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ABSTRACT: When performing chromatography-mass spectrom-
etry-based nontargeted metabolomics, or exposomics, one of the
key steps in the analysis is to obtain MS1-based feature tables.
Inapt parameter settings in feature detection will result in missing
or wrong quantitative values and might ultimately lead to
downstream incorrect biological interpretations. However, until
recently, no strategies to assess the completeness and abundance
accuracy of feature tables were available. Here, we show that
mzRAPP enables the generation of benchmark peak lists by using
an internal set of known molecules in the analyzed data set. Using
the benchmark, the completeness and abundance accuracy of
feature tables can be assessed in an automated pipeline. We demonstrate that our approach adds to other commonly applied quality
assurance methods such as manual or automatized parameter optimization techniques or removal of false-positive signals. Moreover,
we show that as few as 10 benchmark molecules can already allow for representative performance metrics to further improve
quantitative biological understanding.

The exhaustive translation of all chemical ions analyzed via
liquid chromatography−high-resolution mass spectrome-

try (LC−HRMS) into features with accurate MS1-based peak
areas precedes any comprehensive data analysis (Figure S1a).
Validation tools allowing to assess the completeness and peak
abundance accuracy of feature tables are required irrespective
of the feature finding tool used (e.g., XCMS,1 XCMS-online,2

MZmine 2,3 MS-DIAL,4 El-MAVEN,5 OpenMS,6 etc.).
Indeed, numerous studies described problems in MS1-based

feature tables generated via nontargeted data analysis. For
instance, a reanalysis of 5 already published feature tables
revealed that each of them omitted >50 relevant compounds
due to incomplete feature extraction.7 Other studies reported
as little as a 10% overlap between feature tables extracted from
the same data set when using different tools8 or difficulties in
reproducing feature tables across different labs.9 In this study
we further emphasize this problem by demonstrating how
marginal differences in XCMS parameter settings can make the
difference between missing ∼6% or ∼93% of all peaks in a data
set. Overall, the emerging unease regarding the under-
utilization of data led to several voices calling for solutions,
enabling the benchmarking of different tools, algorithms, and
parameter choices.10−12

Various studies have been published scrutinizing the
completeness of MS1 feature tables and the accuracies of the
peak abundances reported.11,13,14 Generally, these studies are
done by defining a ground truth of manually confirmed peaks
with known peak abundance ratios, commonly referred to as

the benchmark (BM). The errors in the feature tables are then
judged by examining the differences between the BM and the
feature table. Thereby, in principle, this method allows
detecting recovered/missed BM peaks and the accuracy of
peak abundances. While the concept is straightforward, it is
rarely applied in routine nontargeted experiments, as its
implementation can be tedious. This is because BM generation
requires meticulous manual curation of peaks, which can be
very time-consuming and is often considered to be too
subjective for a ground-truth generation. Indeed, a recent study
showed that three experts in mass spectrometry strongly
disagreed on what constitutes an actual chromatographic peak
in ∼20% of cases (n = 1071), demonstrating how vague
boundaries between differences in opinion carry the risk of
overinterpreting differences between BMs and nontargeted
feature tables.15 Moreover, the manual work of BM curation
leads to rather small sets of BM peak lists, potentially
hampering the representativeness of the BMs for the whole
data set.
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We recently introduced mzRAPP, a tool enabling the
semiautomated generation of reliable BM peak lists and their
fully automated utilization for assessing the completeness
(proportion of BM peaks also found/recovered via non-
targeted feature extraction; Figure S1b) and peak abundance
accuracy (proportion of accurate isotopologue ratios (IRs) as
calculated from nontargeted features; Figure S1c) of feature
tables at different stages of the nontargeted feature detection
(NFD) pipeline (peak picking, peak alignment, gap-filling, and
feature filtering).16

