
 /-Tubulin-like Tub4p of Saccharomyces cerevisiae Is Associated with 
the Spindle Pole Body Substructures That Organize Microtubules 
and Is Required for Mitotic Spindle Formation 
Anne Spang, Silke Geissler, Katr in  Grein, and Elmar Schiebel 

Max-Planck-Institut ftir Biochemie, Genzentrum, D-82152 Martinsried, Germany 

Abstract. Tub4p is a novel tubulin in Saccharomyces 
cerevisiae that most closely resembles ~-tubulin. We re- 
port in this manuscript that the essential Tub4p is asso- 
ciated with the inner and outer plaques of the yeast mi- 
crotubule organizing center, the spindle pole body 
(SPB). These SPB substructures are involved in the at- 
tachment of the nuclear and cytoplasmic microtubules, 
respectively (Byers, B., and L. Goetsch. 1975. J. Bacte- 
riol. 124:511-523). Study of a temperature sensitive 
tub4-1 allele revealed that TUB4 has essential functions 
in microtubule organization. Remarkably, SPB duplica- 
tion and separation are not impaired in tub4-1 cells in- 

cubated at the nonpermissive temperature. However, 
SPBs from such cells contain less or misdirected nu- 
clear microtubules. Further analysis revealed that 
tub4-1 cells are able to assemble a short bipolar spindle, 
suggesting that the defect in microtubule organization 
occurs after spindle formation. A role of Tub4p in mi- 
crotubule organization is further suggested by an in- 
crease in chromosome loss in tub4-! cells. In addition, 
cell cycle arrest and survival of tub4-1 cells is dependent 
on the mitotic checkpoint control gene BUB2 (Hoyt, 
M.A., L. Totis, B.T. Roberts. 1991. Cell. 66:507-517), 
one of the cell's monitors of spindle integrity. 

T 
HE number, direction, and polarity of microtubules 
are organized by organelles called microtubule or- 
ganizing centers (MTOC) 1. In Saccharomyces cere- 

visiae, microtubule organizing functions are provided by 
the spindle pole body (SPB) (see Fig. 8 A). The SPB is a 
cylindrical multilaminated structure that is embedded in 
the nuclear envelope. SPB substructures are detectable by 
EM (Byers, 1981a,b; Byers and Goetsch, 1975). The cen- 
tral plaque serves to anchor the SPB in the nuclear enve- 
lope. The inner and outer plaques nucleate the nuclear 
and cytoplasmic microtubules, respectively. An additional 
substructure of the SPB, the half bridge, is an extension of 
the central plaque along the cytoplasmic margin of the nu- 
clear envelope. The half bridge has important functions in 
SPB duplication. 

The SPB, in common with centrosomes of higher eu- 
karyotes, shows cell cycle-dependent behavior (Byers and 
Goetsch, 1975). In G1 of the cell cycle, the single SPB in 
each yeast cell is duplicated. The duplicated SPBs undergo 
separation to form the poles of the spindle. Motor proteins 
and microtubules are required for SPB separation and 
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spindle formation (Jacobs et al., 1988; Saunders and Hoyt, 
1992). In mitosis, nuclear microtubules organized by the 
inner plaque of the SPB have essential functions in chro- 
mosome segregation (Jacobs et al., 1988). Cytoplasmic mi- 
crotubules are required for the migration of the nucleus 
into the bud, but they are not essential for spindle elonga- 
tion in anaphase B (Sullivan and Huffaker, 1992). Interest- 
ingly, a surveillance system involving the B UB (Hoyt et al., 
1991) and MAD genes (Li and Murray, 1991) halts the cell 
cycle in mitosis in response to microtubule perturbation. 
After nuclear division and cytokinesis, each yeast cell re- 
tains exactly one SPB. 

MTOCs from phylogenetically different organisms are 
heterogeneous in structure. Despite these structural differ- 
ences, MTOCs contain related proteins that may perform 
similar functions. Phylogenetically conserved components 
of MTOCs are centrin (Baum et al., 1986; Errabolu et al., 
1994; Lee and Huang, 1993; Salisbury et al., 1984; Spang et 
al., 1993) and ~/-tubulin (Horio et al., 1991; Oakley et al., 
1990; Stearns et al., 1991; Zheng et al., 1991). -¢-Tubulin is, 
besides or- and [~-tubulin, the third member of the tubulin 
superfamily. It is assumed that ~-tubulin is a key compo- 
nent of MTOCs involved in microtubule nucleation (Joshi 
et al., 1992; Stearns and Kirschner, 1994). This conclusion 
is consistent with the inhibition of microtubule nucleation 
after disruption of the essential ",/-tubulin genes in Asper- 
gillus nidulans (Oakley et al., 1990), Schizosaccharomyces 
pombe (Horio et al., 1991), and Drosophila (Sunkel et al., 
1995), and by the failure of mammalian ceils to assemble 
mitotic spindles after microinjection of anti--~/-tubulin anti- 
bodies (Joshi et al., 1992). Furthermore, ~/-tubulin binds in 
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vitro with high affinity to the minus end of microtubules 
(Li and Joshi, 1995) that are proximal to the MTOC 
(Mclntosh and Euteneuer, 1984). A highly purified ~-tubu- 
lin complex from Xenopus consists of at least seven different 
proteins and seems to have an open ring structure. This 
complex caps the minus end of microtubules in vitro (Zheng 
et al., 1995) and in situ (Moritz et al., 1995). 

Besides o~- and 13-tubulin, a novel tubulin, Tub4p, that 
most resembles -y-tubulin has been identified by the yeast 
genome sequencing project in S. cerevisiae. Due to the rel- 
atively low identity to any of the three tubulin subfamilies, 
it has been suggested that Tub4p represents a new class of 
tubulin (Burns, 1995). While our manuscript was in prepa- 
ration, Sobel and Snyder (1995) reported that an epitope- 
tagged Tub4p resides at the SPB. Partial depletion of 
Tub4p caused a nuclear migration failure and multiple de- 
fects in spindle formation after 17-20 h. Since Tub4p levels 
were not controlled in these experiments, it remains un- 
clear whether the observed defects are a direct or indirect 
consequence of Tub4p depletion. 

In this paper we confirm the association of Tub4p with 
the SPB and report that the essential Tub4p is associated 
with the inner and outer plaques of the SPB. These SPB 
substructures are involved in the organization of the nu- 
clear and cytoplasmic microtubules, respectively. A func- 
tion of Tub4p in microtubule organization is suggested by 
the phenotype of the conditional lethal tub4-1 allele, which 
arrests in the first cell cycle after shifting the cells to the 
nonpermissive temperature. SPB duplication, SPB separa- 
tion, and spindle formation were normal in tub4-1 cells. 
However, no mitotic spindles were observed. In addition, 
defects in microtubule organization of tub4-1 cells are in- 
dicated by an increase in chromosome loss and by the de- 
pendence of cell cycle arrest and survival on the mitotic 
checkpoint control gene BUB2, which is involved in moni- 
toring spindle integrity. 

Materials and Methods 

Yeast Strains, Media, and Yeast Transformation 

Yeast strains used in this study are summarized in Table I. Yeast cells 
were grown in yeast extract, peptone, and dextrose growth medium 
(YPD). Synthetic complete medium (SC) was prepared as described by 
Guthrie and Fink (1991) with glucose, raffinose, or galactose as carbon 
sources. Yeast strains were transformed as described by Schiestl and Gietz 
(1989). 

