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Simple Summary: Due to breeding for high egg production, laying hens are at great risk for develop-
ing osteoporosis. To develop an effective feed additive for reducing the bone damage and associated
pain and economic loss has become a critical issue affecting the poultry industry. The aim of this study
was to investigate the effects of Bacillus subtills as a feed supplement on production performance
and bone pathophysiological characteristics of laying hens. The results showed that Bacillus subtilis
increases marketable eggs, protects bone health, changes the distribution of phosphorus between
blood and bone, and increases estrogen but decreases interleukin-1 and tumor necrosis factor-α
concentrations in blood. Results indicate that Bacillus subtilis can be used as a dietary supplement to
increase marketable egg production and bone health of laying hens by inhibiting gut and systemic
inflammation via the microbiota-gut-immune and the microbiota-gut-bone axes.

Abstract: This study was to investigate the effects of Bacillus subtilis on production performance
and bone pathophysiological characteristics of layers. Twenty-four 48-week-old Lohmann Pink-
shell laying hens were randomly divided into two groups: a basic diet (control) and the basic diet
mixed with Bacillus subtilis (0.5 g/kg) for a 60-day trial. Statistically, independent-sample t-test was
used to assess the treatment differences. The results showed that Bacillus subtilis supplementation
improved the percent of marketable eggs (p < 0.05) with reduced numbers of broken and soft-shelled
eggs but had no effects on egg weight, height of albumen, yolk color, and Haugh unit (p > 0.05).
Bacillus subtilis supplement also elevated maximum load (p = 0.06), maximum stress (p = 0.01),
stiffness (p < 0.01), and Young’s modulus (p < 0.01) but suppressed maximum strain (p = 0.06) in the
femur. In addition, compared with control birds, phosphorous concentration (p < 0.01) was reduced
in serum at day 61 but increased in the femur (p < 0.05) in Bacillus subtilis fed birds. Bacillus subtilis
fed birds also had lower magnesium concentrations in both femur (p = 0.04) and feces (p = 0.09).
Furthermore, Bacillus subtilis increased plasma estrogen concentration (p = 0.01) and femur TNF
receptor superfamily member 11b (OPG) expression (p < 0.05) but reduced plasma IL-1 (p < 0.01)
and TNF-α (p < 0.01) concentrations. These results indicate that Bacillus subtilis could be used as a
health promotor to reduce overproduction-induced inflammation and associated bone damage and
to increase marketable egg production. The data provide evidence for developing a management
strategy to use Bacillus subtilis as a feed additive to improve marketable egg production and health
and welfare status of laying hens.
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1. Introduction

Osteoporosis is one of the major threats to the health and welfare of laying hens,
which causes chronic pain, bone fractures, paralysis, and mortality, resulting in poor
egg production and quality as well as significant economic loss [1–3]. Before sexual
maturity, the level of calcium (Ca) in the feed of pullets is low, which is requested only for
maintaining their normal life activities, while the nutrient levels such as amino acids are
high for growth of their body weight to reserve sufficient energy for laying eggs later [4].
Therefore, during the pullet period, their femur and tibia are in a hollow state. After
sexual maturity begins (2 weeks before laying) along with increased estrogen levels, the
skeletal state starts to change, a large amount of Ca is deposited in the bones, leading to
the formation of medulla bone which services as Ca sources for laying eggs [5,6]. Thus,
in order to prepare pullets to start and continue laying eggs smoothly, the composition
of the feed is changed, including increasing the Ca amount from 2.2% to approximately
3.5–3.8% [7]. In addition, producers also use large particles of bone meal, limestone, or
oyster shells as Ca sources [8] with phytase [9] for improvement of Ca bioavailability
in laying hens by prolonging retention time in small intestines and effective quantity of
Ca [10]. However, when hens become aged (40-week-old and beyond), reaching peak egg
production, along with the need for a great amount of Ca for eggshell formation, which
causes more Ca to be mobilized from the skeleton to the eggshell gland to remedy limited
and inadequate Ca absorbed in the gut [7]. Approximately 60–70% Ca of eggshells is from
diet and the rest is from bones [3]. Generally, bone loss may possibly be corrected by
restoring Ca balance [11]. However, the bone-remodeling process of laying hens is affected
by multiple factors, such as genetic background, individual physical and physiological
characteristics, rearing environment, and nutrient status. Any alterations of either the
internal, external, or both, factors will disrupt the balance between bone formation and
bone resorption, mostly increasing bone resorption for eggshell formation, eventually
leading to osteoporosis [5]. Thus, improvement of absorption efficiency of Ca in the
intestines plays an important role in preventing osteoporosis. Probiotics function to regulate
intestinal microbiota [12,13], protect intestinal integrity [14,15], and strengthen immune
response [16,17]. Several probiotics have been used as alternatives to antibiotics in farm
animal production [18,19]. Especially, Bacillus subtilis has been widely used due to its heat
resistant property during processing, high survivability in acidic condition, ability to form
biofilm in the small intestines, as well as due to its high stability property during storage
and administration procedure.

