the damage scale

for the networks with small power-law exponents are larger than

that with large power-law exponents. However, the increments of

driver nodes for both of these networks are nearly the same. The

number of driver nodes for SF network with average degree vkw

and power-law exponent c is given by:

nd&exp½{ 1

2
(1{

1

c{1
)vkw� ð4Þ

The number of driver nodes after the cascades is approxima-

tively given by:

n
0
d&exp½{ 1

2
(1{

1

c{1
)vk

0
w� ð5Þ

where we assume the degree distribution has not been changed

after cascading failure, and the average degree after cascades is k
0
,

then the increments of driver nodes Dnd for small vkw and

vk
0
w is approximatively:

Figure 1. Demonstration of the controllability of network in cascading failure. The network with size N~5 and a~1:15, the green nodes
are matched nodes and the red ones are unmatched. The purple edges are matching edges in maximum matching. However, the unmatched nodes
x1 , x3 are the driver nodes which should be controlled directly by the inputs u1 and u2 , and after the edges failure, the unmatched nodes x1 , x4 , x5

should be controlled by inputs u1 , u2 and u3 . The red and green circles symbol the unmatched nodes and matched nodes, respectively. The purple
lines symbol edges in maximum matching, and the dash lines symbol the failed edges in cascades. The red arrows symbol the input signals. The
process of a,b,c,d shows the change of controllability in cascading failure.
doi:10.1371/journal.pone.0089066.g001
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Dnd&
1

2
(1{

1

c{1
)(k{k

0
) ð6Þ

The Eq. 6 depicts that even the networks with small power-law

exponents after large scale cascades, the increment of driver nodes

are the same as those with large power-law exponents. On the

other hand, for large average degree as shown in Fig. 3(b) and

Fig. 3(d), the cascading failure spreads widely in network, which

leads to the more driver nodes. Except for the case of c~2, the

increments of driver nodes for the networks with large power-law

exponents are larger than that with small ones, that is because

there are more failed edges in cascades for large power-law

exponents networks.

Next, we discuss the attacks on the networks which are

represented by the removal of a fraction of edges in networks.

In Fig. 4, we present the results of the number of driver nodes as a

Figure 2. The number of driver nodes and size of SCC for ER networks with different average degrees when the highest load edge is
removed. (a) the number of driver nodes at different stages of the cascading failure; (b) the amount of edges in SCC at different stages of the
cascading of failure. The networks size N~10000 and tolerant parameter a~1:15. The squares, circles, triangles, lower triangles and left triangles
symbol the controllability of ER networks with the average degrees vkw~2,4,6,10,12 respectively.
doi:10.1371/journal.pone.0089066.g002

Figure 3. The number of driver nodes and size of SCC for SF networks with different average degrees and power-law exponents
when the highest load edge is removed. (a) the number of driver nodes at different stages of cascading failure with average degree vkw~2;
(b) vkw~8; (c) the amount of edges in SCC at different stages of cascading failure with average degree vkw~2; (d) vkw~8. The networks size
N~10000 and tolerant parameter a~1:15. The squares, circles, triangles, lower triangles and left triangles symbol the controllability of SF networks
with the c~2:0,2:2,2:5,3:0,3:5 respectively.
doi:10.1371/journal.pone.0089066.g003

Robustness of Controllability for Networks

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e89066



function of removal fraction f in ER networks. We can find that

for the small average degree, both the random and intentional

attacks cannot cause the cascading failure in ER network which is

agreement with the results in Fig. 2, thus the influence of both

attacking strategies on the number of driver nodes are nearly the

same. However, for larger average degrees, the curves of the

number of driver nodes under the two attacking strategies can be

divided into three regions as presented in Fig. 4(b) and (c). In the

following, we take the Fig. 4(b) as an example to illustrate:

(i) f ƒf1

In this region, the amount of failed edges triggered by

intentional attack is larger than that by random attack, this is

similar with the highest-load edge attack situation. Thus, the

network under intentional attack needs more driver nodes to

achieve fully control after cascades.

