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Abstract 

ChIP with reference e x ogenous genome (ChIP-Rx) is widely used to study histone modification changes across different biological conditions. 
A k e y step in the bioinformatics analysis of this data is calculating the normalization factors, which vary from the standard ChIP-seq pipelines. 
Choosing and applying the appropriate normalization method is crucial for interpreting the biological results. Ho w e v er, a comprehensiv e pipeline 
for complete ChIP-Rx data analysis is lacking. To address these challenges, we introduce Spik eFlo w, an integrated Snak emak e w orkflo w that 
combines features from various existing tools to streamline ChIP-Rx data processing and enhance usability. Spik eFlo w automates spik e-in data 
scaling and provides multiple normalization options. It also performs peak calling and differential analysis with distinct modalities, enabling the 
detection of enrichment regions for histone modifications and transcription factor binding. Our workflow runs in-depth quality control at all 
the processing steps and generates an analysis report with tables and graphs to facilitate results interpretation. We validated the pipeline by 
performing a comparative analysis with DiffBind and SpikChIP, demonstrating robust performances in various biological models. By combining 
diverse functionalities into a single platform, SpikeFlow aims to simplify ChIP-Rx data analysis for the research community. 
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recise comparison of transcription factor binding and hi-
tone modification levels between conditions is crucial in
enome biology. It can reveal novel gene regulatory mecha-
isms and highlight cellular state changes, helping target ther-
py development ( 1 ). Chromatin immunoprecipitation fol-
owed by sequencing (ChIP-seq) is considered the standard ap-
roach to study protein-DNA interactions due to its successful
doption in determining epigenomic profiles across cell types
nd tissues ( 2–4 ). However, ChIP-seq faces biases that hinder
omparisons across experiments, such as antibody efficiency
nd specificity. These issues were addressed by integrating ex-
genous chromatin (spike-in) from a different species as an
nternal control ( 1 , 5 , 6 ). This modification to ChIP-seq allows
or the normalization of sample-to-sample variation, facilitat-
ng more reliable comparative analysis. 

The first spike-in normalization method, known as
eference-adjusted reads per million (RRPM), was introduced
y Orlando et al. ( 6 ). In this case, the scaling factor is obtained
rom the number of reads that align to the exogenous genome.
ubsequently, several research groups modified RRPM to con-
ider also the spike-in reads derived from the input sample in
he scaling factor calculation ( 7 ,8 ). This approach, henceforth
amed Rx-input, enhances the normalization by adjusting for
ariations in immunoprecipitation efficiency and background
oise (i.e. the input). Alternatively, the downsampling (or tag
emoval) method scales down all the samples to the minimum
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number of spike-in reads in the dataset ( 1 ,9 ). Similarly, all the
samples can be normalized based on the median number of
exogenous reads in the dataset ( 10 ). Recently, a new type of
normalization based on local regression was proposed, which
reduces the spike-in correction in background regions ( 9 ). Ap-
plying the correct normalization is critical in ChIP-Rx data
analysis to ensure a proper interpretation of transcription fac-
tors or histone modification changes. 

Implementing the aforementioned strategies can be chal-
lenging and time-intensive, especially for non-experts in the
field. Moreover, spike-in normalizations are not included in
standard ChIP-seq data analysis workflows. To overcome
these limitations, we introduce SpikeFlow, a novel pipeline
for analyzing ChIP-Rx data. Starting from raw data, our
workflow performs trimming, alignment, and generation of
normalized bigWigs files suited for signal comparison across
conditions. The tool implements five types of normalization,
namely RPM, RRPM, Rx-input, Downsampling and Median.
Additionally, SpikeFlow features three diverse peak calling
methods and performs robust quality control at all the key
processing steps. For narrow and broad peak calling, Spike-
Flow implements both standard and normalized peak calling.
Standard peak calling is performed on the bam files with-
out normalization, common in ChIP-seq data analysis ( 11 ).
The user can, however, choose to perform the peak calling
on the spike-in normalized tracks. We implemented this op-
tion by taking advantage of Spiker ( 10 ), a recently developed
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a central value. 
tool that modifies MACS2 behavior. Once peak calling is per-
formed, SpikeFlow will create a consensus set of regions and
perform a differential binding analysis based on DESeq2 ( 12 )
for the contrasts specified by the user. Finally, the main output
of SpikeFlow is a multiqc report, which contains tables and
plots with the analysis results. 