Several studies have reported that Bacillus subtilis alone or combined with other
bacteria can be used as growth promotors or immunomodulatory factors to increase
energy retention, weight gain, and feed conversion in broiler chickens [20,21]. One of
the mechanisms of its effects is to enhance feed digestion and nutrient resorption in the
gastrointestinal tract (GIT) [22,23], leading to positive effects on preventing bone mass
loss [24] by improving bone density and mineral content such as Ca and phosphorus
(P) [24–26]. Compared to broilers, laying hens have a longer lifespan with a phase for great
egg production, approximately 300 eggs/year or more, therefore, laying hens demand
more Ca resulting in depleting structural bone over the course of production, consequently
increasing risk of osteoporosis [27]. Some studies have shown that Bacillus subtilis promotes
the absorption ability of laying hens by protecting the intestinal barrier and positively
regulating intestinal microbiota composition [28,29], and increases egg quality [30,31] and
mineral retention [32]. However, few studies have focused on the effects of Bacillus subtilis
on bone pathophysiological alterations in aged laying hens and the underlying mechanisms.
It is not clear if Bacillus subtilis can protect bone quality in laying hens with the similar
effects found in broilers.
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The aims of this study were to detect the influence of Bacillus subtilis additive in
production performance, bone traits, and bone remodeling related hematology indexes
in laying hens. The outcomes will provide information for better understanding the
mechanisms of Bacillus subtilis in bone protection and the strategy using Bacillus subtilis to
improve health and welfare of laying hens during production.

2. Materials and Methods
2.1. Animals, Housing, and Diets

All procedures in this experiment were approved by the Animal Ethics Committee of
the Southwest University, Chongqing, China (permission number: IACUC-2019022519).
Twenty-four 48-week-old Lohmann Pink-shell laying hens (Zhongwan Poultry Farm,
Chongqing, China) were fed a regular layer diet and reared in conventional single-bird
cages (one bird one cage; cage size: 40 cm × 35 cm × 35 cm) prior to the study. During the
study, the birds were randomly divided into two groups (n = 12 replicates per treatment):
a basal diet (Control, Table 1) and the basic diet supplemented with a commercial Bacil-
lus subtilis (Fubon Inc., Wuhan, China) at 0.5 g/kg of feed (company recommended dose)
for a 60-day trial. During the experimental period, 16 h light was provided daily, and water
and feed were offered ad libitum.

Table 1. Composition of the basal diet for layers.

Item Factor Control Diet B. subtilis Diet

Ingredient

Corn (%) 65 65
Soybean (%) 22 22

Shell powder (%) 8.9 8.9
Zeolite powder (%) 1.1 1.1

3% premix 1 (%) 3 3
Bacillus subtilis (g/kg) 0 0.5

Nutrient composition
Crude protein (%) 15.05 15.05

Calcium (%) 3.7 3.7
Energy (MJ/kg) 11.57 11.57

1 Premix contains multivitamins, complex trace elements, DL-methionine, calcium hydrophosphate, light calcium
carbonate, sodium chloride, phytase, choline chloride, antioxidant, and zeolite powder. Ingredients per kilogram
of premix: vitamin A, 220,000–330,000 IU; vitamin D3, 55,000–85,000 IU; vitamin E: ≥320 mg; vitamin K3,
40–140 mg; vitamin B1, ≥75 mg; vitamin B2, ≥155 mg; vitamin B6, ≥75 mg; thiamine nitrate, ≥80 mg; calcium
pantothenate, ≥155 mg; nicotinamide, ≥850 mg; iodine, 5–15; iron 2000–6000 mg; zinc, 2400–4830 mg; manganese,
2930–4820 mg; copper, 267–667 mg; selenium, 5–15 mg; calcium, ≥8%; total phosphorus, ≥3.3%; sodium chloride,
7–14%; methionine, ≥2.3%.

