
RESEARCH ARTICLE

DiMeX: A Text Mining System for Mutation-
Disease Association Extraction
A. S. M. Ashique Mahmood1*, Tsung-JungWu2, Raja Mazumder2,3, K. Vijay-Shanker1

1 Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, United
States of America, 2 Department of Biochemistry and Molecular Medicine, GeorgeWashington University,
Washington, District of Columbia, United States of America, 3 McCormick Genomic and Proteomic Center,
GeorgeWashington University, Washington, District of Columbia, United States of America

* ashique@udel.edu

Abstract
The number of published articles describing associations between mutations and diseases

is increasing at a fast pace. There is a pressing need to gather such mutation-disease asso-

ciations into public knowledge bases, but manual curation slows down the growth of such

databases. We have addressed this problem by developing a text-mining system (DiMeX)

to extract mutation to disease associations from publication abstracts. DiMeX consists of a

series of natural language processing modules that preprocess input text and apply syntac-

tic and semantic patterns to extract mutation-disease associations. DiMeX achieves high

precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different

datasets for mutation-disease associations. DiMeX includes a separate component that

extracts mutation mentions in text and associates them with genes. This component has

been also evaluated on different datasets and shown to achieve state-of-the-art perfor-

mance. The results indicate that our system outperforms the existing mutation-disease

association tools, addressing the low precision problems suffered by most approaches.

DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease

associations, as well as other relevant information including patient/cohort size and popula-

tion data. The results are stored in a database that can be queried and downloaded at http://

biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has

the potential to significantly assist researchers and curators to enrich mutation databases.

Introduction
Rapidly evolving sequencing technologies [1,2] have led to a dramatic rise in the number of
published articles reporting associations between genomic variations and diseases. There is an
estimate that over 10,000 articles are published each year mentioning such associations [3].
Manually collecting this information is both expensive and time consuming. Uniprot [4], COS-
MIC [5], BioMuta [6], OMIM [7], HGMD [8], UMD [9], HGVbaseG2P [10], MutDB [11],
dbSNP [12], PharmGKB [13], ClinVar [14] and InSiGHT [15] are examples of repositories
that house mutations and related disease and phenotype information laboriously manually
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curated from the literature. Manual curation cannot keep up with the new information being
published every year.

To assist this manual curation, several text-mining (TM) efforts [16–27] have been
attempted. However, most of these efforts are limited to identifying mutation mentions only.
The majority utilize regular expressions to detect mutations, although there are some, like
tmVar [28] and VTag [29], that use conditional random fields (CRFs), and SETH [30], which
implements an Extended Backus-Naur Form (EBNF) grammar. Only a few of these efforts
extend the mutation detection method to associate the mutation with a disease phenotype. Most
of these are search based TM tools that do not employ automatic extraction of the mutation-dis-
ease relationships expressed in articles. PolySearch [31] is such a search-based TM tool that
infers relationships between mutations and diseases based on their frequency of co-occurrence
in Medline abstracts. The work reported in Schenck et al. [32] combines existing TMmethods
into a workflow to associate mutations with cancers from text with high precision but low recall.
To the best of our knowledge, EMU [16] is the only TMmethod that extracts mutations from
abstracts, attaches them to associated genes, and finally couples them with associated diseases.

In this study, we propose a novel text mining approach that extracts mutations fromMed-
line abstracts and identifies their association with diseases. In contrast to co-occurrence based
systems that associate mutations with diseases on the basis of their co-occurrence in the same
abstract, we use information extraction techniques in addition to co-occurrence to capture the
relationship. Co-occurrence based approaches look at multiple articles for frequencies of co-
occurrence in order to derive a confidence for an association that is text mined. In contrast, we
extract information from a single abstract and use sentence structure together with other tex-
tual features to base the confidence of the extraction. An association between a mutation and a
disease can be expressed in various ways in text. In some cases, one part of an association, e.g.,
the disease, might be mentioned in a different sentence than the associated mutation. Under
the hypothesis that this should be inferable from the nearby context, we use textual clues to
find it and make the linkage.

Our system is comprised of a series of natural language processing (NLP) modules including
syntactic preprocessing of input text, detecting different types of mutations, a novel algorithm to
associate mutations with genes, an information extraction (IE) module to apply lexical and
semantic patterns to extract associations between mutations and diseases, and additional rules to
infer associations beyond patterns. We also extract additional information, including the number
of patients, the race or nationality of the patients and whether the mutation is associated with the
outcome (e.g., overall survival) of the disease or the efficacy of a drug therapy for the disease.