Briefly, mzRAPP takes the output of traditional targeted
metabolomic data evaluation (molecular formulas with
associated retention time boundaries) as input for the
generation of a BM, which is then utilized to detect feature
table errors, as depicted in Figure 1a. The high quality (HQ) of
BMs is ensured by comparing IRs calculated from BM peak
areas to those predicted from molecular formulas. Thereby,
each BM peak can be confirmed to be within the linear
dynamic range of the instrumental setup, and IR can be
employed as reliable abundance ratios to assess the accuracy of
peak areas (see Figures 1b and S2). Overall, mzRAPP can
retrieve performance metrics for completeness and peak
abundance accuracy for different stages of the NFD process,
allowing to assess performances for general parameter selection
in peak picking, peak alignment, gap-filling, and feature
filtering.
Figure 1b summarizes mzRAPPs key advantages. Specifi-

cally, all BM peaks are ensured to be within the linear dynamic
range of the respective instrument. Moreover, mzRAPP utilizes
IR as the objective ground truth to assess NFD results and

allows a fully automated integration of a range of different
output formats by prominent NFD tools. Finally, the most
important performance metrics extracted by mzRAPP are the
proportion of detected peaks and the proportion of accurate
IR. Both metrics are assessed after the peak picking and
alignment step, respectively.
In this work, we show the power, necessity, and broad

applicability of this novel validation scheme. First, we establish
that the mzRAPP BM generation process applies to a wide
variety of data sets produced from different sample types and
instrumental platforms. Furthermore, we demonstrate that
even comparably small BMs produced via mzRAPP allow us to
derive reliable NFD-performance metrics. Afterward, we show
that expert domain knowledge for parameter optimization or
automatized parameter optimization does not guarantee
completeness or peak abundance accuracy of feature tables.
Finally, we demonstrate that mzRAPPs metrics indeed provide
orthogonal information to other feature-table quality assurance
strategies such as the utilization of variation in quality control
injections or deep-learning facilitated peak shape classification.

■ METHODS
Data Sets. Data sets used for BM generation were

downloaded from Metabolights17 or thankfully provided by
the authors of the respective studies.11,13,15,18−21 References
and/or repository IDs are provided in the column “Reference”
of Table S1. Where not already provided as centroided mzML
files, raw files were centroided and converted to mzML format
via ProteoWizards msConvert22 (version 3.0.21045-
7732b6429).

Figure 1. General capabilities of mzRAPP and NFD steps evaluated in the presented study were depicted in (a). Furthermore, key advantages of
mzRAPP were highlighted in (b). Briefly, mzRAPPs utilization of isotope patterns allows for an increased dynamic range coverage of BMs while
ensuring that all BM peaks satisfy quantitative criteria. Moreover, NFD abundances can be assessed against objective IR instead of subjective
considerations (i.e., peak areas as calculated from the shown peaks would not result in an accurate IR). Finally, mzRAPP allows easy integration
with many NFD formats.
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BM Generation. Targeted data evaluation was performed
via Skyline23 (version 21.1.0.146) for the most abundant
isotopologue of each molecule, for which retention time and
molecular formula were known in all data sets. Then, manual
set retention time boundaries were exported for each molecule
and mzML file. These and the mzML files formed the input for
mzRAPP, which also extracted other predictable isotopologues
for each molecular formula. Only isotopologues with a Pearson
correlation coefficient (PCC) > 0.85, below an IR bias (as
calculated by peak areas) of 35%, an IR bias (as calculated by
peak heights) of 30%, and a difference between ratio bias
(height) and ratio bias (area) below 30% points were accepted.
Extraction of Nontargeted Data Preprocessing Per-

formance Metrics. Extraction of NFD performance metrics
was conducted via mzRAPP (version 1.1.6). The exact criteria
and rules for matching between signals of the BM and those of
the unaligned and aligned NFD outputs can be found in the
original mzRAPP publication16 and on Github (https://github.
com/YasinEl/mzRAPP). IR biases, as calculated from NFD
outputs, were considered to be recovered if they were less than
20% points higher than the respective BM bias. Confidence
intervals (CIs) (confidence level = 0.99) for all NFD metrics
were derived via bootstrapping of BM molecules (R = 1000)
using boot package (version 1.3-28).
Application of Nontargeted Data Preprocessing. All