2.2. Sample Collection

Each bird was weighed on day 0 and day 61 of the experiment. For egg production,
eggs were collected in the morning (9:00–9:15) daily. The number of eggs and broken
and soft-shelled eggs were recorded. The weekly total egg production and the percent
of marketable eggs (normal eggs without cracks, misshapen and soft shells) [33] were
calculated according to the formula: weekly egg production = total number of eggs during
the week /12 birds; and the percent of marketable eggs = normal eggs/total number of
eggs [34].

For egg and eggshell quality, one qualified egg was randomly collected from each cage
on day 0 (the day immediately before the experiment) for measuring the initial egg and
eggshell quality; and one marketable egg was per cage during day 59–60 for measuring
treatment effects on egg and eggshell quality (n = 12 replicates per treatment).

The fresh feces samples were collected from each bird by putting a plastic bag on
the bottom of each cage (n = 12 per treatment), at 9:00 during day 29–30 and day 59–60,
respectively, to test if Bacillus subtilis has successfully colonized in the intestines. Feed
intake was record and calculated on days 59–60 by following the procedure published
previously [35].
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For blood samples, 10 mL blood per bird was collected via the brachia vein into a
common blood collection tube for getting serum at day 30 (n = 12 per treatment). After
standing overnight at 4 ◦C, the blood was centrifuged at 3000 rpm for 15 min to obtain the
supernatant. The collected serum was stored at−20 ◦C until biochemical indicator analyses.
At day 61 (on completion of the experiment), the birds were anesthetized using 30 mg/kg
of pentobarbital sodium prior to the sampling, then blood samples were collected through
cardiac puncture into plasma separator tubes with EDTA and common blood collection
tubes (n = 12 per treatment) for plasma hormones, inflammatory factors, and intestinal
barrier factors and serum biochemical indicator analyses. To get plasma, the blood samples
were centrifuged at 3000 rpm for 15 min, then kept at −20 ◦C until analysis, while the
procedure for serum collection was the same as described above. For bone parameter
analyses, following blood collection, the birds were euthanized immediately by cervical
dislocation, and femur and tibia were collected from each bird (n = 12 per treatment). The
right femur and tibia from each bird were frozen at −20 ◦C for bone strength analysis; the
cancellous bone from each left distal femur was stored at−80 ◦C for real-time PCR analysis;
and the sampled right femur, feces, and eggshell were stored at −20 ◦C for mineral (Ca, P,
and Mg) content analysis.

2.3. Colonization Efficiency of Bacillus subtilis

Furthermore, 0.2 g per feces sample (n = 12 per group) were suspended and homoge-
nized with 20 mL saline solution (0.9% NaCl) and then incubated at 75 ◦C in a water bath
for 20 min. After vibration (Vortex mixer, XH-C, WoXin, Wuxi, China), each sample was
diluted 10 to 1000 fold using 0.9% NaCl. A 100 µL per dilution was plated on nutrient agar
media, then incubated at 37 ◦C for 36 h. The counts of Bacillus subtilis in the sample (CFU)
= dilution ratio × 100 × 10 × colony number [36].

2.4. Egg Quality

Egg and eggshell qualities were assessed on the day before starting the experiment
and day 59–60 (the last two days of the experiment) (n = 12 per group per time point). Egg
weight, height of albumen, yolk color, and Haugh unit were measured by using an Egg
Analyzer (EA-01, ORKA Food Technology Ltd., Herzliya, Israel). Eggshell strength was
measured by using an Egg Force Reader (EFR-01, ORKA Food Technology Ltd., Herzliya,
Israel). Eggshell thickness was tested by using an Eggshell Thickness gauge (TI-PVX,
ORKA Technology, Herzliya, Israel). Egg shape index was calculated by measuring the
major axis and minor axis of each egg with an Egg shape index tester (NFN383, Fujihira
Industry Co., Ltd., Tokyo, Japan).