Other tools have been proposed in recent years to ad-
dress ChIP-Rx data analysis. For instance, SpikChIP ( 9 ) and
ChIPSeqSpike ( 13 ). The former introduces a novel normal-
ization approach focused on peak regions and compares it to
RRPM and Downsampling scaling. The latter is an R pack-
age that we could not test since it is discontinued and, there-
fore, unavailable with recent versions of R. The main output
of SpikChIP are text files, which are not signal track files and
thus can not readily be used for downstream analysis. A fur-
ther conversion step needs to be implemented by the user, in-
troducing a layer of complexity to the analysis and potential
biases. Moreover, both ChIPSeqSpike and SpikChIP request
the user to input two bam files per sample, obtained by align-
ing the reads against the endogenous and exogenous genomes.
On the contrary, SpikeFlow starts the analysis from the raw
data and takes care of the alignment step with the related qual-
ity controls. A similar approach is implemented in Spiker ( 10 ).
This tool, however, does not allow automatic computation of
scaling factors, which is left to the user (Table 1 ). 

DiffBind ( 14 ) is a popular tool used for differential binding
analysis of ChIP-seq data that also includes spike-in normal-
ization. This tool requires a minimum of two replicates per
condition, which are not always available for ChIP-Rx ex-
periments. In SpikeFlow, we handle both single or multiple
replicates per biological condition. Finally, none of the afore-
mentioned published tools implements the Rx-input normal-
ization strategy. 

To our knowledge, SpikeFlow is the first pipeline to imple-
ment all the steps of ChIP-Rx data processing, from the align-
ment to the differential peaks analysis. This greatly simpli-
fies the researcher’s work and favors a better interpretation of
biological results. Furthermore, our tool implements a broad
range of normalizations and performs standard and normal-
ized peak calling. We tested SpikeFlow on multiple datasets,
including MV4-11 leukemia cells ( 6 ), breast cancer cell lines
( 15 ), mouse embryonic cortex ( 16 ), and mouse hepatocytes
( 17 ) validating its efficacy and applicability in various sce-
narios. As a proof-of-concept, we compared SpikeFlow’s per-
formance on ChIP-Rx data of ER binding ( 15 ) to SpikChIP
and DiffBind , obtaining highly similar results. Finally, Spike-
Flow is implemented with Snakemake, making it suited for
multi-threading and highly portable to all operating systems.
Its modular design enables easy integration into larger work-
flows, and it can be run with a docker or singularity container
(see materials and methods). 

Materials and methods 

SpikeFlow allows the researcher to analyze ChIP-Rx data with
minimal parameter configuration required. It is implemented
with Snakemake (v7.31), a python-based workflow engine
available within the conda package manager ( 18 ). The work-
flow uses several bioinformatics tools, organizing them in sep-
arate conda environments, thus isolating dependencies and
preventing conflicts, ensuring the workflow can be reproduced
in different computational environments. Moreover, all the re-
quired conda environments are also installed in a Docker im-
age that can be pulled from Dockerhub during the execution 

(available at this link https:// hub.docker.com/ r/ davidebrex/ 
spikeflow ). The key features of SpikeFlow are sample nor- 
malization with related quality controls, peak calling, annota- 
tion, signal tracks generation, and differential peak analysis.
Supplementary Figure S1 visualizes a flowchart with the main 

analysis steps. The pipeline requires the ChIP-Rx fastq files,
a sample sheet, and a configuration file as input. Both single 
and paired-end Illumina short-read sequencing technologies 
are supported. Firstly, if present, lanes from the same sample 
are merged into a single file. Next, trimming is performed with 

fastp to remove adapters and low-quality reads ( 19 ). At this 
point, if not already provided by the user, an index is gener- 
ated with bowtie2 ( 20 ) from a synthetic genome made by con- 
catenating the endogenous and exogenous (spike-in) genomes.
After the alignment, duplicate reads are removed with sam- 
blaster ( 21 ). A custom Python script based on samtools is then 

applied to separate the reads into two bam files based on the 
chromosome name. To generate the bigWig files, SpikeFlow 

takes advantage of deeptools ( 22 ). We implemented five dis- 
tinct normalization methodologies. The first utilizes the con- 
ventional Reads per Million (RPM) normalization strategy.
This technique does not incorporate the spike-in for the sig- 
nal correction. Next, the Orlando (RRPM) normalization ap- 
plies the scaling by dividing the reads mapped to the sample 
endogenous genome by the number of reads mapped to the 
exogenous genome ( 5 ,6 ). RRPM assumes consistent spike-in 

read quantities across various samples, ensuring an accurate 
comparison. The normalization factor is calculated as: 