DNA Techniques 
PCR was performed with Vent polymerase supplied by New England Bio- 
labs (Beverly, MA). The nucleotide sequence of all PCR products was 
confirmed by the chain-termination method of Sanger et al. (1977) using 
synthetic primers. DNA fragments were purified with the Geneclean II kit 
from Bio 101, Inc. (Vista, CA) according to the manufacturer's recom- 
mendation. DNA manipulations were performed as described by Sam- 
brook et al. (1989). 

Cloning of TUB4 by PCR 
The entire TUB4 was amplified by PCR with primers TUB4-1 (5'- 
C A A C T C T A G A T A G T C A C A G C A A T A A T G T C - 3 ' )  and TUB4-2 (5'- 
CCAATGCATCCTG'V]?CGGCGTCCTC-3')  using chromosomal DNA 
from strain $288C as template (These sequence data are available from 
EMBL/GenBank/DDBJ under accession number YSCH8167). Primers 
TUB4-1 and TUB4-2 carry an XbaI and NsiI restriction site, respectively. 
The 2,200-bp PCR product was restricted with XbaI and NsiI and ligated 

into pRS315 (Sikorski and Hieter, 1989), previously restricted with XbaI 
and PstI to give plasmid pSM204. TUB4 on pRS316 was named pSM223. 

Plasmid Constructions 

Construction of  a GST-Atub4 Gene Fusion. The 600-bp EcoRI/SalI frag- 
ment of pSM204 carrying the 3' end of TUB4 was cloned into the EcoRI/ 
Xhol sites of the glutathione-S-transferase (GST) expression vector 
pGEX-5X-I (Pharmacia, Uppsala, Sweden). The resulting plasmid was 
named pSM220. 

Construction of  Epitope-tagged TUB4-HA Gene Fusions. An NotI restric- 
tion site was introduced by PCR between the coding region of TUB4 and 
the T A A  stop codon using primers TUB4-4 (5 ' -TCATTAGCGGC- 
CGCT]?ACTAATTTATGATCACCGTCG-3 ' )  and TUB4-5 (5'-TTA- 
GTAAGCGGCCGCTAATGATGCCTTCCTPGTTCAGG-3 ' ) .  The re- 
sulting plasmid was named pSM217. The 114-bp NotI fragment of plasmid 
pGTEP-I (kindly provided by B. Futcher, Cold Spring Harbor, NY) with 
three repeats coding for the hemagglutinin epitope (YPYDVPDYA) was 
inserted into the Notl restriction site of pSM217. The orientation and 
number of inserts were confirmed by sequencing. Plasmid pSM218 carries 
a single insertion of the 114-bp NotI-fragment (TUB4-HA gene fusion). 

TUB4 under the Control of  the GALl Promoter. The coding region of 
TUB4 was amplified by PCR with primers TUB4-3 (5 ' -CGGGGTAC- 
C A T G G G T G G A G A A A T r A T ] ? A  C-3') and TUB4-2. Primer TUB4-3 
introduces a KpnI restriction site upstream of the start codon of TUB4. 
The PCR product was restricted with KpnI and Nsil and cloned into the 
KpnI and PstI sites of vector pQE30 (Qiagen, Inc., Chatsworth, CA) to 
give plasmid pSM205. Plasmid pSM205 was restricted with KpnI and SalI. 
The SalI restriction site is located in the polylinker region of pQE30 next 
to the PstI site. The KpnI/SalI fragment of pSM205 with the coding region 
of TUB4 was cloned into the yeast expression vector pYES2 (Invitrogen, 
San Diego, CA), which was restricted with KpnI and XhoI. The resulting 
plasmid pSM209 carries a G A L l - T U B 4  fusion. 

Expression of  y-tubulin from Xenopus in Yeast. The alcohol dehydroge- 
nase (ADH) promoter/terminator from pHD605 (kindly provided by H. 
Domdey, Genzentrum, Munich, Germany) was cloned into plasmid pBlue 
SK (Stratagene, La Jolla, CA) to give pBlue-ADH. ",/-tubulin from Xeno- 
pus laevis on plasmid pTS235 (kindly provided by T. Stearns, Stanford 
University, CA) (Stearns et al., 1991) was amplified by PCR with primers 
JIC-III (5 ' -CAGCTGATGCATI 'TA ' ITFATCCTGGGTrCCCCACG-  
3') and JIC-IV ( 5 ' - A G A T T F G A A T T C A T G C C A C G G G A G A T T A T -  
CAC-3'). The PCR product was treated with the Sure clone kit (Pharma- 
cia), and then cloned into the HindlII restriction site of pBIue-ADH that 
had been converted to blunt end with Klenow polymerase (pSS1-2). The 
ADH-~,-tubulin fusion on a 3,500-bp XhoI/PvulI fragment was cloned 
into LEU2-based vector pRS315 (Sikorski and Hieter, 1989). The re- 
sulting plasmid was named pSM83. 

Construction of  a Atub4::HIS3 Disruption Cassette. TUB4 of pSM204 was 
restricted with Eco47III and PstI, disrupting the coding region of TUB4. 
HIS3 on a SmaI/NsiI fragment was inserted into TUB4 (pSM208). The 
Atub4::HIS3 on an SaeI/SalI fragment from pSM208 was ligated into vec- 
tor pBlue SK that was restricted with SacI and Sail (pSM219). 

Construction of  a bub2::HIS3 Disruption Cassette. B UB2 was cloned by 
PCR using chromosomal DNA from strain $288C (gift of R. Mortimer, 
University of California, Berkeley). The PCR product was subcloned into 
pUC18 using the Sure clone kit from Pharmacia (pSM51). HIS3 on an 
SmaI fragment was ligated with pSM51 previously restricted with EcoRV 
(pSM63). The EcoRV site is located just downstream of the BUB2 start 
codon. 

Construction of tub4-1(ts) 
TUB4 was mutagenized by PCR according to Cadwell and Joyce (1992). 
The PCR product was restricted with XbaI and NsiI, and then cloned into 
the XbaI and PstI sites of plasmid pRS315 (Sikorski and Hieter, 1989). A 
pool of plasmids were transformed into strain ESM183, and selection was 
made on SC plates lacking uracil and leucine. Cells, which had lost 
pSM223, were selected by growth on 5-fluoroorotic acid (5-FOA) plates 
at 23°C. The Ura-  colonies were tested for growth at 23 ° and 37°C. DNA 
from strains, which could not grow at 37°C, was isolated and transformed 
into Escherichia coli Sure. Plasmid-DNA was then again transformed into 
ESM183. Transformants were incubated on 5-FOA plates at 23°C, and 
then tested for temperature sensitivity on YPD plates. The nucleotide se- 
quence of tub4(ts) alleles was analyzed. 
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Table I. Yeast Strains 