2.5. Hematological Measurements

Serum alkaline phosphatase (ALP), Ca, and P were analyzed using an automatic bio-
chemistry analyzer (Olympus AU400, Tokyo, Japan), and tartrate resistant acid phosphatase
(TRAP) was analyzed via a Tartrate Resistant Acid Phosphatase Assay Kit (Shanghai Biyun-
tian Biotechnology Co., Ltd., Shanghai, China) using a microplate reader (Olympus AU400,
Tokyo, Japan). Additionally, the concentrations of interleukin (IL)-1, IL-6, tumor necrosis
factor-alpha (TNF-α), 1.25-dihydroxy vitamin D (1.25-(OH)2D3), thyroid hormones (PTH),
calcitonin (CT), lipopolysaccharide (LPS), D-lactic acid (D-LA), and estrogen (E2) were
detected by using relative ELISA kits (Xiamen Huijia Biotechnology Co., Ltd., Fujian, China).

2.6. Bone Traits Analysis

The muscle of both right femur and tibia were removed, and then the bones were
weighed and scanned for bone mass and densitometry by using an electronic analytical
balance (JA2003A, JingTian, Shanghai, China) and the InAlyzer (MEDIKORS, Seongnam,
Korea) (n = 12 per group). Relative mass of each bone = bone weight/body weight.
Breaking strength of femur and tibia was measured using the Universal Test Machines
(LR10K Plus, Lloyd Instruments Ltd., Wokingham, UK) with adopted three points bending
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method and applied mean extension rate of 10 mm/min until failure, and the maximum
load (the point on the load deformation curve, beyond which plastic damage of the bone
will be occurred), maximum stress (the internal resistance of bone to external forces, beyond
which bone fractures will be occurred), maximum strain (the ratio of change in the length to
the original size of bone under maximum stress), stiffness (the result is calculated as being
the gradient of the modulus line on a load vs. extension graph), and Young’s modulus (the
ratio of the stress to strain in the linear range of the curve) were calculated [35,37,38].

2.7. Real-Time PCR

Total RNA was randomly extracted from 6 of 12 sampled cancellous bones of the
left distal femur (n = 6 per group) using the Bone tissue RNA Extract Kit (Coolaber
technology co., Ltd., Beijing, China). The quality and concentration were examined using
NanoPhotometer (P330, Implen, Munich, Germany). cDNA was synthesized from 1 µg of
total RNA using NovoScript Plus All-in-one 1st Strand cDNA Synthesis SuperMix (gDNA
Purge) (Novoprotein Scientific Inc., Suzhou, China). The mRNA levels of TNF receptor
superfamily member 11b (OPG), collagen type I alpha 2 chain (COL1A2), sclerostin (SOST),
TNF superfamily member 11 (RANKL), TNF receptor superfamily member 11a (RANK),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured by using real-
time PCR. The GAPDH was used as the reference gene. The expression of each target gene
was determined by using the 2−∆Ct method. The specific formula was: ∆Ct = Cttarget gene −
Cthousekeeping gene. The sequences of primers were synthesized by Invitrogen Biotechnology
(Shanghai, China) and listed in Table 2.

Table 2. Real-time PCR primers and amplified PCR product size.

Gene GenBank ID PCR Primers Sequence (5′ to 3′) PCR Products (bp)

OPG NM_001033641.1 F: GTTCCTACTCGTTCCACACC
R: GCTCTTGTGAACTGTGCCTTTG 115

RANKL XM_015275777.2 F: CTGGAACTCGCAAAGTGAACCT
R: TTTCCCATCACTGAACGTCATATTT 86

SOST XM_025144077.1 F: TTGTCTGTATTCGTCTCGCTAT
R: AACGTCCTTTCTGAGTCACCT 180

COL1A2 NM_001079714.2 F: GGCTTTGATGCAGAATACTACCG
R: GTTGTTCAATGTTTTCAGAGTGGC 90

RANK XM_004939689.3
F: GCCATGTCCCAGAGGATACT

87R: GCCAATCCCAGAGCTGAACA

GAPDH NM_204305.1 F: TTGACGTGCAGCAGGAACAC
R: ATGGCCACCACTTGGACTTT 124

OPG: TNF receptor superfamily member 11b; RANKL: receptor activator for nuclear factor-κ B ligand; SOST: sclerostin; COL1A2: collagen
type I alpha 2 chain; RANK: TNF receptor superfamily member 11a; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

2.8. Ca and P Content Analysis

The sampled eggshells, feces, and femur were dried in an air oven at 105 ◦C until
constant weight was reached. The weighed 0.1 g sample was placed into a crucible and
carbonized on electric heating plates at 200 ◦C. Each sample was then ashed in a muffle
furnace (FO811C, Yamato scientific America, Inc., Tokyo, Japan) at 550 ◦C for 3 h, and the
ash was weighed to gain the inorganic mass. The ash was dissolved with nitric acid and
diluted up to 50 mL with ultra-pure water. The contents of Ca, P, and Mg were analyzed
using an inductively coupled plasma-optical emission spectrometer (ICP-OES) (iCAP 7000
SERIES, Thermo, Waltham, MA, USA) [39–41].