NFD experiments were performed via XCMS3 (version
3.14.1) using R 4.1.0 and MZmine 2 (version 2.53). Parameter
optimizations were performed manually or via automated
optimization tools. The automated optimization tools were
IPO24 (version 1.18.0), AutoTuner25 (version 1.6.0), Metab-
oanalystR26 3.0, and SLAW27 (version 1.0.0). Classification of
peaks by quality was performed via NeatMS28 version (0.9),
which was run via Python 3.7. For the parameter sensitivity
study, the coefficient of variance (CV) investigation and the
parameter optimization data set (DS) 6 were processed. For
the unsupervised clustering investigation, the assessment of
NeatMS DS 1 was processed. Additional details are given in
the Supporting Information.29,30

Data Analysis and Figures. All further data analysis was
performed using R (version 4.1.0) and R studio (version
1.4.1717) using data.table package. Plots were generated using
ggplot2, patchwork, and ggradar. Figures and diagrams were
further processed using Adobe Illustrator (25.3.1).

■ RESULTS AND DISCUSSION
Quality of Automated BM Curation and Extension. In

this study, BMs were generated from 12 different public and
in-house raw data sets (listed in Table S1) via mzRAPP. The
case-by-case generated BMs covered five different MS-systems
coupled to hydrophilic interaction chromatography or
reversed-phase chromatography and different sample types
(including analytical standard mixtures, blood serum, red
blood cell extracts, and cell culture extracts) and compound
classes (polar metabolites, lipids, and exogenous small
molecules). Targeted extraction of the most abundant
isotopologue of each known molecule was done manually
but was automatically extended to all lower-abundance
isotopologues. Quantitative properties of the thereby generated
BMs are visualized in Figure S3. In Figure S3a, all 50597 BM
peak areas of low abundant isotopologues (LAITs) were
plotted against the area predicted from the respective most
abundant isotopologue (MAIT), visualizing the concept that
only peaks within the linear dynamic range of the instrumental

platform were added to the BMs. Figure S3b shows the
absolute peak area bias of all LAITs, with 94% of all calculated
IR biases <25%. A comparison of biases (Figure S3c) as
calculated via peak areas versus peak heights (which are
generally more robust as they are not affected by the poor
setting of RT boundaries) revealed a good agreement, further
strengthening the evidence of an accurate “ground truth” for an
extensive number of peaks. Finally, for DS1, the BM reliability
was evaluated upon comparison with reported fold changes
assessed in an independent laboratory. Figure S3d shows the
excellent reproducibility of the mzRAPP approach applied
here. For this specific data set, the number of peaks with
reliable quantitative properties increased by > 200% by
integrating LAITs. The addition of LAITs increased not only
the BM size but also the covered dynamic range. Figure S4a,b
quantifies this significant extension for all 12 investigated data
sets. This shows how even small manual efforts can lead to
large BMs. Peak metrics such as the full width half maximum
(FWHM) of chromatographic peaks and the mass precision
given by mz ranges of individual peaks are important for any
nontargeted experiment. In fact, most tools enabling non-
targeted MS1 feature extraction require parameters corre-
sponding to these variables for any data set to be processed.
Therefore, it is worth noting that the generated BMs showed
large differences in all these metrics as a result of different
measurement methods (see Figure S4c,d). Next to these
characteristics, the peak shape, as reflected by the zigzag
index,31 sharpness,32 and other metrics (Figure S5), show
significant differences across investigated data sets. This
highlights that data sets can vary significantly in their
characteristics and might therefore pose different challenges
for NFD. Consequently, conclusions drawn for the perform-
ance of a given NFD experiment performed on one raw data
set might not allow drawing conclusions for other raw data
sets.