(ii) f1vf ƒf2

For moderate f , the strategy of random attack causes the

network to need more driver nodes to fully control the ER

networks than intentional attack strategy. With the increasing of

removal fraction f , the intentional attack strategy removes a

fraction of highest loads edges and this reduces the connectivity of

networks, then the loads of the remaining edges which were on the

former connected paths will decrease and they are hard to

overload. On the contrary, the random attack strategy changes the

connectivity slightly.

The total number of failed edges in cascades as a function of

removal fraction f under two attacking strategies are shown in

Fig. 4(d), and the critical value f2 is corresponding to the removal

fraction when no edges failed by cascades under both attacking

strategies. We can find that the cascade which is triggered by

random attack causes much more edges to fail than that by

intentional attack, so in this region, the number of driver nodes

needed to control network under random attack is larger than that

under intentional attack.

(iii) f2vf ƒ1

As f wf2, there will be no failed edges which are caused by

cascades for both attacking strategies except the original removed

ones. However, if we remove the same fraction of edges, the

Fig. 4(b) shows that the network needs more driver nodes under

intentional attack than the random attack. This result is

determined by the robustness of control.

In the inset of Fig. 4(d), we present the densities of three

categories edges in all failed edges with the increasing of removal

fraction f . The densities of ordinary edges under both attacking

strategies are nearly the same, while the random attack has larger

probability to remove the redundant edges, on the contrary, the

intentional attack has larger probability to remove the critical

edges. This suggests that the highest loads edges in ER networks

Figure 4. The number of driver nodes as a function of removal fraction f for ER networks under different attacks. (a) vkw~2, (b)
vkw~4, (c) vkw~8, (d) the amount of failed edges in cascades as a function of removal fraction f for vkw~4. The inset of (d) shows the
densities of three categories edges in all failed edges with the increasing of f for vkw~4. The networks size N~10000 and tolerant parameter
a~1:15. Each data point result is obtained by averaging over 10 different realizations. The squares symbol the random attack and the circles symbol
the intentional attack. In the inset of Fig. 4(d), the squares, circles and triangles symbol the critical, ordinary and redundant edges respectively. The
open symbols and solid symbols represent the amount of edges under random and intentional attack respectively.
doi:10.1371/journal.pone.0089066.g004
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Figure 5. The number of driver nodes as a function of removal fraction f for SF network under different attacks. (a) c~2, (b) c~2:5, (c)
c~3, (d) the amount of failed edges in cascades as a function of removal fraction f for c~3. The inset of (d) shows the densities of three categories
edges in all failed edges with the increasing of f for c~3. The networks size N~10000, vkw~4 and tolerant parameter a~1:15. Each data point
result is obtained by averaging over 10 different realizations. The squares symbol the random attack and the circles symbol the intentional attack. In
the inset of Fig. 5(d), the squares, circles and triangles symbol the critical, ordinary and redundant edges respectively. The open symbols and solid
symbols represent the amount of edges under random and intentional attack respectively.
doi:10.1371/journal.pone.0089066.g005

Figure 6. The results of cascading failure for several real networks: Internet p2p network, Neural network of Caenorhbditis elegans
and Food web in Little Rock lake. (a) The number of driver nodes as a function of removal fraction f under two attack strategies, (b) The amount
of failed edges in cascades as a fraction of f . The squares, triangles and left triangles symbol the Neural network of Caenorhbditis elegans, the Food
web in Little Rock lake and the Internet p2p network respectively. The open symbols and solid symbols represent the controllability of networks
under random and intentional attack respectively.
doi:10.1371/journal.pone.0089066.g006
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are more likely to be critical edges. Hence, in this region, the

number of driver nodes under intentional attack is larger than that

under random attack. For ER networks, there exist some directed

tree-like structures, the edges on the stems always have large loads,

from the aspect of control, these edges usually belong to critical.

On the contrary, the edges attached to the stems belong to

redundant. The random attack has large probability to remove the

redundant edges, but their removal affects the controllability

slightly, so the network needs less driver nodes to fully control

under random attack in this region.