α = 10 

6 × 1 

N(spike-in in ChIP) 

where α denotes the normalization factor, and N(spike-in in 

ChIP) represents the number of spike-in reads in the ChIP sam- 
ple. Another normalization extending RRPM was proposed 

in the works of Niu et al. ( 7 ) and Fursova et al. ( 8 ). Rx-input
normalization adjusts the scaling factors based on the ratio 

of spike-in reads relative to the total reads in corresponding 
input samples. The normalization factor is calculated with: 

α = 10 

6 × 1 

N(spike-in in ChIP) 
× N(spike-in in Input) 

N(reference in Input) 

We implemented two additional normalization methodolo- 
gies. The downsampling normalization technique adjusts the 
sample read counts by reducing them to match the sample 
with the fewest spike-in reads. This method ensures unifor- 
mity by setting the reference sample as the one with the mini- 
mum reads, calculated as: 

α = 

Min(all samples spike-in reads) 
N(current sample reads) 

where α denotes the downsampling factor. On the other hand,
the median normalization strategy scales all samples to the 
median value of the spike-in reads across the dataset. This 
method balances the read counts by adjusting each sample to 

the median, calculated as: 

α = 

Median(all samples spike-in reads) 
N(current sample reads) 

While downsampling reduces variability by equalizing to the 
smallest sample, median normalization balances the dataset to 

https://hub.docker.com/r/davidebrex/spikeflow
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
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Table 1. Table comparing the distinct features of the tools currently a v ailable f or ChIP-Rx data analy sis. ChIPSeqSpik e is included e v en though it is not 
currently a v ailable on Bioconductor 

ChIPSeqSpike SpikChIP DiffBind Spiker SpikeFlow 

Quality control ✗ ✗ � ✗ � 

Alignment and reads separation ✗ ✗ ✗ � � 

Narrow and broad peak calling ✗ ✗ ✗ � � 

Very-broad peak calling ✗ ✗ ✗ ✗ � 

Signal tracks generation ✗ ✗ ✗ � � 

Automatic scaling factors calculation � � � ✗ � 

Preset normalization options ✗ � � ✗ � 

Differential Peaks Analysis ✗ ✗ � ✗ � 

Peaks annotation ✗ ✗ ✗ ✗ � 

Parallel execution ✗ ✗ � ✗ � 

Containerized workflow ✗ ✗ ✗ ✗ � 

Results plotting � � � ✗ � 
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In parallel with the bigWig file generation, SpikeFlow per-
orms peak calling in narrow or broad standard modalities.
ptionally, the users can also choose to perform normalized
eak calling. Standard peak calling is achieved with MACS2
 11 ) and epic2 ( 23 ) for narrow and broad peaks, respectively.
f normalized peak calling is selected, a function from Spiker
 10 ) scales to spike-in reads both the sample and its matched
nput based on the chosen normalization type before perform-
ng peak calling with MACS2 . For very-broad peaks, Spike-
low performs standard peak calling with EDD ( 24 ), as Spiker
andles only narrow and broad modes. The default parame-
ers as the p-value thresholds for all these tools are set, but the
ser can adjust them in the Snakemake configuration file. The
btained narrow and broad peaks are then annotated with the
 package ChIPseeker ( 25 ). Differential peak analysis can be
erformed by specifying the contrasts in the workflow con-
guration file. This will create a consensus peak set for each
ntibody with bedtools merge ( 26 ). Next, the number of reads
ligning on these regions is calculated, generating a consensus
ount matrix. Finally, a custom R script runs DESeq2 ( 12 ),
djusting the size factors based on the specified normalization
ype (RPM, RRPM, Rx-Input, Downsampling, Median). Dif-
erential peaks are stored along with PCA and volcano plots.
f only one sample per condition is available, the p-value can
ot be calculated, so SpikeFlow returns a log2FC between sin-
le samples and generates a scatterplot. Finally, several checks
re run by the pipeline to assess the quality of the experi-
ents, namely fastqc , phantompeakqualtools , and plotFinger-
rint ( 22 ,27 ). Together with other QC plots, all the main out-
uts are listed in the report generated by multiqc ( 28 ). Details
bout the source code and the documentation to run Spike-
low are in the data and code availability section. SpikeFlow
esults were compared to DiffBind v3.8.4 ( 14 ) and SpikChIP
1.0 ( 9 ). The dba.normalize function from DiffBind was run
ith ‘normalize = DBA_NORM_RLE, spikein = TRUE’ pa-

ameters. SpikChIP was run with ‘-p 2 -k 1000’. All the other
arameters were left to default. 