Application of BMs for Feature Extraction Assess-
ment. Ultimately, a BM can be utilized to derive performance
metrics for NFD performed on the same raw data set. As
outlined above, mzRAPP enables automated assessment of the
proportion of found BM peaks and the proportion of accurate
IR before and after alignment as performance metrics (see
Figure S1b,c).
However, metrics derived from the BM (e.g., x % of BM

peaks found) should be translatable into an estimation for the
underlying data set (e.g., x % of all peaks found). Hence, a
representative sampling of the BM peaks/features is a
prerequisite. To show the validity of our approach, we
provided an overview showing how mzRAPP compares to
more traditional BM recovery studies for the evaluation of an
NFD experiment in Figure 2. Figure 2a shows how mzRAPPs
consideration of all detectable isotopologues and multiple
adducts allows for a better coverage of the linear dynamic
range. This is of importance as low peaks are often
underrepresented in BMs, only including the MAITs. The
potential impact of this underrepresentation is visualized in
Figure 2b for different numbers of BM molecules. As can be
seen, only considering MAITs leads to a rather consistent
overestimation of the proportion of found BM peaks for any
number of BM molecules.
Moreover, mzRAPP allows to estimate CIs for all metrics by

bootstrapping BM molecules (see also Figure S6). This was
done by bootstrapping different numbers of molecules from
BM 1 (containing 712 molecules and >30,000 peaks). It can be
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observed how a reduction of the number of BM molecules
increases the CI, while the assessed metric was in agreement
with the best value derived from the largest BM (712
molecules) in almost all cases. Therefore, even <50 BM
molecules can lead to reasonable estimates of the performance
of NFD, as long as the increase in the CI can be accepted.
Sensitivity of NFD Extraction Parameters. NFD

requires the adaptation of different parameters to the analyzed
data set. These parameters can appear more or less intuitive to
users with different scientific backgrounds and experiences.
Generally, parameters involving expected chromatographic
peak widths and retention time shifts are often considered to
be among the more intuitive parameters. In the following, we
showcase examples that emphasize the need for case-by-case

benchmarking strategies, as even intuitive parameter settings
could have an adverse impact on NFD.
Figure 3 shows how a stepwise increase of XCMS’s

centwave’s maximum peak width (MPW) parameter using 2

s increments heavily affected the proportion of missed BM
peaks and accurate IR. In the most extreme case, an increase in
MPW from 26 to 28 s led to an increase in the proportion of
missed BM peaks (before alignment) from 6 to 93%.
Considering that the median of BM peaks FWHM ranged
from ∼4 to ∼18 s with a median of ∼7 s, there was no trivial
dependence of the optimal MPW on the FWHM of peaks to
be detected. While fewer peaks were missed after alignment
and gap-filling, this improvement was insufficient to make up
for errors introduced during peak detection. It is worth noting
that even in cases where gap filling recovered most peaks, such
as with an MPW of 14 s, the resulting peak areas led to less
accurate IR than when peaks were already detected in the peak
detection step (e.g., with MPW set to 12 s). While the highest
observed retention time shift in the BM peaks was below 10 s,
the maximum allowed shift, as set via the bandwidth (bw)
parameter in the group density algorithm, did not affect NFD
to the same extent as MPW. Interestingly, there was almost no
effect of the set MPW on the IR accuracy after peak picking.
However, there was a significant impact on IR accuracy after
peak alignment and gap-filling, which depended on the MPW
set during the peak picking step rather than set alignment
parameters.
For this specific dataset, the optimum of all parameter sets

tested was found by XCMS (an MPW of 12 s, and a retention

Figure 2. NFD was performed on a raw data set. For the same data
set, two BMs were generated from 712 internal known molecules.
One BM was generated in a traditional manner, only considering the
monoisotopic peak and the M + H adduct, while mzRAPP considered
all isotopologues and a range of adducts. Both BMs were used to
estimate the proportion of peaks found via NFD. (a) Distribution of
peak heights for the two different BMs. (b) Different numbers of
molecules were sampled at random from all 712 BM molecules (n =
100 for each number of molecules) to estimate the proportion of
found peaks after alignment. Only mzRAPP allows the estimation of
CIs.