Strain Genotype Source or reference 

$288C 
BJ5626 

YPH499 
YPH500 
YPH501 

ESM176 
ESM177 
ESM178 

ESM 183 
ESM 184 
ESM204 
ESM208 
ESM210 

ESM215 
ESM218 
YRN212 
YAS3 

YAS4 

YAS5 
YAS7 
YAS9 

MATa mal gal2 
MATa/a ura3-52/ura3-52 trpl/TRPl Ieu2A1/LEU2 his3A2OO/his3A200 

pep4::HlS3/pep4::H1S3 prblA1.6R/prbl A1.6R canl/canl 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 
MATc~ ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 
MATa/c~ ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 

trplA63/trp1A63 his3A2OO/his3A200 leu2A1/leu2A1 Sikorski and Hieter (1989) 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 pYES2 this study 
MATa ura3-52 lys2-801 ade2-101 trp1A63 his3A200 leu2A1 pSM209 § this study 
MATa/a ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 

trp l A63/trp l A63 his3 A2OO/his3 A200 leu2 A1/leu2 A1 TUB4/Atub4 : : HIS3 this study 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 Atub4::HlS3 pSM223* this study 
MATa ura3-52 lys2-801 ade2-101 trp1A63 his3A200 leu2 A1 Atub4::HIS3 pSM222* this study 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 ATUB4::pSM24411 this study 
MATc~ ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2Al tub4-1 this study 
MA Ta/c~ ura3-5 2/ura3-5 2 ly s2-801/ly s2-801 ade2-101/ade 2-101 this study 

trp l A63/trp l A63 his3 A2OO/his3 A200 leu2 A1/leu2 A1 TUB4/tub4-1 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 tub4-1 bub2::HIS3 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 tub4-1 
MATa ura3-52 lys2-801 ade2-101 trpl A1 cyhR2 [CF(CEN6) TRP1 SUPl l CYHS2] 
MATa ura3-52 1ys2-801 ade2-101 trpl A1 cyhR2 [CF( CEN6) TRP1 SUPl l CYHS2] 

TUB::pSM2441 this study 
MATa ura3-52 lys2-801 ade2-101 trpl A1 cyh~2 [CF(CEN6) TRP1 SUPl l CYHS2] 

tub4-1 this study 
MATa ura3-52 lys2-801 ade2-101 trplA63 his3A200 leu2A1 tub4-1 Asstl::URA3 this study 
MATa ura3-52 lys2-801 ade2-101 trpIA63 his3A200 leu2A1 Asstl::URA3 this study 
MATa ura3-52 ade2-101 trplA63 leu2A1 cdcl5 AsstI::URA3 this study 

R. Mortimer (University of California, Berkeley) 
B. Jones (Carnegie-Mellon 

University, Pittsburgh, PA) 
Sikorski and Hieter (1989) 
Sikorski and Hieter (1989) 

this study 
this study 
J. Hegemann (University of Giessen, Germany) 

*pSM223 is a pRS316 (Sikorski and Hieter, 1989) derivative carrying TUB4. 
*pSM222 is a pRS316 derivative carrying TUB4-HA. 
§pSM209 is a pYES2 derivative containing GAL-TUB4. 
~pSM 244 is a pRS306 derivative carrying tub4-1. 

Construction of  Yeast Strains 

ESMI78. The diploid strain YPHS01 (Sikorski and Hieter, 1989) was 
transformed with the TUB4 disruption cassette of pSM219 restricted with 
SalI and SacI, and selection was made on SC plates lacking histidine. The 
construction of ESM178 was confirmed by Southern analysis as described 
by Spang et al. (1993). 

ESM183. ESM178 was transformed with plasmid pSM223 selection be- 
ing made on SC plates lacking uracil (ESM181-3). Plasmid pSM223 carries 
TUB4 on the URA3-based vector pRS316 (Sikorski and Hieter, 1989). 
ESM181-3 was spornlated and tetrads were dissected. Colonies which 
were His + Ura + were named ESM183. ESM183 carries the Atub4::HIS3 
disruption and plasmid pSM223. 

ESM184. ESM178 was transformed with plasmid pSM222. Transfor- 
mants were selected on SC plates lacking uracil (ESM181). Plasmid 
pSM222 carries the TUB4-HA of pSM218-4 on pRS316. Spores of 
ESM181 were obtained (ESM184), which were His + Ura ÷, indicating that 
TUB4-HA is functional. 

ESM208, YAS3, and YAS4. tub4-1 was cloned into integration vector 
pRS306 (Sikorski and Hieter, 1989) to give plasmid pSM244, which was 
linearized with the restriction enzyme HpaI. Plasmid pSM244 was then in- 
tegrated into its chromosomal location by homologous recombination, 
creating a duplication containing the wild-type copy and the mutant copy 
flanking the plasmid sequences. Strains YPH500 and YRN212 (gift of J. 
Hegemann, University of Giessen, Germany) were transformed with the 
linearized plasmid pSM244, with selection being made on SC plates lacking 
uracil. The transformants were named ESM204 and YAS3, respectively. 
Integration of plasmid pSM244 was confirmed by Southern analysis. Cells, 
which spontaneously excised plasmid pRS306 together with TUB4, were 
selected for on 5-FOA plates. Temperature-sensitive colonies derived 
from ESM204 and YAS3 were named ESM208 and YAS4, respectively. 

ESM210, ESM218, YAS5, YAS7, and YAS9. ESM208 was crossed with 
strain YPH499. The diploid strain ESM210 was sporulated. Two colonies 
of each tetrad revealed a temperature-sensitive growth defect. One MA Ta 
tub4-1 colony was named ESM218. SST1 of ESM218, YPH499, and cdcl5 
was disrupted with the Asstl::URA3 disruption cassette of plasmid pJG- 

sst-1 (Reneke et al., 1988) to give strains YAS5, YAS7, and YAS9, respec- 
tively. 

ESM215. BUB2 of ESM208 was disrupted by the one-step gene re- 
placement method of Rothstein (1983) using the BUB2::HIS3 disruption 
cassette of plasmid pSM63. 

ESM176 andESM177. YPH499 was transformed with plasmid pYES2 
(ESM176) or pSM209 (ESM177) selection being made on SC lacking 
uracil. 

Affinity-purified Tub4p Antibodies and Anti-Peptide 
T- Tubulin Antibodies 

GST-ATub4p was expressed by the addition of isopropy113-D-thiogalacto- 
side to the culture medium of E. coli Sure (pSM220) as described by 
Spang et al. (1993). The fusion protein was purified by affinity purification 
using glutathione Sepharose from Pharmacia. Antibodies against the puri- 
fied protein were raised in a rabbit as described by Harlow and Lane 
(1988). The anti-Tub4p antibodies were purified as described by Spang et 
al. (1995). 

Anti-peptide ",/-tubulin antibodies (rabbit, polyclonal) were kindly pro- 
vided by Dr. M. Bornens (Centre National de la Recherche Scientifique, 
Paris, France). The antibodies were directed against the peptide 
EEFATEGTDRKDVFFY (amino acids 38-53 of human and Xenopus 
"y-tubulin). The corresponding sequence in Tub4p is PDSSTERDDDDT- 
KPFFR (identical amino acids are underlined). 

Isolation of SPBs, Immunofluorescence, 
Immunoelectron Microscopy, and Electron Microscopy 
of Yeast Cells 

SPBs were isolated as reported by Rout and Kilmartin (1990). Immuno- 
fluorescence and immunoelectron microscopy of yeast cells and SPBs 
were performed as described by Spang et al. (1995) or by Rout and Kil- 
martin (1990). All antibodies were from Jackson ImmunoResearch Labo- 
ratories (West Grove, PA) unless indicated otherwise. Primary antibodies 
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were 12CA5 (Hiss Diagnostics GmbH, Freiburg, Germany), anti-90-kD 
(kindly provided by J. Kilmartin, Medical Research Council, Cambridge, 
UK) (Rout and Kilmartin, 1990), anti-Karlp (Spang et al., 1995), or affin- 
ity-purified anti-Tub4p antibodies. Secondary antibodies in immunofluo- 
rescence were rabbit anti-mouse IgG conjugated with FITC and goat 
anti-rabbit IgG conjugated with CY3. 