The results for SF networks are demonstrated in Fig. 5(a)-(d),

which have many differences comparing with the ER networks: (i)

In the region of moderate f , the intentional attack causes the

network need more driver nodes than random attack as shown in

Fig. 5(a), this is different from the case of ER networks and the

cases of other two SF networks which are shown in Fig. 5(b) and

Fig. 5(c). The SF network with power-law exponent c~2 is more

heterogenic, in such network, there exists a lot of hub nodes and

the edges among these nodes are quite dense, so the pairs of nodes

can also be reached through these hub nodes even when we

remove a fraction of edges with highest loads, but the remaining

edges of hub nodes are easier to overload and fail. This leads to a

larger damage in network under intentional attack than random

attack; (ii) In the region of larger f , the networks with small power-

law exponent c need more driver nodes to maintain fully control

under random attack than intentional attack. For larger f , the

intentional attack trends to remove the ordinary edges, and this

removal sometimes cannot increase the number of driver nodes,

therefore, the result is opposite to that in ER networks; (iii) For

larger c, the difference of number of driver nodes under two

attacking strategies is not significant as larger f . It can be seen from

the inset of Fig. 5(d). The densities of three categories edges in all

failed edges are nearly the same, thus the number of the driver

nodes under both attacking strategies are nearly the same too.

Finally, we simulate the two attacking strategies on the real

systems, Internet peer-to-peer network [36], Neural network of

Caenorhbditis elegans [1] and Food web in Little Rock lake [37].

As demonstrated in Fig. 6, with the increasing of removal fraction

f , the change of controllability and the amount of failed edges

show the same tendency as that in SF networks.

To further study the controllability of networks with random

weights and identical weights, we present the number of driver

nodes calculated by exact controllability and maximum matching

algorithm for several networks in File S1. For the case of identical

weights, the number of driver nodes in ER networks and SF

networks for two methods are the same; however, in the real

systems, the number of driver nodes obtained by the exact

controllability is always larger than that by structural controlla-

bility in the process of cascading. For the case of random weights,

all of networks show no difference between two methods.

Discussion

In conclusion, we study the controllability of networks in

cascading failure under two different attacking strategies, random

and intentional, respectively. As we remove the highest load edge

in network, the number of driver nodes in cascading failure mainly

depends on the edges amount in strongly connected compo-

nent(SCC), the reason is that the cascading failure is more likely to

spread in SCC. For ER networks, with small or large enough

average degrees, the highest-load attack cannot trigger the

cascades and it impacts the controllability of networks slightly.

The existence of hub nodes makes the SF networks are vulnerable

to the highest-load attack, and the larger damage can be triggered

in the network with small power-law exponent than with the large

one when the average degree is small, however, the increments of

the driver nodes for both of them are nearly the same.

For multiple edges attacks represented by removing a fraction

f of edges. The moderate f can efficiently suppresses the cascade

under intentional attack, which causes the number of driver

nodes under intentional attack is smaller than the case under

random attack for ER networks and SF networks with moderate

c. This result indicates that the random attack impacts the

controllability of less heterogenic networks more greatly than

intentional attack for moderate removal fraction f . For larger f ,

the attacks of both two strategies cannot trigger the cascades, and

the number of driver nodes is determined by the robustness of

control.

Supporting Information

File S1 This file includes supporting materials and
Figure S1–S4. Figure S1, the blue squares, green circles, red

lower triangles, light blue triangles, and purple diamonds symbol

the structural controllability of networks with average degree

vkw~2,4,6,8,10 respectively. The blue, green, red, light blue

and purple dash lines symbol the exact controllability of networks

with average degree vkw~2,4,6,8,10 respectively. Figure S2,

the blue lower triangles, green triangles, red diamonds, light blue

circles and purple squares symbol the structural controllability of

networks with c~2:0,2:2,2:5,3:0,3:5 respectively. The blue, green,

red, light blue and purple dash lines symbol the exact

controllability of networks with c~2:0,2:2,2:5,3:0,3:5 respectively.

Figure S3, the diamonds, lower triangles, circles and squares

symbol the Little Rock, Ythan, Grassland and Seagrass networks

respectively. The open symbols and solid symbols represent the

exact and structural controllability of networks respectively. Figure

S4, the diamonds, lower triangles, circles and squares symbol the

Little Rock, Ythan, Grassland and Seagrass networks respectively.

The open symbols and solid symbols represent the exact and

structural controllability of networks respectively.
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