Figure 3. Multiple nontargeted feature detection experiments with
parameter sweeps for the peak-picking and the alignment step were
performed on the same data set via XCMS3. The maximum peak
width (MPW) allowed was incrementally increased, with three
retention time tolerances tested for each peak picking attempt. The
proportion of recovered BM peaks was strongly and often abruptly
affected by the MPW parameter. While the proportion of inaccurate
IRs was more strongly influenced after alignment, the effect was
primarily dependent on the peak width parameter set for peak picking.
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time tolerance of 6 s, leading to a proportion of missed BM
peaks <1% and a proportion of inaccurate IR < 5%). It should
be noted that this finding cannot be generalized, but it holds
true for the processed data set, representing a use case of
parameter adjustment. An additional case study utilizing
MZmine 2 is provided in Figure S7. The example clarifies
that the common practice of manual parameter adjustment to
metrics derived from the analytical performance of the
instrumental setup can lead to suboptimal NFD.
Application of Parameter Optimization Tools. Current

parameter optimization algorithms (as implemented in IPO,
AutoTuner, MetaboanalystR 3.0, and SLAW) undoubtedly
facilitate the NFD extraction and improve quality. Here, we
test these tools applying our BM-recovery approach. This way,
the otherwise missing metrics of missing peaks and accuracy of
peak abundances are validated. Figure 4 compares the quality

of parameter optimization performed for the NFD performed
on DS 6 via different metrics, as exported by mzRAPP. As can
be seen, the differences between the optimization attempts
were observable for the proportion of missed BM peaks and
inaccurate IR before and after alignment and the proportion of
BM peaks leading to split peaks (peaks with borders set close
to peak apex). It turned out that the initially defined values for
the parameter optimization process are crucial and were
unique for each tool. For example, in the case of IPO, manual
adjustment of starting parameters led to a decrease in the
proportion of BM peaks missing after alignment from ∼25 to
∼1%. Again, this test emphasizes that orthogonal evaluation is
not redundant when using automated parameter optimization
algorithms.

Feature Extraction Assessment or Filtering via CV.
Obtaining many features with a low peak abundance variation
CV across replicate injections is commonly considered to
indicate a good NFD performance. Here, we investigated how
CV-based and BM-based NFD performance metrics compare
for different NFD parameters. The CV-based metrics
considered the number and proportion of features with a CV
< 30% (nCV30 and pCV30). mzRAPP metrics addressed
completeness and peak abundance accuracy inferred by BM
peak recovery and IR accuracy, respectively. In Figure 5, these
4 metrics were plotted for 52 different feature tables generated
via NFD using 26 different sets of peak-picking parameters,
combined with one of two alignment parameter sets (APSs).
Within the two investigated APS, the metric nCV30 was well-
correlated with the proportion of BM peaks recovered
postalignment (e.g., PCC = 0.9 for APS 1), while the
proportion of features with CV < 30% reflected the proportion
of accurate IR postalignment (e.g., PCC = 0.97 for APS 1),
showing the overall validity of both approaches. However,
while CV metrics were very similar between the APS 1 and 2,
BM metrics revealed that the proportion of an accurate IR
(post alignment) were significantly higher with APS 2. As a key
advantage, mzRAPP metrics allow to dissect the single steps of
NFD, such as peak-picking (prealignment) and peak alignment
(postalignment), while CV-based metrics can only be assessed
postalignment. This fact is significant as it allows to derive
information on whether the peak-picking or alignment
parameters require further optimization. Therefore, comparing
the proportion of an accurate IR pre- and postalignment for
APS1 reveals that alignment parameters require optimization,
which was confirmed as APS2 improving the proportion of an
accurate IR significantly. Moreover, BM metrics reveal whether
a global optimum has been reached (e.g., 100% of peaks
recovered and 100% of IR accurate), while CV metrics only
allow to compare the performance across tested parameters.
Thus CV metrics do not offer concise decision points for the
assessment of a complete and abundant accuracy when
optimizing NFD.
However, the removal of features with missing values or a

CV > 30% was demonstrated to be a viable filter for removing
features with an inaccurate IR while retaining features with an
accurate IR (red line). Still, it came at the prize of removing
real peaks with poorly set integration boundaries as visible
from the drops in the recovered peak metric when many
features containing an inaccurate IR had to be removed.
Nevertheless, this demonstrates that filtering by the CV of
replicate injections was indeed successfully removing unreliable
features.