Immunoelectron microscopy of isolated SPBs was performed as fol- 
lows: SPBs were embedded into LR White as described by Spang et al. 
(1993). Sections of enriched SPBs were incubated with mouse monoclonal 
12CA5 or anti-13-tubulin (WA3; kindly provided by U. Euteneuer-Schliwa, 
University of Munich, Germany) antibodies followed by an incubation 
with rabbit anti-mouse IgGs. Finally, the sections were incubated with 
protein A bound to gold. Sections of SPBs were also incubated with rabbit 
anti-Tub4p antibodies. In this case, the second incubation was performed 
with protein A bound to gold. For double labeling experiments, sections 
of enriched SPBs were first labeled with mouse monoclonal 12CA5 anti- 
body. After washing, sections were incubated with rabbit anti-mouse 
IgGs, followed by an incubation with protein A bound to gold. The prepa- 
ration was fixed with glutaraldehyde for 10 min. The second antibody was 
either anti-13-tubulin (WA3) or the anti-90-kD antibody. After washing, 
sections were incubated with goat anti-mouse IgGs coupled to 5 nm gold. 
No 5-nm signal was observed when the anti-90-kD or anti-tubulin anti- 
bodies were omitted from the incubation, indicating that all 12CA5 bind- 
ing sites were blocked by the rabbit anti-mouse IgGs. Alternatively, the 
rat monoclonal anti--a-tubulin antibody YOL1/34 (Sera-lab) was used as 
the second antibody in the double labeling experiment followed by an in- 
cubation with rabbit anti-rat IgGs coupled to gold particles. No signal was 
obtained with secondary antibodies only. Thin-section EM of yeast cells 
was performed as described by Byers and Goetsch (1991). 

Cell Lysates and lmmunoblots 

Yeast cell lysates were prepared as described by Ausubel et al. (1994). 
The protein content of samples was measured by the method of Bradford 
(1976). Proteins were separated by SDS-PAGE (Laemmli, 1970). Immu- 
noblotting was performed as described by Harlow and Lane (1988). Sec- 
ondary antibodies were goat anti-rabbit or rabbit anti-mouse IgG conju- 
gated with HRP (Bio Rad Laboratories, Hercules, CA). Detection was 
made by enhanced chemiluminescence using a kit from Amersham 
Buchler GmbH (Braunschweig, Germany). 

Synchronization of Yeast Cells and Flow Cytometry 

Cells carrying the Asstl::URA3 deletion were incubated with 1 p~g/ml syn- 
thetic a-factor for 2 h at 23°C. Arrested cells were then incubated for 1 h 
at 37°C. Cells were released by washing with YPD medium. In some ex- 
periments, 0.1 M hydroxyurea (HU) was added to the culture after release 
from a-factor arrest. The culture was then incubated for 2 h at 37°C. DNA 
content was determined by flow cytometry as described by Hutter and 
Eipel (1979). 

Overexpression of TUB4 and lmmunoblotting 

Strains ESM177 (GALl-TUB4) and ESM176 (pYES2) were grown in SC 
medium lacking uracil with raffinose as a carbon source. Galactose was 
added to half of the culture at a density of 5 × 106 cells per ml, and glucose 
was added to the other half. The cultures were incubated for 2-12 h at 
30°C. Protein extracts were loaded onto a 10% SDS-PAGE. Immunoblots 
were incubated with affinity-purified rabbit anti-Tub4p antibodies. To de- 
termine overexpression of TUB4, the extract of ESM177 was diluted 1:5, 
1:25, 1:50, and I:100. The Tub4p signal obtained in the 1:100 dilution of 
ESM177 was stronger than that from the undiluted ESM176. Therefore, 
ESM177 contained at least 100-fold more Tub4p than ESM176. 

Sequence Comparison 

Protein sequences were compared using the program Bestfit of the GCG 
package of the University of Wisconsin. 

Results 

~-Tubulin from X. laevis Does Not Complement 
for TUB4 

We were interested in whether the "y-tubulin from X. laevis 

(Xgam) expressed in S. cerevisiae provides TUB4 function. 
Complementation of TUB4 by Xgarn would certainly sug- 
gest that TUB4 is the ~-tubulin of S. cerevisiae. We con- 
structed strain ESM183 (Atub4::HIS3 pSM223), which has 
a disruption of TUB4 and is maintained by TUB4 on a 
URA3-based plasmid (pSM223). ESM183 did not grow on 
5-FOA plates that select against the URA3-plasmid, show- 
ing that TUB4 is essential for growth (Fig. 1 B, sector 3) 
(Sobel and Snyder, 1995). In contrast, 5-FOA-resistant 
colonies were obtained when ESM183 contained an addi- 
tional TUB4 on the LEU2-based plasmid pSM204 (sec- 
tor 1). This property of ESM183 was used to test whether 
Xgam expressed from the ADH promoter (ADH-Xgam) 
complemented for TUB4. However, strain ESM183 carry- 
ing the ADH-Xgam construct on a LEU2-based plasmid 
(pSM83) was unable to grow on 5-FOA plates (sector 2). 
Identical results were obtained by tetrad analysis of strain 
ESM178 (TUB4/Zltub4::HIS3) containing ADH-Xgam. Only 
two of the four spores from each tetrad formed colonies. 
These were His-, indicating that they carried the func- 
tional TUB4. Expression of Xgam in yeast was confirmed 
by Xgam-specific antibodies (Fig. 1 A). In summary, we 
conclude that Xgam does not fulfill Tub4p function. 

Tub4p Is Associated with the Inner and Outer Plaques 
of the SPB 

A functional epitope-tagged Tub4p-HA fusion protein 
was shown to be localized at the SPB by indirect immuno- 
fluorescence (Sobel and Snyder, 1995). Since functions for 
some SPB substructures have been deduced from ultra- 
structural analysis (Byers and Goetsch, 1975), knowing the 
localization of Tub4p with SPB substructures will certainly 
help to understand the role of this protein. Affinity-puri- 
fied antibodies against a carboxy-terminal portion of 

Figure 1. T h e  ~/-tubulin f r om X. laevis does  no t  c o m p l e m e n t  for 
TUB4. (A) E x p r e s s i o n  of  ~/-tubulin f r om X. laevis in S. cerevisiae. 
Yeas t  extracts  (80 Ixg) of  YPH500  (TUB4; lane  1), ESM192 (ADH- 
Xgam; l ane  2), and  an  ext rac t  f r om X. laevis eggs  ( lane  3) were  
ana lyzed  by i m m u n o b l o t t i n g  wi th  pep t ide  an t ibodies  specific to 
X. laevis ~/-tubulin. (B) X. laevis ~/-tubulin does  no t  c o m p l e m e n t  
for  Tub4p .  G r o w t h  o f  s t ra in  ESM183  (Atub4::HIS3 and  TUB4 o n  
the  U R A 3 - b a s e d  p lasmid  pRS316)  car ry ing  p la smids  pSM204 
(TUB4 on  the  LEU2-based pRS315;  sec tor  1), t he  Xgam expres-  
s ion plasmid pSM83 (ADH-Xgam on  pRS315; sector 2), or  pRS315 
(sector  3) on  5 - F O A  plates  at  23°C. Fa i lure  o f  ESM183  pRS315-  
ADH-Xgam to g row on  5 - F O A  pla tes  (sec tor  2) indica tes  tha t  
X g a m  does  no t  p rov ide  T u b 4 p  func t ions  in S. cerevisiae. 
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Tub4p were used for the localization studies. The specific- 
ity of these antibodies toward Tub4p was investigated by 
immunoblotting. Tub4p was not detected in the total yeast 
extract (Fig. 2 A, lane 1); however, in a fraction enriched 
for nuclei, a band at ~55 kD reacted with the, antibodies 
(lane 2). A protein with the same migration behavior was 
stained in a total yeast extract after expression of TUB4 
from the strong G A L l  promoter (lane 3). These results 
suggest that our anti-Tub4p antibodies are specific to- 
wards Tub4p. Remarkably, although expression of TUB4 
from the G A L l  promoter results in an at least 100-fold in- 
crease in Tub4p levels (Fig. 2 A), viability, cell morphol- 
ogy, and microtubule structure were not affected even af- 
ter a 24-h incubation under inducing conditions (data not 
shown). 