We have evaluated our system on two different annotated sets of data. One is from the Bio-
Muta [6] project, which pertains to human cancers, and the other, used for evaluating the
mutation-disease association system of Doughty et al. [16], pertains to only prostate and breast
cancers. We achieved precision of 0.87, recall of 0.89 and F-measure of 0.88 on the BioMuta
set. For the latter set, we achieved precision of up to 0.95, recall of 0.88, and F-measure of 0.91,
which indicates that our system outperforms an existing tool described in Doughty et al. [16]
for mutation-disease association that achieves precision of up to 0.76, recall of 0.75 and F-mea-
sure of 0.75 on the same dataset. The component for detecting mutation mentions also
achieved similar performance to the current state-of-the-art system tmVar [28] (F-measures of
0.94, 0.94 and 0.91) on three different corpora: Mutation Finder [20], Variome [33] and tmVar
[28]. We also show that our mutation to gene association module achieves F-measures of up to
0.93 on the BioMuta dataset and 0.94 on the prostate and breast cancer datasets, while the sys-
tem of Doughty et al. [16] achieves 0.76 and 0.68 on the latter datasets, respectively.

We applied our system on roughly 10,000 abstracts. The extraction results are stored in a
database, which can be queried and downloaded for further analysis. The database is accessible
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via a simple interface that we developed (http://biotm.cis.udel.edu/dimex/). Some sample que-
ries showing the possible uses of the system are presented in the Results section of this article.
We conducted an evaluation of a sample of extractions from the database and found it to be
consistent with our evaluations mentioned above. This exercise illustrates the scalability and
robustness of DiMeX.

Materials and Methods
The schematic diagram of the overall architecture of the system is shown in Fig 1. The system
is divided into three main modules, namely A, B and C. Module A applies some basic text pre-
processing on the abstracts fetched from PubMed followed by entity detections. Syntactic pro-
cessor is then applied on the pre-processed text. In module B, the mutation mentions in text
are recognized and associated with genes and diseases. Finally, in module C, we extract addi-
tional information needed for storing the associations in the local databases. These will be
described in detail in the next sections.

Module A
This module includes components for text preprocessing, gene and disease tagging, patient
context sentence detection, syntactic processing and matching of patterns.

Text preprocessing
DiMeX accepts a single or multiple PMIDs as input and processes each abstract individually.
We start with extracting the title, abstract text and the MeSH terms from the Medline reposi-
tory. We use an in-house sentence splitter to split the abstracts into individual sentences. An

Fig 1. Schematic diagram of DiMeX.

doi:10.1371/journal.pone.0152725.g001
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acronym detector [34] is used to detect possible abbreviated forms to assist the gene and dis-
ease tagging steps.

Gene and disease tagging
We apply a Gene Mention (GM) detector developed in-house. For disease mention detection,
we use Pubtator [35], a web-based text mining tool that assists Biocuration by tagging various
biological entities. A few enhancements are performed to Pubtator’s results such as a disease is
discarded if it is an acronym for which the full form indicates that it is not a disease. For exam-
ple, in PMID:17591767, “AR” is detected as a disease but the full form “Androgen Receptor”
hints that it is a gene. Additionally, “tumor” or “cancer”might be mentioned in general
throughout the abstract, without specifying the actual disease every time. These general occur-
rences, which are annotated by Pubtator as disease terms, are mapped to the closest mentioned
disease, which often appears within the same noun phrase.

Patient context sentence
We identify Patient Mention sentences mentioning information about the patients involved in
the study, such as total number of participants and demographic information. In general,
these sentences also mention the disease central to the study, and so it is important to make
the connection with a mutation in those cases in which the disease is not explicitly stated in
the sentence that hints to their association. We find that generally the first Patient Mention
sentence in an abstract is the richest in this type of information. We define a sentence as
Patient Context (PC) if it is the first Patient Mention sentence in the abstract. Example-1 is
such a PC sentence:

Example-1:“A total of 453 breast cancer patients and 382 age—and sex-matched controls
from Greece and Turkey were analyzed.” (PMID:15330212)

Syntactic processing
We use BioNex [36] for tokenization of the terms and to perform shallow parsing, which iden-
tifies phrases in a sentence. We use the BioNex’s detection of base noun phrases (NPs) and
base verb groups (VGs) only. Sometimes, a sequence of base NPs might appear together, con-
nected by conjunctions or prepositions or punctuation marks. We group such sequences of
base NPs to form a single longer NP. Similarly, we group the consecutive (with no intervening
words or punctuations) base verb groups (VG) together to form a single VG.

In Example-2, the base NPs and base VGs are NP (The PON1 102V allele), VG (appears),
VG (to be associated), NP (an increased risk), NP (prostate cancer). Merging of NPs and VGs
yields NP (The PON1 102V allele), VG (appears to be associated), NP (an increased risk for
prostate cancer).