2.9. Statistical Analysis

All data were analyzed by using the Statistical Package for the Social Science (SPSS).
The overall differences between the two groups were analyzed through independent-
sample t-test and multiple comparisons of means produced by LSD. The effects of Bacil-
lus subtilis and age on the biochemical indexes of bone metabolism were analyzed by



Animals 2021, 11, 2041 6 of 15

two-way ANOVA. When there was an interaction effect, the t-test was used to compare the
differences between groups. The correlation analysis between bone traits and Ca or P in
femur and serum was performed using the Spearman procedure via the two-tailed test.
p ≤ 0.05 were considered statistically significant and 0.05 < p < 0.1 was considered a trend
difference.

3. Results
3.1. Colonization Efficiency of Bacillus subtilis

The results showed that dietary Bacillus subtilis supplement significantly increased
the count of colonized Bacillus subtilis in the feces of treated group compared to the control
group during the experiment period (p < 0.01; Table 3).

Table 3. The capability of colonization of Bacillus subtilis expressed in feces.

Time Lg (Control) Lg (B. subtilis) SEM p-Value

D 30 2.67 6.41 ** 0.98 0.007
D 60 3.31 6.08 ** 0.75 0.007

Values are represented by mean ± SEM (n = 12 per group), ** means p ≤ 0.01. Lg: the original count of colonized
Bacillus subtilis data were presented by lg conversion.

3.2. Egg Production and Egg Quality Parameters

There were no treatment effects on egg production (p > 0.05). In addition, there was
no difference in egg quality between the control and treated groups before the experiment
(data not shown). However, Bacillus subtilis feeding significantly increased the number
of marketable eggs during the entire experiment (p < 0.01, Table 4) by reducing broken
(17.08% vs. 7.12%, control vs. treated group, p < 0.01) and soft-shelled eggs (0.69% vs. 0%,
control vs. treated group, p < 0.05), while there were no treatment effects on the egg weight,
height of albumen, yolk color, Haugh unit, eggshell thickness, and strength as well as eggs’
shape index (p > 0.05).

Table 4. Effects of Bacillus subtilis on egg production and egg qualities of laying hens from 48 to 57
weeks of age.

Parameters Control B. subtilis SEM p-Value

48 week body weight (kg) 1.69 1.70 0.08 0.32
57 week body weight (kg) 1.72 1.73 0.06 0.76

Feed intake (g) 120.33 119.28 10.95 0.93
Egg production, % 80.64 78.26 1.71 0.18
Marketable eggs, % 76.19 88.74 ** 2.29 <0.01

Egg weight (g) 62.08 62.8 1.80 0.69
Egg shape index 1.35 1.34 0.02 0.64

Height of albumen (mm) 6.55 6.48 0.34 0.84
Yolk color 5.08 4.58 0.35 0.16

Haugh unit 79.75 79.05 2.46 0.78
Eggshell thickness (mm) 0.47 0.48 0.00 0.45

Eggshell strength (kg) 3.54 3.47 0.41 0.87
Data are presented as Mean ± SEM, ** means p ≤ 0.01 (n = 12 per group).

3.3. Hematological Analysis

Bacillus subtilis did not affect serum Ca concentration, ALP, and TRAP activities
(p > 0.05; Figure 1A,C,D) but reduced P concentration (p < 0.01, Figure 1B) in laying hens at
day 61. The serum activity of ALP (p = 0.06) had a trend of decrease and TRAP activity
(p < 0.01) significantly increased with age in laying hens (Figure 1C,D). Meanwhile, at day
61, there was a trend of lower plasma CT in Bacillus subtilis fed birds (p = 0.07; Figure 2A). In
addition, Bacillus subtilis increased plasma concentrations of E2 (p = 0.01) without effects on
plasma concentrations of IL-6, 1,25-(OH)2D3, PTH, D-LA, and LPS (p > 0.05; Figure 2A–C),
but inhibited plasma IL-1 (p < 0.01; Figure 2B) and TNF-α (p < 0.01) concentrations.
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3.4. Bone Pathophysiological Parameters