To test whether the affinity-purified anti-Tub4p anti- 
bodies stain the SPB, the localization of Tub4p in yeast 
cells was investigated by indirect immunofluorescence mi- 
croscopy. Tub4p was localized as one or two dots on the 
nuclear periphery of the cells (Fig. 2 B). The number of 
Tub4p signals per cell and their location are in agreement 
with an association of Tub4p with the SPB. That the 
Tub4p signal was associated with the SPB was confirmed 
by a double labeling experiment using antibodies against 
the 90-kD SPB protein (Rout and Kilmartin, 1990) as a 
marker for SPBs (data not shown). Unfortunately, the af- 
finity-purified antibodies lost their activity quite rapidly. 
To circumvent this problem, a functional gene fusion of 
TUB4 with a sequence coding for three repeats of the hem- 
agglutinin (HA) epitope was constructed. Tub4p-HA was 
expressed in yeast and was associated with the SPB in indi- 
rect immunofluorescence experiments (data not shown). 

At least eight substructures of the SPB are detectable by 
EM (see Fig. 8 A). Most importantly, the outer and inner 
plaques organize the cytoplasmic and nuclear microtu- 
bules, respectively (Byers, 1981a; Byers and Goetsch, 
1975), An SPB component involved in microtubule orga- 
nization should, therefore, localize to the outer and inner 
plaques of the SPB. The localization of Tub4p with the 
SPB was determined by immunoelectron microscopy us- 
ing enriched SPBs and affinity-purified anti-Tub4p anti- 
bodies. The ultrathin sections showed numerous SPBs of 
which ~200 were inspected more closely. The substruc- 
tures of the SPB---outer, central, and inner plaques--were 
clearly detectable (Fig. 3, A-D) .  In addition, the embed- 
ded SPBs contained nuclear microtubules attached to the 
inner plaque, while the cytoplasmic microtubules were lost 
during the purification of the SPBs (Rout and Kilmartin, 
1990). Two to seven gold particles were associated with 
~70% of the sectioned SPBs. These gold particles were 
localized with the inner (up to four gold particles; Fig. 3, 
A-C; note B is an enlargement of A) and outer (up to 
three; Fig. 3, B and D) plaques of the SPB. To confirm this 
result, thin sections of isolated SPBs from TUB4-HA and 
TUB4 cells were incubated with 12CA5 antibodies that 
are directed against the H A  epitope. While none of the 
TUB4 SPBs were labeled, 30% of the SPBs from TUB4- 
H A  cells had two to three gold particles associated with 
the inner plaque (Fig. 3, E and F) and to a lower extent 
with the outer plaque. Labeling of only 30% of the SPBs 
may be explained by the fixation sensitivity of the HA- 
antigen (Spang et al., 1995). In the experiments using the 
anti-Tub4p and anti-HA antibodies, SPB staining was not 
observed when sections of SPBs were incubated with the 
secondary antibody, only indicating that the labeling was 
dependent on the primary antibodies. Taken together, our 
results suggest that Tub4p is associated with the sites of 
microtubule attachment, the inner and the outer plaques 
of the SPB. 

Figure 2. Tub4p is a component of the SPB. (A) Specificity of the 
anti-Tub4p antibodies. Total extract from strain YPH499 (80 Ixg; 
lane 1), enriched nuclei of YPH499 (80 ~g; lane 2), or extract from 
ESM177 (GALl-TUB4; 40 p,g, lane 3) were separated by SDS- 
PAGE and analyzed by immunoblotting with affinity-purified 
anti-Tub4p antibodies. Strain ESM177 had been grown in galac- 
tose medium to induce GALl-TUB4. (B) Immunofluorescence 
microscopy of BJ5626 cells (gift of B. Jones, Carnegie-Mellon 
University, Pittsburgh, PA) stained with affinity-purified anti- 
Tub4p antibodies. DNA was stained with DAPI. Bar, 2.5 ixm. 

Spindle Elongation Is Defective in tub4-1 Cells 

To study the function of Tub4p at the SPB, a conditional 
lethal mutant of TUB4 was constructed. Sequence analysis 
of the recessive tub4-1 allele revealed that the mutated 
Tub4p* carried a Phe243Ser substitution, tub4-1 was inte- 
grated in its chromosomal location (ESM208). Some mu- 
tants affecting microtubule function in S. cerevisiae display 
supersensitivity to the anti-microtubule drug benomyl 
(Stearns et al., 1990). Cells of tub4-1, however, showed no 
increased sensitivity towards benomyl (data not shown). 

To determine whether the tub4-1 cells exhibited a uni- 
form arrest phenotype, we shifted an asynchronous culture 
to the restrictive temperature. More than 80% of the 
tub4-1 cells completed S phase (Fig. 4 A) and arrested in 
the cell cycle with a single large bud after 3 h at 37°C (data 
not shown). The number of cells with 2N DNA content, as 
well as cells with a large bud, declined to 70% after 6 h at 
37°C, suggesting that some cells could overcome cell cycle 
arrest. The nuclear DNA and microtubule organization 
was visualized by 4',6-diamidino-2-phenylindole (DAPI) 
staining and indirect immunofluorescence, respectively. A 
TUB4 strain showed characteristic microtubule structures 
representing all stages of the cell cycle (Fig. 4 C, Table II). 
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Figure 3. Tub4p is a component of the inner and outer plaques of 
the SPB. Sections of enriched SPBs of TUB4 (A-D) or TUB4-HA 
cells (E and F) were incubated with affinity-purified anti-Tub4p 
(A-D) or anti-HA (12CA5) antibodies followed by protein A-gold 
(A-D) or rabbit anti-mouse IgGs followed by protein A-gold 
(E and F). (A-D) SPBs with Tub4p staining (10 nm gold parti- 
cles) at the inner and outer plaques. B is an enlargement of A. 
Four gold particles are associated with the inner plaque (A) and 
three (B) at the outer plaque of the SPB. (C) SPB with three gold 
particles at the inner plaque. (D) SPB with two Tub4p signals at 
the outer plaque. (E and F) Tub4p-HA staining at the inner 
plaque (three gold particles). C, central plaque; I, inner plaque; 
M, microtubules; O, outer plaque. Bars: (A) 160 nm; (E) 80 nm. 
B-D is double the size of A; Fis the same magnification as E. 