Example-2: “The PON1 102V allele appears to be associated with an increased risk for pros-
tate cancer.” (PMID:12783936)

As we will discuss in the next subsection on matching of patterns, either a merged NP or its
component base NPs can be used to match our extraction patterns. Also, we use the term
Merged NPs orMerged VGs just to emphasize that several base NPs or base VGs have been con-
nected together, respectively.

DiMeX: Text Mining of Mutation-Disease Association
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Matching of patterns
In this subsection, we will first describe how patterns are specified and then discuss how they
are matched against text.

A pattern is specified by a sequence where each component is a noun phrase (NP), a verb
group (VG) or a word. An NP mentioned in a pattern sequence can be further instantiated as
NP{head: lexical item}, NP{contains: lexical item} or NP<type>. NP{head: lexical item} indi-
cates NPs whose head word is the same as the specified lexical item or one of its textual vari-
ants. NP{contains: lexical item} describes NPs that contain the specified lexical item or one of
its textual variants. NP<type> corresponds to NPs of the specified type (Currently we use only
two types: NP<mutation> and NP<disease>). Similarly, a VG can be instantiated in one of
the two ways: VG_active{head: lexical item} or VG_passive{head: lexical item}. Thus, in addi-
tion to the lexical items, the pattern may require the use of an active or passive VG. In order to
match a pattern against text, we consider the BioNex output sequence for a sentence and verify
whether this output contains a subsequence that matches the pattern exactly. In this matching,
the matched phrases (NP or VG) can either be base or merged phrases. Matching of phrases in
patterns that are instantiated with head information (i.e. NP{head: lexical item}, VG_active
{head: lexical item} or VG_passive{head: lexical item}) requires the identification of the words
that are the heads of the corresponding textual phrases. We take the head of the base NP to be
its rightmost word (“allele” in the case of the base NP “The PON1 102V allele”). For a merged
NP where the constituent NPs are connected by prepositions, we take its head to be the head of
the leftmost base NP (since the others will be modifying the NP to its left). For example, in the
case of the merged NP “an increased risk for prostate cancer”, the head is detected to be “risk”.
When the constituent NPs are connected by conjunctions, we consider the head word of any of
these base NPs. In case of a VG, we take the head word of a base VG to be its rightmost word
and the head of a merged VG to be the head of the rightmost base VG. The voice (active or pas-
sive) of a verb group is determined based on its rightmost base VG. We determine whether a
base VG is active or passive on the basis of the BioNex output. As an illustration, let us consider
how the following pattern matches the sentence in Example-2.

NP1 VG passivefhead : associateg with NP2

Here, the merged VG(“appears to be associated”) matches VG_passive{head: associate}
since the head of the rightmost base VG, “associated” is a variant of the lexical item “associate”
and the rightmost base VG is passive. NP1 is matched with the phrase “The PON1 102V allele”
and NP2 is matched with “an increased risk for prostate cancer”, which is a merged NP.

For the matching of NP<type>, recall that a NP<type> can be of two types:
NP<mutation> or NP<disease>. To match the former, the NP must contain a reference to
some mutation. This can be either in the form of a specific mutation (e.g., R1699W) or a more
generic description, i.e., the head word of one of its constituent NPs must indicate a mutation
(e.g., mutation, polymorphism, variant, SNP etc.). To match NP<disease> we require the
noun phrase to contain a mention of a disease. As an example, consider the following pattern:

NPfhead : associateg of NP <mutation> with NP <disease>

Example-3 refers to a sentence which corresponds to the above pattern. Note that although
the entire text is a merged NP, in order to match the pattern, we need to break the merged NP
into its constituent NPs. The first base NP matches NP{head: associate} since its head word is
“Association”. The second constituent NP, “the BRCA1 missense variant R1699W”, matches
NP<mutation> since it contains a specific mutation. The third constituent NP, “a malignant
phyllodes tumor of the breast”, matches NP<disease> because it includes a mention of a
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disease. Note that even after we split the longer merged NP into three NPs, NP<disease> is
still a merged NP.

Example-3: “Association of the BRCA1 missense variant R1699W with a malignant phyl-
lodes tumor of the breast.” (PMID:17574969)

Module B
Module B consists of components for mutation extraction, mutation to gene association and
mutation to disease association. The mutation extraction and mutation-gene association com-
ponents are fully portable, meaning they can be used in the context of any other problem defi-
nition, irrespective of the mutation-disease association.

Mutation extraction
The mutation extraction employs a list of regular expression patterns to detect mutations con-
taining the three components, i.e., wild-type symbol, mutant-type symbol, and the position.
The regular expressions allow for symbols to be single, 3-letter, full mentions of amino acids,
or [A,C,G,T] for DNA-bases. Examples of the mutations that are detected using such regular
expressions are listed below.