Compared with the control group, Bacillus subtilis administration did not change
femur absolute and relative mass and density (p > 0.05; Table 5) but improved femur
maximum stress (p = 0.01), stiffness (p < 0.01), and Young’s modulus (p < 0.01) in birds.
Moreover, there was an upward trend of femur maximum load and a downward trend
of femur maximum strain, respectively, in Bacillus subtilis fed birds (p = 0.06). However,
Bacillus subtilis supplement did not affect other measured biomechanical properties of
tibia, except for a slight increase in tibial density (p = 0.07). Furthermore, Bacillus subtilis
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supplement improved the expression of OPG mRNA (p = 0.02; Figure 3), leading to a greater
OPG/RANKL ratio (p = 0.04), while there were no treatment effects on the expression of
RANKL, RANK, SOST, and COL1A2 mRNA.

Table 5. Effects of Bacillus subtilis on the parameters of bone strength.

Bone Strength Parameters Control B. subtilis SEM p-Value

- Femur -
Absolute mass (g) 8.67 8.47 0.32 0.54

Relative mass% 50.63 49.31 1.85 0.48
Maximum load (N) 118.85 143.5 + 12.1 0.06

Maximum stress (MPa) 115.63 211.90 ** 32.4 0.01
Maximum strain 0.014 0.012 + <0.0001 0.06
Stiffness (N/m) 148,607 205,039 ** 13,906 <0.01

Young’s modulus (MPa) 10,226.7 28,910.1 ** 3586.1 <0.01
Density (g/cm2) 0.49 0.43 0.11 0.57

- Tibia -
Absolute mass (g) 9.93 9.52 0.35 0.25

Relative mass% 58.10 55.05 1.91 0.13
Maximum load (N) 97.86 101.34 8.98 0.70

Maximum stress (MPa) 191.31 202.39 35.93 0.76
Maximum strain 0.040 0.037 0.001 0.31
Stiffness (N/m) 44,657.21 46,069.66 2705.6 0.61

Young’s modulus (MPa) 6372.69 6679.99 1299.8 0.82
Density (g/cm2) 0.28 0.38 + 0.05 0.07

Data are presented as mean ± SEM. (n = 12 per group), + means 0.05 < p < 0.1; and ** means p ≤ 0.01. SEM:
Standard Error of Mean.
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3.5. Ca and P Content Analysis

Compared with the control group, bone P content was significantly increased (p < 0.05;
Table 6) in the Bacillus subtilis fed group. The Bacillus subtilis fed group also had a lower
concentration of bone Mg (p = 0.04) and a trend of higher fecal Mg (p = 0.09). However,
there were no treatment effects on the contents of fecal Ca and P, bone Ca and ash weight,
and eggshell P (p > 0.05).

Table 6. The effects of Bacillus subtilis on the Ca, P, and Mg content in laying hens.

Sample Parameters Control B. subtilis SEM p-Value

Eggshell Ca (mg/g) 281.77 270.56 6.91 0.12
- P (mg/g) 1.04 1.02 0.19 0.94
- Mg (mg/g) 3.15 3.04 0.12 0.49

Excretion Ca (mg/g) 53.76 75.54 12.46 0.10
- P (mg/g) 13.26 12.81 1.64 0.79
- Mg (mg/g) 3.51 4.26 + 0.42 0.09

Bone Ca (mg/g) 240.98 243.12 8.43 0.80
- P (mg/g) 94.60 103.78 ** 3.17 <0.01
- Mg (mg/g) 3.39 3.09 * 0.14 0.04
- bone ash (%) 58.41 59.87 3.20 0.65

Data are presented as mean ± SEM (n = 12 per group), + means 0.05 < p < 0.1; * means p ≤ 0.05; and ** means
p ≤ 0.01.

3.6. Correlation between Ca or P and Bone Quality

The femoral P but not Ca level was positively correlated with femur maximum stress
(r = 0.55, p = 0.02; Table 7), stiffness (r = 0.45, p = 0.05), Young’s modulus (r = 0.56, p = 0.014),
and femoral Ca (r = 0.80, p < 0.01) as well as being negatively correlated with serum P
(r = −0.59, p < 0.01), serum Ca level was unrelated to any bone quality indexes. However,
serum P level was negatively correlated with stiffness (r = −0.71, p = 0.001) and Young’s
modulus (r = −0.58, p = 0.009).