esults 

o validate SpikeFlow, we selected two studies applying ChIP-
x to quantify histone modifications or transcription factor
inding in breast cancer and leukemia cells ( Supplementary 
ables S1 and S3 ). Other studies have used these datasets as
 benchmark to observe the effects of spike-in normalization
 9 ,14 ). In the first dataset, MV4-11 leukemia cells were treated
with increasing concentrations of EPZ5676, an inhibitor of
DOT1L. This enzyme catalyzes the methylation of H3K79,
a histone mark correlating with actively transcribed genes. A
general reduction of H3K79me2 on the gene bodies was ob-
served by the authors at 5 nM of EPZ5676. As a control, they
profiled H3K4me3, which should not change upon EPZ5676
administration ( 6 ). We downloaded the fastq files of these ex-
periments from the Gene Expression Omnibus database and
analyzed them through SpikeFlow. On average, the samples
had ≈14 million aligned reads, and the percentage of spike-
in reads over the total ranged from 10% to 40% among the
samples ( Supplementary Table S2 ). For the differential peak
analysis, we set the contrast to compare the 5 nM versus 0 nM
samples and set RPM normalization (no spike-in). Since this
dataset contains only one replicate per condition, SpikeFlow
calculates a fold change and generates scatter plots but does
not produce volcano plots due to the inability to perform the
statistical test with DESeq2. With RPM normalization, we
identified 238 regions exhibiting a log2 fold change lower
than -1.5 between the EPZ5676 (5 nM) and control con-
ditions (Figure 1 A). In contrast, applying Orlando (RRPM)
normalization revealed 15 729 regions with decreased levels
of H3K79me2 (Figure 1 B). As anticipated, no significant dif-
ferences were observed for H3K4me3 under either normal-
ization method, verifying that H3K4me3 levels remain un-
affected by EPZ5676 treatment (Figure 1 A, B). These analy-
ses confirmed the published results, demonstrating that Spike-
Flow could successfully identify the reduction in H3K79me2
levels upon EPZ5676 treatment (Figure 1 C). 

After testing SpikeFlow on a dataset with one sample per
biological conditions, we extended our analysis to an experi-
ment with multiple replicates. We analyzed data from Guertin
et al. ( 15 ), where they monitored estrogen receptor (ER) bind-
ing upon treatment with fulvestrant in MCF-7 cells. Fulves-
trant functions as an ER antagonist, leading to cellular loss
of ER protein and compromising ER binding genome-wide.
This dataset serves as an ideal model to compare spike-in
normalization methods. In this analysis, we ran SpikeFlow,
which performed standard peak calling with MACS2 for each
replicate, merged the consensus peaks, and conducted dif-
ferential peak analysis with Orlando (RRPM) normalization
( Supplementary Table S4 ). The pipeline generated a volcano
plot showing 4848 regions with a significant decrease in ER
binding upon fulvestrant treatment (adj. P -value ≤ 0.05 and
log 2 FC ≤ −1, Figure 2 A). Along with the volcano, Spike-
Flow produced a PCA plot where the four samples per condi-
tion clustered separately along the first principal component,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
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Figure 1 . ( A ) Scat terplots generated b y Spik eFlo w comparing H3K4me3 (left) and H3K79me2 (right) RPM normalized signals at 5nm dose of EPZ5676 vs 
control (0 nm). Samples are from the Orlando et. al dataset ( 6 ). ( B ) Scatterplots generated by SpikeFlow comparing H3K4me3 (left) and H3K79me2 
(right) Orlando (RRPM) normalized signals at 5nm dose of EPZ5676 vs control (0 nm). Samples are from the Orlando et. al dataset ( 6 ). ( C ) Snapshot of a 
portion of c hr1 9 demonstrating the efficacy of RRPM at detecting signal decrease, which is not observed with RPM normalization. Signal tracks, 
generated using Spik eFlo w, are from ChIP-Rx data of H3K79me2 in MV4-11 cells ( 6 ). 
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A B