• Protein level mutations: “Ala282Val”, “Asp 327—>Asn”, “T877A”, “Phe153——Ala” etc.

• DNA level mutations: “A3537G”, “4304G> A”, “1066-6T> G”, “-79C/T” etc.

In addition, regular expressions are also used to capture mutations that correspond to inser-
tion, deletion and SNP IDs. Examples of these kinds are listed below.

• Insertions: “5382insC”, “IVS9-5insT” etc.

• Deletions: “9631delC”, “6886delGAAAA”, “IVS19+2delT” etc.

• SNP IDs: “rs1800795”, “ss984046046” etc.

In some cases, conjunctions are part of mutation mentions. For example, in PMID:9466928,
“Ala16>Cys, Thr, Met, Arg, His and Tyr” is mentioned. We detect the conjunctions in this
case and generate six mutations: Ala-16-Cys, Ala-16-Thr, Ala-16-Met, Ala-16-Arg, Ala-16-His
and Ala-16-Tyr.

We also include extraction of some patterns that are beyond the scope of the above regular
expressions. These correspond to mutations that are mentioned in regular text rather than spe-
cial formats used for mutations as recommended by the Human Genome Variation Society
(HGVS) [37]. These extractions are triggered by detection of a pair of amino acids or nucleo-
tides [A,C,G,T]. These are considered as wild-type and mutant-type symbols if an associated
mutant position is found. If the mutant position is not mentioned in the same phrase as the
wild and mutant-type symbols, then it is usually attached to the phrase with a prepositional
phrase (See examples below). We search for specific words, such as codon, position, residue etc.
to locate the mutant position. Some examples of a range of mutations extracted using this tech-
nique are listed below.

• “A–> C transversion in codon 135”

• “T to C transition at positions 409 and 412”

DiMeX: Text Mining of Mutation-Disease Association
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• “Ser—> Leu change at amino acid 217”

• “termination at codon 3110”

• “guanine-adenine point mutation at nucleotide 2185”

We employ a normalization technique to normalize the mutations into one standard format
by matching the wild-type, mutant-type and position. We use “WildType-pos-MutantType” as
the standard format for normalization. For example, G5557A and 5557G>A
(PMID:22200742) normalize to the same mutation G5557A.

Often, informative sentences refer to a mutation-disease association in terms of alleles or
genotypes rather than mutations. For this reason, we detect these mentions and match them to
the corresponding mutation that might be mentioned elsewhere in the abstract. In Example-4,
the association with gastric cancer is referred using the allele 194Trp, whose corresponding
mutation is Arg194Trp found in the abstract.

Example-4: “XRCC1 194Trp allele significantly increased the risk of gastric cancer and also
associated with risk of gastric cardia carcinoma and promoted distant metastasis of gastric
cancer.” (PMID:20863780)

Allele mentions are usually similar to mutation mentions except sometimes they may not
specify both the wild-type and mutant-type. For instance, in Example-4, 194Trp allele is men-
tioned without a wild-type associated with it. In this case, we match the allele to the mutation
Arg194Trp which is mentioned elsewhere in the abstract. However, it is more common to find
both wild-type and mutant-type together in a genotype mention. Example-5 demonstrates one
such case where AG genotype represents the wild-type and mutant-type pair. We will still need
to associate it with the actual mutation. To identify the corresponding mutation in the abstract,
we look for the mutations whose wild-type and mutant-type match with the genotype nucleo-
tides. If multiple of such mutations are found, we associate the closest one with the genotype. For
example, the AG genotype is matched with the mutation +49G/A from an earlier sentence in the
same abstract. The other genotypes in the same sentence (GG and AA) are also matched with
+49G/A because they are mentioned along with AG and share the same nucleotide symbols.

Example-5: “In HCC and CHB groups, the genotype frequency was 40.3% and 50.0% for
GG, and 59.7% and 50.0% for AG+AA, respectively, while the genotype frequency was
61.8% for GG and 38.2% for AG+AA in the control group." (PMID:20813679)

Mutation to gene association
Once the mutations are detected, we associate them with their relevant genes. In many cases,
this is straightforward as the mutations and the corresponding genes are mentioned close to
each other. For example, when both the mutation and the gene appear in the samemerged NP,
we associate them with high confidence. Example-6 presents one such case where “C-2123G”,
“G-1969A”, and “T715P” are associated with SELP, and “Met62Ile” is associated with PSGL-1.
Please note that we do not detect the generic references to genetic variations as mutation men-
tions, such as the phrase “VNTR variants” in this case.