Table 7. The correlation between bone P and Ca contents as well as serum P and Ca levels and bone
physical parameters in laying hens.

Femur Correlation
Analysis Serum Ca Serum P Femoral Ca Femoral P

Maximum load
r 0.26 −0.32 0.21 0.42
P 0.28 0.18 0.40 0.07

Maximum stress
r 0.34 −0.44 0.25 0.55 *
P 0.16 0.06 0.30 0.02

Maximum strain
r 0.13 0.28 −0.08 −0.26
P 0.59 0.24 0.75 0.28

Stiffness
r −0.07 −0.71 ** 0.11 0.45 *
P 0.77 <0.01 0.67 0.05

Young’s modulus r 0.16 −0.58 ** 0.12 0.56 *
P 0.51 <0.01 0.63 0.01

Serum Ca
r - 0.35 −0.13 −0.11
P - 0.15 0.59 0.67

Serum P
r - - −0.31 −0.59 **
P - - 0.20 <0.01

Femoral Ca
r - - - 0.80 **
P - - - <0.01

Values are represented as the correlation coefficients between femur qualities and Ca or P in femur and serum,
respectively (n = 12 per group), * means p ≤ 0.05; and ** means p ≤ 0.01.
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4. Discussion

With age (beyond 40 weeks of age), especially into the later stage of egg produc-
tion, their intestinal absorption and utilization of minerals including Ca are gradually
declined [42,43], which could be due to the decrease of relative hormones and their recep-
tors [39,44] or the change of gut epithelial architecture reducing absorption surface [45].
To maintain the need of Ca for egg production, layers may mobilize extra Ca stored in
medullary bone. Approximately 25–40% of the eggshell Ca is from skeletal stores [46].
This process causes negative balance between bone formation (osteoblasts) and resorp-
tion (osteoclasts) with the enhanced osteoclast activity and releasing of large amounts of
TRAP [47,48], resulting in significant expending of medullary bone at the expense of struc-
tural bone (cancellous and cortical bone), eventually leading to osteoporosis. To adapt to
Ca shortage, laying hens adjust Ca usage for eggshell formation [49,50] by either decreasing
eggshell thickness and strength [51], reducing egg production, or in combination [49].

As the egg cycle extended, the numbers of soft-shelled and cracked eggs increased,
which may be attributed to reduction of Ca absorption, stress, or poor physical qual-
ity [52–54]. The current results indicate that hens fed Bacillus subtilis had a lower incidence
of both soft-shelled and cracked eggs but there was no strong evidence of the improvement
of eggshell strength and thickness [55]. Inconsistent findings about effects of Bacillus subtilis
on egg quality have been reported. Some studies indicated that Bacillus subtilis could
improve albumen height and Haugh unit [31,56]. On the contrary, our findings as well
as some of others showed that egg quality was not affected by Bacillus subtilis supple-
ment [57,58]. Previous study reported that probiotic efficiency as a growth promotor is
affected by multiple factors, such as the type of probiotics, the length of feeding time
and concentration [31], the isolation sources of probiotics, breed of laying hens, and their
life-stage [59]. In addition, Alfonso-Carrillo et al. [54] indicated that the promotion of
egg production, eggshell quality, and bone traits in laying hens can occur independently
through dietary treatment. Therefore, we speculate that Bacillus subtilis is more likely to
improve bone traits rather than egg or eggshell quality.