C D

E

F

Figure 2. ( A ) Volcano plot generated by SpikeFlow by setting the Fulvestrant vs Control (None) contrast in the differential peak analysis. Blue dots are 
regions considered significantly decreased in ER binding (adj. P -value ≤ 0.05 and log 2 FC ≤ −1). ( B ) PCA plot generated by SpikeFlow over the 
consensus regions obtained by merging the peaks of each replicate. ( C ) UpSet plot displaying the number of significant peaks ( q -value ≤0.05) obtained 
with standard and normalized peak calling (Orlando, RX-Input, Downsampling, and Median). (D) Overlap of regions with a significant decrease in ER 

binding (adj. P -value ≤ 0.05 and log 2 FC ≤ −1) between standard and normalized peak calling. (E) Overlap between DiffBind (gray) and SpikeFlow 

outputs of regions with a significant decrease in ER binding for standard peak calling. (F) As in E but with normalized peak calling. 
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indicating high similarity between replicates (Figure 2 B). Our
analysis successfully recapitulated the findings observed in the
original paper, further validating SpikeFlow’s effectiveness in
handling datasets with multiple replicates per condition. 

Along with the standard peak calling, which is performed
on the raw BAM file, SpikeFlow allows the application of
spike-in normalization factors while identifying the peaks (i.e.
normalized peak calling). To test this feature, we compared the
number of consensus peaks ( q -value ≤ 0.05) from the sam-
ples in the Guertin dataset among all the types of spike-in
normalization implemented in SpikeFlow (Orlando, Rx-input,
Downsampling, and Median). We observed that the different
types of spike-in normalizations reduced the number of sig-
nificant peaks called compared to the standard method, and
these regions were largely a subset of those identified by the
standard peak calling (Figure 2 C). 

Next, we examined how the normalized peak calling strat-
egy impacted the differential peak analysis. We computed the
overlap of regions with a decrease in ER binding upon fulves-
trant treatment between standard and normalized peak call-
ing for each normalization type (Figure 2 D). Although the
peaks called with the normalized methods were fewer, they
were more frequent among the regions with a significant de-
crease in the binding of ER. Specifically, 90% of the regions
identified by Orlando normalized peak calling showed a sig-
nificant decrease in ER binding, 88% for Rx-input, 82% for
downsampling, and 75% for median normalization. To fur-
ther investigate this, we examined the position of the regions
identified with normalized peak calling in the volcano plot
shown in Figure 2 A. We observed that peaks identified us-
ing Orlando spike-in normalization were among those with
the lowest adjusted P -values ( Supplementary Figure S2 ). This
suggests that normalized peak calling selects more conserva-
tive regions across all fold change levels. SpikeFlow provides
researchers with a streamlined way to compare and evaluate
different normalization methods, thereby aiding in selecting
the most appropriate approach. 

Additionally, we compared the differential peak regions
identified by SpikeFlow with those identified by the published
tool DiffBind ( 14 ), operating in spike-in mode. Using stan-
dard peak calling, we found that SpikeFlow median normal-
ization identified an additional 426 regions with decreased
ER binding that were not found by DiffBind (Figure 2 E).
Moreover, a high degree of overlap between the regions iden-
tified by SpikeFlow and DiffBind was observed, even when
using normalized peak calling methods (Figure 2 E, F). This
consistency suggests that SpikeFlow is reliable and effective
for differential peak analysis, regardless of the normalization
approach. 

To assess the effect of the different normalization strate-
gies, we compared the normalized signals of ER binding
over the consensus peaks regions in the Guertin dataset (Fig-
ure 3 A). Median and downsampling normalizations exhibited
greater variability between replicates than Orlando and Rx-
input normalization. Still, the overall reduction of ER bind-
ing can be appreciated for all the normalization types. In
this dataset, Rx-input is comparable to Orlando normaliza-
tion since all the replicates share the same input. Next, we
sought to compare the normalization strategies implemented
in SpikeFlow with an already established tool, i.e. SpikChIP
( 9 ). SpikChIP computes Orlando, Downsampling, and local
normalization approaches (reffered as SpikChIP in the fig-
ures). The latter yielded a signal over peak regions com- 
parable to the Orlando normalization (see Figure 3 B). Or- 
lando normalization implemented with SpikeFlow produced 

higher normalized signal values than SpikChIP, while Down- 
sampling was similar (Figure 3 B). Despite these differences,
there was a significant correlation between the normaliza- 
tions implemented in SpikeFlow and those in SpikChIP (Fig- 
ure 3 C, Supplementary Figure S3 ). The high correlation sug- 
gests SpikeFlow’s normalization methods are robust and com- 
parable to SpikChIP. 