Example-6: “Our aim was to evaluate the contribution to CHD of the following SNPs: C-
2123G, G-1969A and T715P in SELP, Met62Ile and the VNTR variants in PSGL-1 gene in a
North African population from Tunisia.” (PMID:20376705)

DiMeX: Text Mining of Mutation-Disease Association
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Even in situations when a particular mutation occurrence does not have an accompanying
gene in the same sentence, we have noticed that, often, the gene is mentioned in the same NP
or samemerged NP with the mutation at least once in some other sentence in the abstract. We
propagate the gene detected in these latter cases to all occurrences of the mutation in the rest of
the abstract.

There are cases, however, of mutations that do not appear together with their corresponding
genes in any sentence of the abstract. If a gene is mentioned anywhere in the whole abstract
and it is the only gene mentioned, then we associate it with the mutation. However, if multiple
genes are mentioned in the abstract, we look for ones that occur together with a mutation-spe-
cific term, such as “variant”, “mutant”, “variation”, “mutation”, “polymorphism”, “alteration”
or “SNP” in the samemerged NP. We call this occurrence of the gene and the mutation specific
term a gene-mutation pairing. For any detected mutation, we associate it to the gene mentioned
in the closest gene-mutation pairing that occurred previously in text, either in the same sen-
tence or any sentence before. Once a mutation has been associated with a gene, the association
is propagated to every occurrence of the mutation in that abstract. In Example-7a, the gene
ELAC2/HPC2 is detected as having a gene-mutation pairing because of the phrase “mutations
of the ELAC2/HPC2 gene”. The immediately following sentence, which is shown in Example-
7b, has a mutation Glu622Val that does no co-appear with a gene. Applying our rule, Glu622-
Val is associated with ELAC2/HPC2.

Example-7a: “Here, we screened for mutations of the ELAC2/HPC2 gene in 66 Finnish
HPC families.” (PMID:11507049)

Example-7b: “Several sequence variants, including a new exonic variant (Glu622Val) were
found, but none of the mutations were truncating.” (PMID:11507049)

Finally, for a detected allele, we first identify the corresponding mutation and then the gene
associated with the mutation. We then associate the allele with the gene.

Mutation to disease association
Once the mutations are extracted and paired with genes, the next step is to find the association
of mutations with diseases to complete the extraction of the mutation, gene and disease triplet.

An association between a mutation and a disease can be conveyed in different ways in a
sentence, either explicitly or implicitly. Based on our preliminary studies, we have observed
that there are six types of sentence structures that are commonly used to specify such associ-
ations. For each of these cases, we first describe the type of sentence structure and the pat-
terns used to identify them. Next, we describe how the mutations and the diseases, which
will be associated, are identified. Since the technique of extraction for the mutation and the
disease may be specific to the sentence structure types, we will discuss them after describing
each sentence structure type.

(i)Association sentence type. There are several lexico-syntactic structures that are used
to denote an association between two entities. We call these structures as Association Sentence
Type. Based on our preliminary study, we identified a few common ways that are employed
to describe associations between a mutation and a disease and capture them by defining a set
of lexico-syntactic patterns. Matching a sentence against these patterns allows us to identify
sentences that are Association Sentence Type. We associate each pattern with a trigger word,
where the trigger word appears in the lexical instantiation within the pattern. For example,

DiMeX: Text Mining of Mutation-Disease Association
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the following four patterns are defined for the lexical trigger “associate”.

NP1 VG passivefhead : associateg with NP2

NP1 VG activefhead : associateg with NP2

NPfhead : associateg of NP1 with=and NP2

NPfhead : associateg between NP1 and NP2

As noted earlier, Example-2 matches the first of these rules, where NP1 matches the base
NP “the PON1 102V allele” which will allow us to identify the mutation and NP2 matches the
merged phrase “an increased risk for prostate cancer” which is used to identify the disease.

In addition to “associate”, we use several other triggers words “contribute”, “correlate”,
“relationship”, and “effect” and their associated patterns. Many of these words do not necessar-
ily indicate associations but could indicate closely related concepts such as causality. Also,
many of these words impose strong subcategorization requirements on prepositions that
appear in their arguments. Instead of using multi-word triggers, the prepositions are men-
tioned in the patterns themselves. For example, one such pattern is NP{head: effect} of NP1 in/
on NP2 which is matched by Example-8.

Example-8: “Synergistic effect of stromelysin-1 (matrix metalloproteinase-3) promoter
(-1171 5A-> 6A) polymorphism in oral submucous fibrosis and head and neck lesions.”
(PMID:20630073)

The full list of patterns with their trigger words used in this study is available in S1 File.
Once it is determined that a sentence corresponds to Association Sentence Type, DiMeX
extracts the mutation and the disease and makes an association between them.