In particular, wild-type large budded cells contained an 
anaphase spindle with DAPI-staining regions in both the 
mother  and bud cell bodies. While tub4-1 cells grown at 
the permissive temperature were similar to wild-type cells 

(data not shown), tub4-1 cells incubated at the nonpermis- 
sive temperature displayed four classes of abnormal spin- 
dles. Large-budded cells with a very short spindle, a 
metaphase-like bipolar spindle, or a monopolar  spindle, 
and unbudded cells with a short bipolar spindle were ob- 
served (Fig. 4 B). The distribution of these spindle struc- 
tures is given in Table II. Interestingly, in >90% of the 
large budded tub4-1 cells, the cytoplasmic microtubules re- 
sponsible for nuclear migration appeared elongated. We 
investigated whether nuclear migration occurs in tub4-1 
cells. A mutation that interferes only with nuclear but not 
with cytoplasmic microtubule function causes cells to ar- 
rest with an undivided nucleus located in the bud neck. In 
comparison, 85% of tub2-401 cells that lack all microtu- 
bules have a defect in nuclear migration (Huffaker et al., 
1988). In ~ 5 0 %  of tub4-1 cells, the nucleus was located in 
the mother  cell body, indicating a partial defect in nuclear 
migration. 

The formation of a short spindle in the tub4-1 mutant 
suggested that the SPB was duplicated and separated. To 
determine if this was indeed the case, we stained cells with 
antibodies against the 90-kD SPB component.  In ~90%,  
two SPBs were detected in cells (n = 200) with a large bud 
confirming that SPBs were duplicated and separated in 
most tub4-1 cells (data not shown). 

About  20% of tub4-1 cells arrested in the cell cycle with- 
out a bud. We tested whether these cells were in a specific 
cell cycle stage at the time the culture was shifted to the 
nonpermissive temperature. As for an unsynchronized cul- 
ture, 76% of a-factor-synchronized tub4-1 cells arrested 
with a large bud in the first cell cycle (data not shown). Mi- 
crotubule staining of these cells was very similar to that of 
an unsynchronized tub4-1 population. In 90% of tub4-1 
cells (n = 200) with a large bud, two SPBs were detected 
using the 90-kD SPB antigen as marker  (Fig. 4 D). Again, 
24% of the arrested tub4-1 cells were unbudded, half of 
which contained either a short spindle or no nucleus (Ta- 
ble II). These unbudded cells rose most likely from large- 
budded tub4-1 cells that failed to arrest in the cell cycle. 

tub4-I Cells Are  Defective in Mitotic Spindle Formation 

To understand the defect of tub4-1 cells, the spindle mor- 
phology was investigated by EM. SPBs of wild-type (Fig. 5 
A) and tub4-1 cells incubated at the nonpermissive tem- 
perature (Fig. 5 B) appeared to have identical morphol- 
ogy. SPBs were embedded in the nuclear envelope, and 
nuclear microtubules were in association with the SPB. At  
the restrictive temperature, however, nuclear microtu- 
bules of tub4-1 cells were severely disorganized. Sections 
through seven tub4-1 cells showing two SPBs, of  which two 
are shown in Fig. 5, C and D, were inspected more closely. 
No obvious defect in SPB structure was apparent. SPBs 
were embedded into the nuclear envelope via the central 
plaque. The half bridge and the outer plaque appeared 
normal. Since the inner plaque is hardly visible in sections 

Figure 4. Cell cycle arrest of tub4-1 cells. (A) tub4-1 (ESM208) and TUB4 cells (YPH500) were grown in YPD medium at 23°C. Both 
cultures were then shifted to 37°C. Samples were taken after 3 and 6 h. The DNA content of 20,000 cells was determined by flow cytom- 
etry. (B) Tubulin and DAPI staining of tub4.1 cells, tub4-1 cells pregrown at 23°C were incubated for 3 h at 37°C. Cells were fixed for 1 h 
and stained with the anti-tubulin antibody WA3. DNA was stained with DAPI. The arrow in B points to a short spindle. (C) TUB4 cells 
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(YPH500) were incubated and prepared for immunofluorescence as described in B. (D) tub4-1 cells (strain YAS5; tub4-1dsstl::URA3) 
were synchronized by a-factor. Cells were released from the cell cycle block and incubated at 37°C for 2 h. Cells were fixed with metha- 
nol and acetone, and SPBs were detected by indirect immunofluorescence with anti-90-kD antibodies. D N A  was stained with DAPI .  
Bar, 5.0 ixm. C and D are the same magnification as B. 
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Table I1. Spindle Structure and Nucleus Position of tub4.1 Cells 

TUB4 42 % 37 % 21% 0 % 0% 0 % 0 % 0 % 0 % 

tub4-1: 

YAS5 (synchronized) 11% 0% 0% 3% 44% 18% 11% 6% 7% 

ESM208 (unsynchronized) 10 % 0 % 0 % 5 % 40 % 24 % 11% 5 % 5 % 
Logarithmic cultures of YPH500 (TUB4) and ESM208 (tub4-1) were shifted for 3 h to 37°C and prepared for immunofluorescence microscopy. Cells 
of YAS5 (tub4-1zlsstl) were synchronized upon addition of a-factor at 23°C. Synchronized cells were then washed with prewarmed (37°C) YPD 
medium in order to release the cells from the cell-cycle block. After 2 h at 37°C samples were taken and prepared for immunofluorescenee microscopy 
using anti-tubulin antibodies. DNA was stained with DAPI. The position of the nucleus and the morphology of the spindle of 300 cells were 
determined. The average of two independent experiments is indicated. 

through whole cells, it is difficult to judge whether this 
SPB substructure is defective in tub4-1 cells. SPBs were 
separated, however, located on one side of the nucleus and 
not connected by a parallel array of microtubules. Instead, 
the few microtubules spread out and passed the other SPB 
(Fig. 5 C). The distance between the two SPBs was vari- 
able. SPBs were close together (Fig. 5 D) or separated by 
0.5-1 Ixm. The electronmicrographs are in agreement with 
the spindle phenotypes of tub4-1 cells (Fig. 4 B) observed 
by indirect immunofluorescence. The defective spindle in 
Fig. 5 C corresponds with the short microtubule bundles 
seen in large-budded tub4-1 cells. The two SPBs close to 
each other (Fig. 5 D) are consistent with the monopolar 
spindle seen in some tub4-1 cells. Two classes of microtu- 
bule defects were observed when sections through SPBs (n 
= 20) were inspected. Attached nuclear microtubules were 
either severely disorganized, pointing in another direction 
than the axis of the SPB (n = 15; Fig. 5, E and F), or SPBs 
of tub4-! cells had no or only a few detectable microtu- 
bules (n = 5; Fig. 5, G and H). 

Since microtubules are required for SPB separation (Ja- 
cobs et al., 1988), the defect in spindle formation in tub4-1 
cells may be explained by nonfunctional nuclear microtu- 
bules. Alternatively, a spindle may form that then col- 
lapses at a later stage in the cell cycle. Such a spindle col- 
lapse was observed after eliminating the function of the 
kinesin-related proteins Kiplp  and Cin8p. In the kiplcin8 
double mutant, preanaphase bipolar spindles rapidly col- 
lapsed, with previously separated poles being drawn to- 
gether (Saunders and Hoyt, 1992). 