Application of Peak Classification via Deep Learning.
Novel tools such as NeatMS use deep learning for the
classification of peaks extracted via NFD by their quality. As a
major breakthrough, noise removal is accomplished without
relying on replicate injections or manual curation. The
successful application of deep learning algorithms requires
good training data, which (in the case of NeatMS) have to be
labeled by users with different skill sets. In this work, we
scrutinized NeatMS. Peaks generated via nine NFD experi-
ments performed on the same data set (DS 1; containing 10
samples) were classified accordingly into three categories “high
quality,” “low quality,” and “noise.” We then applied different
filters to the aligned NFD features and required them to
contain 0, 1, 3, 5, 8, or 10 “high quality” peaks. Subsequently,
the proportion of recovered peaks and accurate IR after

Figure 4. Nontargeted feature detection (NFD) parameters for
processing a data set have been optimized using different optimization
tools (IPO and AutoTuner, both adjusted and default, as well as
MetaboanalystR 3.0 and SLAW). Outcomes were assessed via five BM
recovery-based metrics, namely the proportion of missed BM peaks
(before and after alignment), the proportion of inaccurate IRs (before
and after alignment), and the proportion of split peaks (before
alignment). CIs of all metrics for the underlying data set are given in
Table S2.
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alignment was assessed. For this purpose, we filtered our BM
to contain only features with peaks in all 10 samples. As can be
seen in Figure 6, removing all NFD features which did not
include at least 1 “high quality” peak reduced the number of
features by ∼40 to ∼60% while having almost no effect on the
proportion of recovered BM peaks or accurate IR, demonstrat-
ing how NeatMS can be applied successfully for removing false
positives from NFD results. However, requiring more “high
quality” peaks reduced the proportion of recovered BM peaks
by multiple % points in many cases. When all 10 samples were
required to contain only “high quality” peaks for a feature to be
retained, the proportion of recovered BM peaks dropped to
<10% in all cases. Our validation confirms that tools such as
NeatMS for efficiently removing false-positive signals from
NFD results have the potential to significantly advance NFD.
Despite this undisputed role, the quality and size of training
data strongly affect the procedure and are defined by a user,
case-by-case. Thus, independent validation such as BM-
recovery studies continues to be of great value in any NFD
pipeline.

■ CONCLUSIONS

We conclude that routine performance checks continue to be
necessary to ensure the completeness and peak abundance
accuracy of feature tables produced via NFD. This conclusion
is based on the demonstration that neither manual nor
automatized parameter optimization guaranteed optimal out-
comes by metrics discussed here and by other studies
referenced above. We showed that the BM recovery-based
validation as implemented in mzRAPP offers a viable solution
to assess the performance of NFD routinely and on a step-by-
step basis (e.g., peak-picking, peak alignment, gap-filling, and
feature filtering). Finally, we want to emphasize that NFD
should indeed be validated on an experiment-by-experiment
basis rather than ranking NFD tools by the performance and
only applying the ascribed “winner” in the future analysis. This
is because the ranking of NFD tools at their peak performance
requires unpractical amounts of parameter screening, perform-
ances naturally vary across data sets, and NFD tools are
updated on a regular basis, making the validity of the
performed ranking potentially short. Routine assessments, on
the other hand, ensure complete feature tables with a high peak
abundance accuracy for each analysis performed.

Figure 5. A data set consisting of 9 replicate injections was processed via XCMS using different values for the MPW parameter and the bw
parameter, leading to a total of 52 nontargeted feature detection experiments. Four different quality metrics including the number of features with
CV < 30%, the proportion of features with CV < 30%, and the proportion of recovered BM peaks and accurate IRs [prealignment, postalignment,
and postfiltering (only features without missing values and with CV < 30%)] were then plotted (sorted by ascending number of features with CV <
30%).
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