Mutation detection: We look for mutation mentions in either of NP arguments in these pat-
terns, namely in NP1 or NP2. To do so, we check whether either of the NPs corresponds to
NP<mutation>. Note that a phrase matching NP<mutation> need not contain a specific
mutation. In this case if the phrase contains a gene name, we extract the referent mutation
from the closest previous sentence where that mutation is already associated with that gene.
For example, NP<mutation> phrase, “PON1 mutations”, in Example-9 matches NP1 of the
third pattern and the procedure described above allows us to extract the referent, I102V, from
a previous sentence in the abstract.

Example-9: “Multivariable analysis was used to investigate the association of known and
new PON1 mutations with incident prostate cancer in 1569 cancer-free men in the cohort
followed for 9–14 years.” (PMID:12783936)

Disease detection: Like in the case of mutations, we look for a disease in the NP1 or NP2
arguments of the patterns. Thus, we look for a phrase matching NP<disease>. Once the dis-
ease is extracted, the system reports a mutation-disease pair for each mutation. In Example-9,
the NP<disease> phrase matches NP2 of the pattern and allows us to extract the pair<I102V,
prostate cancer>.

(ii) Comparison sentence type. Association between mutations and diseases can some-
times be inferred from sentences that describe experimental results comparing two cases (e.g.,
mutated and wild-type forms) with some observed value. In Example-10 below, the
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comparison is between the wild-type and the mutated form of NDPK-A and in Example-11,
the comparison is drawn between breast cancer patients and healthy volunteers.

Example-10: “Compared with its wild-type, NDPK-A (S120G) appears more effective in
promoting neuroblastoma metastasis.” (PMID:15280446)

Example-11: “Statistical analysis of cases with HFE H63D phenotype showed significant dif-
ference between breast cancer and healthy volunteers (P = 0.02).” (PMID:16503999)

As these examples show, there are different syntactic constructs that can be used for the
comparison sentence type. Additionally, a comparison can be indicated by different triggers
words such as “compare” (Example-10) or even “difference” (Example-11). The above two sen-
tences match the following two patterns.

VG activefhead : compareg to=with NP1 ; NP2 VG active NPfcontains : more=lessg in NP3

NP1 VG active NPfhead : differenceg between NP2 and NP3

Other patterns with their associated triggers can be found in S1 File.
Mutation detection: The mutation can be found in either of the NPs that are used in com-

parison (as in Example-10) or in the NP concerned with the observation (Example-11). Thus,
if any of these NPs matches NP<mutation>, we extract the mutation from it using the proce-
dure we described in case of Association Sentence Type.

Disease detection: Since the disease can also be found in any of the NPs, we look to see if
any of the three NPs matches NP<disease>. Thus, in Example-10 we obtain “neuroblastoma”
from the “observation/observed value”NP and extract breast cancer in Example-11 from one
of the “comparison” NPs, NP2.

(iii) Statistical sentence type. Sentences that mention statistically significant results sug-
gest some sort of association. Mentions of P or OR (odds ratio) value indicate the reporting of
statistically significant results. Thus we define any sentence that reports these values to be of
Statistical Sentence Type. When such a sentence mentions a mutation and a disease, we assume
that the experimental results indicate an association between the two. Example-12 is a sentence
of this kind.

Example-12: “For the -37C—> A polymorphism, the median PFS was 30.7 weeks in the
C(-) 37A group, 24.7 weeks in the A(-) 37A group, and 23.3 weeks in the C(-) 37C group
(P = 0.043).” (PMID:20226083)

In many cases, sentences mentioning P-value also fit the pattern for the previously men-
tioned association and comparison sentence types. Thus, if a sentence is not detected as either
association or comparison sentence type, but if it contains a P or an OR value, it is marked as a
statistical sentence.

Mutation detection: Based on our observations of these type of sentences, we have seen that
the mutation is always mentioned in these statistical sentences (e.g., as is the case in Example-
12). Thus, we search for a noun phrase that matches NP<mutation> in the detected statistical
sentence, and extract the mutation as before.

Disease detection: We only extract a disease if a mutation was found in the detected statisti-
cal sentence. If there is no mention of a disease in the sentence (i.e. there is no NP<disease>),
we assume that the disease is implicit in context. Since we take the disease mentioned in the
Patient Context (PC) sentence (introduced in Module A) to be the central disease of the study,
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we assume the experimental study reported in the paper must be associating the mutation with
this particular disease. Thus, we look for it in a PC sentence, provided such a sentence occurs
before the current sentence. If the disease is not found in a PC sentence, we look for the central
disease at other rhetorical zones in the abstract in the following order: title, conclusion sen-
tence(s) and introduction sentences (determination of whether a sentence is in Introduction or
Conclusion is described in “Extraction and rhetorical zones” subsection of Module-C). For
instance, Example-12 does not mention a disease, and so we extract the disease “NSCLC” from
the title “RRM1 single nucleotide polymorphism -37C—>A correlates with progression-free sur-
vival in NSCLC patients after gemcitabine-based chemotherapy”. Thus, Example-12 yields the
pair<-37C—> A, NSCLC>.