These possibilities were tested using HU-blocked tub4-1 
cells. HU prevents DNA replication and arrests cells with 
a short spindle at the end of S or in G2 phase of the cell cy- 
cle (Hartwell, 1976). If the defect in microtubule organiza- 
tion of tub4-1 cells occurred after spindle formation, the 
HU-blocked cells should have a normal spindle, tub4-1 
cells were synchronized in G1 of the cell cycle by the addi- 
tion of a-factor. Cells were then released from cell cycle 
arrest at 37°C with or without HU. As controls, wild-type 
and cdc15 cells were also synchronized by a-factor, and 
then shifted to 37°C. cdc15 cells arrest in the cell cycle with 
elongated spindles at the end of mitosis (Schweitzer and 
Philippsen, 1991). Analysis of DNA content by flow cy- 
tometry confirmed that DNA replication was inhibited by 
HU (data not shown). Microtubule organization was ana- 
lyzed by EM. No obvious defect in spindle formation was 

observed in HU-blocked tub4-1 cells (n = 5; Fig. 6 A). The 
two separated SPBs were connected by an ordered, paral- 
lel array of microtubules. We noticed that in some cases 
(n = 3), the spindle was located more toward one side of 
the nucleus. However, such spindles were also observed in 
tub4-1 cells incubated at the permissive temperature (data 
not shown). In contrast, tub4-1 cells not incubated with 
HU replicated the DNA and revealed defective spindles. 
In sectioned cells where two SPBs (n = 3) were observed, 
no ordered array of microtubules characteristic of a short 
spindle was detectable (Fig. 6 B). As for an unsynchro- 
nized culture, the two SPBs were located on the same side 
of the nucleus. The spindle in wild-type or cdc15 cells was 
of normal appearance (data not shown). Single SPBs of 
TUB4, cdc15, and tub4-1 cells were inspected more 
closely. All SPBs from cdc15 and TUB4 cells and most of 
the SPBs from tub4-1 cells blocked by H U  were associated 
with a parallel array of nuclear microtubules (Table III). 
In contrast, SPBs of tub4-1 cells had in a single section 
only few or misdirected microtubules similar to the pheno- 
types observed for an unsynchronized tub4-1 culture (Fig. 
5, E-H).  In summary, our results are consistent with the 
formation of a short spindle in tub4-1 cells that then col- 
lapses at later stages in the cell cycle. 

Chromosome Loss Is Increased in tub4-1 Cells 

An expected phenotypic consequence of mitotic spindle 
malfunction is a decrease in the fidelity of chromosome 
transmission (Hoyt et al., 1990). This was investigated us- 
ing the indicator strain YRN212 carrying SUPl l  on a su- 
pernumerary chromosome. SUPl l  suppresses the ade2-101 
phenotype of YRN212. Therefore, loss of the SUPll-con- 
taining chromosome causes a phenotypic change in colony 
color from white to red. tub4-1 was integrated into strain 
YRN212, creating a duplication containing the wild-type 
copy and the mutant copy flanking plasmid sequences 
(YAS3). Cells of YAS3 that spontaneously excised TUB4 
were selected for on 5-FOA plates (YAS4). Chromosome 
loss of strains YRN212, YAS3, and YAS4 was determined 
at different temperatures (Table IV). Even at the permis- 
sive temperature, chromosome loss of tub4-1 cells was in- 
creased at least twofold compared to TUB4 cells. At 30 ° 
and 33°C, 50% and 74% of tub4-1 cells had defects in chro- 
mosome transmission, while the control strains were not 
affected (Table IV). 
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Figure 5. Spindle and SPB morphology of tub4-1 cells. TUB4 (A) and tub4-1 cells (B-H) were grown at 23°C. Cells were either incu- 
bated at 23°C (B) or shifted to 37°C for 3 h (C-H). Sections of cells with two SPBs (C and D) or one SPB (A, B, and E-H)  are shown. 
Asterisks indicate the position of some nuclear pores. The large arrows in C-F and H point towards SPBs. C, central plaque; E, nuclear 
envelope; H, half bridge; N, nucleus; O, outer plaque; M, microtubules. Bars: (A) 100 nm; (C) 200 nm. B is the same magnification as A. 
D - H  are the same magnification as C. 
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Figure 6. tub4-1 cells form a short spindle, tub4-1 cells (YAS5; 
tub4-1Asstl::URA3) were synchronized with a-factor. Ceils were 
released in YPD medium with (A) or without (B) HU at 37°C. 
Cells were incubated for 2 h at 37°C, and then prepared for EM. 
(A) Shown is a tub4-1 cell arrested in the cell cycle with HU. The 
two SPBs are connected by a short spindle. (B) Synchronized 
tub4-1 cells without HU treatment. The separated SPBs were not 
connected by a parallel array of microtubules. Asterisks indicate 
the position of some nuclear pores. The large arrows point to- 
ward SPBs. E, nuclear envelope; N, nucleus; M, microtubules. 
Bars: (A) 200 nm; (B) 150 nm. 

Cell Cycle Arrest and Survival o f  tub4-1 Cells Is 
Dependent on the Checkpoint Control Gene BUB2 

A defect in microtubule function activates mitotic check- 
point control, causing BUB and MAD gene-dependent cell 
cycle arrest (Hoyt et al., 1991; Li and Murray, 1991). We 
tested whether the cell cycle arrest of tub4-1 cells is depen- 
dent on mitotic checkpoint control. The checkpoint con- 
trol gene BUB2 (Hoyt et al., 1991) of ESM208 (tub4-1) 
was disrupted (ESM215; tub4-1bub2). While both strains 
formed colonies at 30°C, only tub4-1 cells grew at 33°C 
(data not shown). Furthermore, inactivation of BUB2 de- 
creased the viability of tub4-1 cells shifted to 37°C (Fig. 7 
A). More than 60% of the tub4-1 cells survived an incuba- 
tion period of 4.5 h at 37°C, indicating that cell cycle arrest 
of tub4-1 cells is in part reversible. In contrast, only 10% of 
tub4-1bub2 cells were viable after 4.5 h at 37°C (Fig. 7 A). 

While tub4-1 cells arrested in the cell cycle with a single 
large bud, the tub4-1bub2 double mutant continued bud- 
ding (Fig. 7 B). Cells with two buds accumulated in the 
tub4-1bub2 culture. Taken together, these results clearly 
demonstrate a role of BUB2 in the cell cycle arrest of tub4-1 
cells. 

Discussion 

TUB4 of S. cerevisiae encodes a novel tubulin that most 
resembles the ~-tubulin family. However, Tub4p is with 41% 
identity only moderately homologous to human ~-tubulin, 
while the ~/-tubulins from X. laevis, D. melanogaster, S. 
pombe, and A. nidulans are 98, 78, 71, and 68% identical 
to human "y-tubulin, respectively. Tub4p is even less simi- 
lar to ct- (31% identity to Tublp  and Tub3p) and [3-tubulin 
(27%, Tub2p) of S. cerevisiae. Based on the analysis of the 
Tub4p sequence, it has been suggested that Tub4p repre- 
sents the first member of a new tubulin superfamily 
(Burns, 1995). 

To understand the function of Tub4p in S. cerevisiae, we 
studied the localization of Tub4p with substructures of the 
SPB. In addition, the phenotype of the conditional lethal 
tub4-1 allele was analyzed, tub4-1 cells arrested in the first 
cell cycle after shifting the cells to the nonpermissive tem- 
perature, assuring that the observed defects are a direct 
consequence of Tub4p malfunction. Our analysis suggests 

Table IV. Temperature-dependent Chromosome Loss of tub4-1 
Cells 

Strain 23°C 30°C 33°C 

% % % 

YRN212 1.2 -+ 0.2 0.75 - 0.35 0.5 

YAS3 2.0 -+ 1.4 2.9 -+ 1.4 2.2 

YAS4 4.4 -+ 1.8 50.1 - 10.4 74 

For the determination of chromosome loss, 200 cells were plated on YPD plates and 
incubated for 5 d at the indicated temperatures. Red and sectored colonies indicated 
chromosome loss. YRN212 (TUB4) represents 2, YAS3 (tub4-1/TUB4) represents 3, 
and YAS4 (tub4-1) represents 10 individual experiments. The values obtained at 33°C 
represent a single experiment. 
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Figure Z Cell cycle arrest of tub4-1 cells is dependent on the mi- 
totic checkpoint control gene BUB2. (A) Survival rate. TUB4 
(YPH500), tub4-1 (ESM208), and tub4-1bub2 cells (ESM215) 
were incubated at 37°C for the indicated times. Equal numbers of 
cells were plated onto YPD plates at 23°C. The average of three 
independent experiments is shown. (B) Morphology of tub4-l 
and tub4-1bub2 cells, tub4-1 and tub4-1bub2 were incubated for 4 h 
at 37°C. Bar, 5.0 ixm. 