Stiffness and Young’s modulus have been used as indicators indicating the capabil-
ity of bone to resist deformation, which is mainly determined by cortical bone density.
Increased bone mass can improve bone strength and stiffness [60]. In the present study,
dietary Bacillus subtilis supplement significantly improved bone strength, stiffness, and
Young’s modulus of femurs, and while Bacillus subtilis changed both bone stress and strain
in laying hens. Previous study has demonstrated that the fluctuations caused by changed
bone strain and stress are mainly due to increased inhomogeneous mineral distribution in
trabecular bone, namely, a higher bone stress but lower strain [61]. The outcomes of the
present research suggest that Bacillus subtilis is able to prevent bone mass loss and reduce
fracture risk. In addition, Ca and P are two necessary minerals for bone mineralization and
bone homeostasis. Phosphorus is mainly deposited in bone in the form of hydroxyapatite
with Ca and is involved in regulation of bone cells’ functions and ALP metabolism [62,63].
It has been revealed that besides being absorbed from diet, the skeletal system is a main
source of minerals for eggshell formation [64]. It means that P is also mobilized from bone
to blood for egg production. Shao [65] reported that the plasma concentration of P is an
indicator of bone mineralization, and even a slight decline shows that bone mineralization
is in a positive state with improved bone strength. This is consistent with the current results
that the Bacillus subtilis reduced serum P concentration while it improved bone P content,
and bone P content had a great correlation with serum P, and was positively associated
with bone Ca content, stiffness, and other physical parameters. These results show that
Bacillus subtilis provide the beneficial effects on bone health via regulation of P metabolism.

Estrogen is a kind of bone regulating hormone. Enterohepatic circulation is the main
way to regulate E2 metabolism due to its bioconversion in the liver, conjugated E2 is
mostly excreted with bile, but some is hydrolyzed by gut microbiota, and reabsorbed in the
intestines for various biological processes including bone remodeling [66,67]. Similar to the
current results, Zhou [68] reported that adding Bacillus amyloliquefaciens increased serum
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E2 level in laying hens. We speculate that the increase of E2 level is attributed to the colo-
nization and functional activities of Bacillus subtilis in the intestines. Furthermore, E2 has
been recognized as functionally preventing osteoporosis in postmenopausal women [69,70]
and old laying hens [44]. Previous results have shown that E2 could decrease synthesis of
inflammatory cytokines and regulate the OPG/RANKL/RANK system to prevent bone
loss [71]. Estrogen deficiency leads to high productions of TNF and RANKL in bone
marrow and small intestines [72,73]. However, probiotics supplements can protect ovariec-
tomized mice from bone lose [74,75]. These evidences suggest the possible protective
effects of probiotics and E2 on bone. Consistently, Bacillus subtilis supplement significantly
reduced hens’ plasma pro-inflammatory factors, IL-1 and TNF-α, and increased the OPG
gene expression in the present study.

The IL-1 and TNF-α are mainly secreted by peripheral monocytes, macrophagocytes,
and T lymphocytes [76]. Reduced serum IL-1 and TNF-α in the hens suggests that Bacil-
lus subtilis prevents the inflammatory process induced by aging-related immune response.
Similarly, Lee et al. [77] found that probiotics prevent the progression of inflammation-
associated intestine injury through intervening in the expression of inflammatory molecules,
such as IL-1 and TNF-α, to maintain intestinal health. These pro-inflammatory factors
play important roles in activation of osteoclasts and related bone resorption [78]. More-
over, the OPG/RANKL/RANK system has been identified as the dominant and final
mediator of osteoclastogenesis [79]. OPG, as the only known decoy receptor of RANKL,
is located on osteoblasts and can be upregulated by E2 [80]. OPG competitively binds
with RANKL [78] to prevent osteoclasts from being activated by the signals released from
the RANKL/RANK pathway, consequently, it inhibits bone resorption and bone loss [81].
The ratio of OPG/RANKL has been recognized as an anti-osteoclast indicator [82,83].
Taken together, these results indicate that the immune system is involved in regulation of
bone remodeling (formation and resorption), especially influencing the activation of the
OPG/RANKL/RANK pathway [71,84], for example, IL-1 indirectly inhibits OPG mRNA
expression [85] without any impact on RANKL expression, and stimulates osteoclastogene-
sis resulting in bone loss [86]. Therefore, it is possible that Bacillus subtilis protects hen bone
health through improving the E2 metabolism, inhibiting synthesis of pro-inflammatory
factors, and increasing OPG synthesis.

5. Conclusions

Low-grade systemic inflammation is one of the major health and production issues in
laying hens, resulting in osteoporosis with chronical pain, bone fractures, and poor egg
production with significant economic loss. This study showed that Bacillus subtilis as an
additive to laying hens’ diets can increase marketable egg production and bone traits by
increasing P usage, improving estrogen metabolism, inhibiting pro-inflammatory factor
synthesis, and increasing OPG expression. Thus, Bacillus subtilis can be a valuable feed
supplement to improve the welfare and prevent osteoporosis in laying hens.
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