(iv) Mutation Found sentence type. Sometimes, a study may not have enough partici-
pants to produce results that are statistically significant, though the results may have clinical
significance. In the abstracts of such articles, usually there are sentences that mention muta-
tions that were “found/detected” for a specific group of patients. While the authors may not
draw firm conclusions, we are still interested in extraction from these cases as well, since we
believe the authors are interested in the connection between the mutation and the disease.
Example-13 shows one such sentence.

Example-13: “We have investigated German breast- and/or ovarian-cancer families and
detected a recurrent carboxy-terminal BRCA1 mutation, 5622C> T, using PCR-based
restriction assay and haplotype analysis.” (PMID:11260866)

To detect Mutation Found sentences, we use several trigger words such as “detect”, “iden-
tify”, “analyze”, and “screen” and associated patterns. These patterns essentially indicate that
the object (or theme) of the trigger words is NP<mutation>. Thus, only the fragment of the
sentence, which indicates that a mutational phrase is the theme of detection, will be matched
with the patterns. A few sample patterns whose trigger word is “detect” are listed below. A
complete listing is found in S1 File.

NPfhead : detectg of NP <mutation>

NP <mutation> VG passivefhead : detectg

VG activefhead : detectg NP <mutation>

Mutation detection: We usually extract the mutation from the noun phrase that matches
the NP<mutation> of the pattern. But sometimes, as in Example-14a, the Mutation Found
sentence might only mention a number of mutations and invariably then the actual mutations
are listed immediately after. We look for the mutations in the following one or two sentences.
Example 14b is the sentence that follows Example-14a and mentions the actual mutations.

Example-14a: “Three different mutations, resulting in truncation of the BRCA2 protein,
were detected in 3 different families.” (PMID:9133456)

Example-14b: “They were 9474insA (exon 24, termination at codon 3110), C8729A (exon
20, S2834 ter) and 982del4 (exon 9, termination at codon 275).” (PMID:9133456)

Disease detection: We first attempt to extract the disease from the Mutation Found sen-
tence. However, if there is no mention of a disease in the sentence, we look for it in other places
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in the following order: Patient Context (PC) sentence, title, conclusion sentences and introduc-
tion sentences.

Example-14c shows the PC sentence from which the disease “breast cancer” is extracted and
linked to the mutations of Example-14a and Example-14b to yield the pairs:<9474insA, breast
cancer>,<C8729A, breast cancer>, and<982del4, breast cancer>.

Example-14c: “Germline mutations of BRCA2 were examined in 20 Japanese breast cancer
families without BRCA1 mutations, including one demonstrating cancer development in a
male.” (PMID:9133456)

(v) Title sentences. The title of an article typically summarizes the central topic of discus-
sion. Therefore, if the title contains mutation and disease mentions, we infer that the article is
about an association between the two. In particular, we assume the study reported in the paper
is making an association between a mutation and a disease mentioned in the title even if it does
not follow our patterns of association. For example, the following title in Example-15 yields a
possible association of< IVS1 -27G> A, prostate cancer>.

Example-15: “KLF6 IVS1 -27G> A variant and the risk of prostate cancer in Finland.”
(PMID:17125911)

(vi) Conclusion sentences. Similar to the title, a conclusion sentence usually summarizes
the results or the key points of the article. Therefore, if mutations and diseases are found in
conclusion sentences, we again assume an association between them. Strategies for classifying a
sentence as a conclusion sentence is detailed in the “Extraction and rhetorical zones” subsec-
tion under Module C of this article.

Module C
Our intention is to make all the extracted information available by storing them in a database,
so that they can be easily searched and manipulated. This section describes the details of the
database and the additional information that we include in the database.

Database creation
DiMeX extracts triplets of mutations, genes and diseases (<M,G,D>) from various abstract
sentences along with additional useful information that can be used to search and display
results more efficiently. Since the information is extracted from the literature, the appropriate
document can also be linked directly to the database entities for display of the context around
the extracted information. A database is generally more amenable to electronic processing. For
these reasons, we have created a database to house the extracted information that is able to sup-
port different use case scenarios, such as:

1. Given a gene, search for possible mutations of the gene that are associated with different
diseases.

2. Given a mutation, find all possible diseases it is associated with.

3. Given a disease, find possible<gene, mutation> pairs that might be affecting the disease.

4. Given a<gene, mutation> pair, find all associated diseases from articles that have con-
ducted experimental studies on the given mutation.
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5. Given a<mutation, disease> pair, find the description of the population (e.g., number of
patients/controls, location of population, etc.) involved in relevant studies.