We further tested and validated SpikeFlow for the analy- 
sis of other histone modifications, both in vitro and in vivo 

( 16 , 17 , 29 ), confirming its portability to diverse biological con- 
texts. The reports generated by SpikeFlow for the MV4-11 

and MCF-7 datasets are available in the supplementary mate- 
rial ( Supplementary Files 1, 2 ). 

Discussion 

SpikeFlow is a new tool to perform ChIP-Rx data analysis,
implementing diverse normalization strategies. It performs all 
the processing steps, from alignment to scaling factor calcu- 
lations and differential peak analysis, making ChIP-Rx data 
processing accessible to users without specialized expertise. 

We demonstrated the effectiveness of SpikeFlow for differ- 
ential peak analysis using datasets with single and multiple 
replicates per condition. Our findings show that SpikeFlow’s 
ability to normalize sample signal before peak calling can 

provide meaningful advantages. Specifically, we observed that 
normalization methods, such as Orlando (RRPM) and Rx- 
input, tend to select more conservative regions with stronger 
contrasts, particularly useful for focused investigations. Al- 
though normalized peak calling is not widely adopted, our 
comparison with the standard method establishes a foun- 
dation for further analyses and comparisons across various 
datasets. We believe this work will allow future research to 

investigate the benefits and limitations of different normaliza- 
tion approaches. SpikeFlow simplifies this process, providing 
an efficient tool for exploring, validating, and applying vari- 
ous normalization techniques. 

Additionally, our analysis matched the results observed in 

the work of Guertin et al. ( 15 ), where a reduction in ER bind- 
ing upon fulvestrant treatment was observed, further validat- 
ing SpikeFlow accuracy (Figure 2 A). However, the choice of 
normalization type can heavily influence the outcome of the 
differential analysis and has to be taken into account while 
interpreting the results (Figure 2 D). 

Comparative analysis with DiffBind ( 14 ) revealed that 
median normalization in SpikeFlow identified more signif- 
icant regions with decreased ER binding, and there was a 
high overlap between the differential peak regions identi- 
fied by both tools. Further, our examination of the Guertin 

dataset highlighted the differences in scaled signals intro- 
duced by changing normalization methods (Figure 3 ). Me- 
dian and downsampling normalizations exhibited greater 
variability between replicates compared to Orlando and Rx- 
input normalizations. When compared to SpikChIP, we ob- 
served a high correlation between the normalization methods,
underscoring the robustness of SpikeFlow’s normalization 

techniques. 
Overall, SpikeFlow offers comprehensive normalization 

options and the ability to perform complete analysis from 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
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A

B

C

Figure 3. ( A ) B o xplots displa ying the signal f or each normalization applied b y Spik eFlo w and each replicate in the Guertin dataset 
( Supplementary Table S3 ) ( 15 ). The signal is calculated over the consensus regions, obtained with standard peak calling in Spik eFlo w. ( B ) As in A, the 
normalized signals have been obtained by SpikChIP. ( C ) Scatter plot showing the signal correlation between SpikChIP and SpikeFlow for ER rep1 sample. 
The person correlation coefficient and the p-value are indicated at the panel’s top. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae118#supplementary-data
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raw data to downstream processing, including quality con-
trol and detailed plotting. Its support for parallel and con-
tainerized execution further enhances its utility, making it a
valuable tool for ChIP-Rx data analysis. Finally, SpikeFlow
allows researchers to achieve more precise and reliable re-
sults in histone modifications and transcription factor binding
studies. 

Data availability 

SpikeFlow code and documentation are available on GitHub
at https:// github.com/ DavideBrex/ SpikeFlow . Moreover,
SpikeFlow source code (version v1.2.1) was deposited on
Zenodo ( https:// zenodo.org/ records/ 12189456 ) for repro-
ducibility . Optionally , SpikeFlow can be run in a containerized
environment, so we also deposited the Docker image on Zen-
odo at https:// zenodo.org/ records/ 11544955 . The GEO
accession numbers for the analyzed datasets are available in
Supplementary Table S1 and S3 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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