that TUB4 has important functions in microtubule organi- 
zation. First, the essential Tub4p is associated with the 
SPB (Fig. 2 B). Closer inspection showed that Tub4p is a 
component of the inner and the outer plaques of the SPB 
(Fig. 3)--exactly the sites of the SPB that organize the nu- 
clear and cytoplasmic microtubules, respectively (Fig. 8 A, 
Byers and Goetsch, 1975). Second, 50% of tub4-1 cells are 
defective in nuclear migration (Table II), which is most 
likely caused by nonfunctional astral microtubules (Sulli- 
van and Huffaker, 1992). Third, tub4-1 cells fail to form a 
mitotic spindle (Figs. 4-6). Fourth, cell cycle arrest and 
survival of tub4-1 cells is dependent on the mitotic check- 
point control gene BUB2 (Fig. 7). Since BUB2 is required 
for proper cell cycle arrest in mitosis in response to the 
loss of microtubule function (Hoyt et al., 1991), BUB2- 
dependent cell cycle arrest and survival of tub4-1 cells sug- 
gests a defect in microtubule organization. Finally, tub4-1 
cells lose a supernumerary chromosome at elevated rates 
during mitotic growth (Table IV). Some mutants with de- 
creased fidelity in chromosome transmission are defective 
in microtubule structure (Hoyt et al., 1990, 1992). Exam- 
ples are mutations in the two genes coding for ct-tubulin in 
S. cerevisiae, and in CIN8 and KIP1 that encode polypep- 

Figure 8. Localization of SPB proteins: model for the defect of 
tub4-1 cells. (A) Schematic diagram showing the localization of 
Tub4p relative to that of the known SPB components Cdc31p 
(Spang et al., 1993), Karlp (Spang et al., 1995), Spcl10p (Rout 
and Kilmartin, 1990), and 90-kD protein (Rout and Kilmartin, 
1990). (B) Model for the defect of tub4-1 cells. 

tides related to the heavy chain of the motor protein kine- 
sin (Hoyt et al., 1992). 

While our manuscript was in preparation, Sobel and 
Snyder (1995) published a study on Tub4p function based 
on the partial depletion of Tub4p. They reported multiple 
defects in spindle formation and a defect in nuclear migra- 
tion. These deficiencies were observed 17-20 h (or 8.1-+0.6 
generations) after repression of GALl -TUB4 by glucose. 
Since Tub4p levels were not controlled in these experi- 
ments, it is unclear whether the described phenotypes are 
a direct or indirect consequence of Tub4p depletion. Using 
a similar GALl -TUB4 depletion strain, we found by indi- 
rect immunofluorescence drastically different Tub4p lev- 
els in individual cells after growth for 24 h in the repress- 
ing glucose medium (E. Schiebel, unpublished results). 
This may explain the multiple phenotypes of GALl -TUB4 
cells seen after repression of the G A L l  promoter. 

What is the role of Tub4p in microtubule organization? 
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The localization of Tub4p with the SPB substructures that 
are in contact with microtubule ends (Fig. 3) suggests that 
Tub4p may be involved in microtubule nucleation and/or 
attachment of microtubules to the SPB. A model for 
Tub4p's functions has to consider the phenotype of tub4-1 
cells, tub4-1 cells incubated at the nonpermissive tempera- 
ture duplicate and separate their SPBs. Furthermore, for- 
mation of a short bipolar spindle appears normal as sug- 
gested by the HU experiment (Fig. 6; Table III). Since 
mitotic spindles were not observed in tub4-1 cells, it is 
most likely that the defects in microtubule organization 
occur after the formation of a short bipolar spindle (Fig. 8 
B). It is important to emphasize that only a subset of 
Tub4p's functions may be affected in tub4-1 cells. There- 
fore, we cannot exclude that tub4 alleles defective in other 
TUB4 functions may reveal different phenotypes. 

A number of yeast mutants with defects in mitotic spin- 
dle formation have been described. For example, in cells 
carrying the cold-sensitive tub2-405 allele, the short bipo- 
lar spindle collapsed at the nonpermissive temperature 
with both SPBs on opposite poles of the nucleus (Pasqua- 
lone and Huffaker, 1994). A similar phenotype was ob- 
served when cells containing short spindles were treated 
with nocodazole. The spindles collapsed, but the SPBs re- 
mained on opposite sides of the nucleus (Jacobs et al., 
1988). In contrast, inactivation Of the kinesin-related mo- 
tor proteins Cin8p and Kiplp caused rapid collapse of pre- 
anaphase spindles, with previously separated SPBs being 
drawn together (Saunders and Hoyt, 1992). This pheno- 
type was explained by counteracting forces produced by 
kinesin-related proteins. Since the SPBs were on the same 
side of the nucleus also in tub4-1 cells, it is likely that the 
defective microtubule structure disturbs the counteracting 
forces, such that the separated SPBs are drawn together. 
Assuming that the attachment of nuclear microtubules to 
the SPB is weakened in tub4-1 cells, the detachment of 
some microtubules could be caused by mitosis-specific 
pulling forces that are transmitted to the SPB via microtu- 
bules. Mitosis-specific forces that may act on the MTOC 
are indicated by chromosome and spindle movements, in- 
cluding chromosome congression to the metaphase plate 
and sister chromatid separation in anaphase A (for review 
see Mclntosh and Koonce, 1989). Microtubule detachment 
is consistent with the observation that some tub4-1 SPBs 
are in contact with only a few microtubules (Fig. 5; Table 
III). Detachment of nuclear microtubules from the SPB 
may then disturb the counteracting forces, resulting in 
spindle collapse. 

Although the immunoelectron microscopic analysis re- 
vealed a close proximity of Tub4p and microtubules at the 
SPB (Fig. 3), it is not clear whether Tub4p directly inter- 
acts with microtubule ends. Tub4p could function either as 
a structural component of the inner and outer plaques of 
the SPB or as the direct link between microtubule ends 
and the SPB. Interestingly, microtubule ends proximal to 
the site of initiation on the SPB are sealed because of a 
terminal component connecting the walls of the microtu- 
bule cylinder (Byers et al., 1978). It is tempting to specu- 
late that Tub4p is part of this microtubule cap structure. 
Interestingly, a microtubule cap with a somewhat different 
structure formed by a 7-tubulin-containing complex at the 
minus ends of microtubules was identified by in vitro 

(Zheng et al., 1995) and in situ (Moritz et al., 1995) studies. 
The identification of proteins interacting with Tub4p will 
further elucidate Tub4p's role in microtubule organization. 
We recently identified suppressors of tub4-1, one of which 
encodes the 90-kD SPB component that is associated with 
the same SPB substructures as Tub4p (Fig. 8 A). In addi- 
tion, we obtained evidence that Tub4p interacts with the 
90-kD SPB component (Geissler et al., 1996). Taken to- 
gether, Tub4p may be a highly divergent -,/-tubulin adapted 
to the specialized microtubule attachment structures in S. 
cerevisiae. 
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