6. Given a<mutation, disease> pair, find how the mutation affects the disease, such as overall
outcome or drug sensitivity.

7. Given a<gene, mutation> pair, find all associated diseases from meta-analysis or review
articles.

Scenarios (i) to (iii) require simple queries of the database. Scenarios (iv) to (vii) are a little
more complex, in that they involve the additional information extracted from the literature for
the<M,G,D> triplets, such as the rhetorical zone of the extracted triplet (iv), the patient and
population related information (v), the manner in which the mutation affects the associated
disease (vi), the study type such as meta-analysis or review (vii,) etc. Please note that in these
cases, instead of a pair, we can also search for a single entity (e.g., mutation or gene or disease)
to obtain the desired result set. In all the above scenarios, the results can be further filtered and
sorted according to the need of the user. The extraction of the additional information is
described in next sections.

Extraction and rhetorical zones. A triplet may be extracted from any rhetorical zones or
sections within the abstract text. Information about the rhetorical type of a sentence might be
important because, for example, a triplet extracted from the results or conclusion sections of
the abstract might be of greater interest since the triplet is likely to be central to the study or
experiment being done in the article, and potentially a novel information. In contrast, a triplet
coming from the background section often refers to some previous study and thus does not
provide novel information. Our approach categorizes each sentence of each abstract as one of
five rhetorical types: Title, Introduction/Background, Methods/Aims, Results, and Conclusion.
If the abstract is already sectioned into these rhetorical zones, we detect and use this informa-
tion to assign the sentences to the corresponding zones. Otherwise, we identify the zone
boundaries in the abstract. Users of DiMeX can use the rhetoric zone information to prioritize
the extractions they want to see first. Recall that identification of the zones in the abstract is
also used during the mutation to disease association, as already described.

In the database, we associate a rhetorical zone with each extracted triplet. If the same triplet
is extracted from multiple zones, we apply a simple ranking of the zones and set the triplet’s
extraction zone to the top rank. The ranking follows this order: Results, Conclusion, Title,
Method, and Introduction. For example, if a triplet is extracted from both the Introduction and
the Results zones of the abstract, the database indicates that the triplet is extracted from Results.

There are previous works [38–43] that use different approaches to classify sentences into
rhetorical zones or sections. These tools classify each sentence into one of the rhetorical zones
using machine learning based methods which require sufficient training data. As we could not
download any of these tools, we have developed our own module to perform the task. Our
method differs from the above mentioned tools in two ways. Firstly, it is based on some simple
heuristic rules. Secondly, instead of treating each sentence separately, we look at the abstract as
a whole and set the boundaries of the sections. In other words, we check whether a sentence
marks the boundary of a section or not. The position of the sentences and certain keywords are
used for this purpose. The start of the Introduction section and the end of the Conclusion sec-
tion are obvious as the beginning and the end of the abstract itself. For any other pair of conse-
cutive sections, it is sufficient to find the start of the section that follows. To detect the end of
the Introduction section and the start of the Method section, we look for phrases such as “we
have analyzed”, “we studied”, “our aim is to”, etc. If no such sentence is found, we assume that
the Method section starts after three Introduction sentences. Similarly, phrases such as “we
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found that”, “the results indicate that”, “our findings exhibit that”, “we have shown that”, etc.
are strong indicators of a shift from the Method section to the Results section. Finally, to mark
the ending of the Result section and the start of the Conclusion section, we look for phrases
like “In conclusion”, “We conclude by”, etc. In case we fail to find such cases, we assume that
the very last sentence of the abstract forms the Conclusion section. Please note that there could
be more than one sentence for each of the sections. Table 1 shows one example sentence for
each of the rhetorical zones identified by our system.

Patient related information. For mutation-disease associations, it is helpful to know
information related to the patients, such as the size of the experimental patient population and
the control population, the race or nationality etc. This additional information is extracted
from literature and associated with the abstract. Patient-related information is commonly pres-
ent in Patient Context sentences (introduced in Module A). Consider the Patient Context sen-
tence that we have already presented in Example-1:

“A total of 453 breast cancer patients and 382 age- and sex-matched controls from Greece
and Turkey were analyzed.” (PMID:15330212)

We extract the following information from the above sentence:

• Patients: 453, Controls: 382

• Population: Greece and Turkey

We extract the region of the population or nationality using a pre-compiled list of country
names, their adjectival forms and demonyms (names given to residents of a place, e.g., Sri Lan-
kan, Chinese, Peruvian etc.). To detect the patient cohort size, we use predefined patterns.

Disease related outcome. In addition to extracting diseases, our system can detect several
types of outcomes and relate them to the extracted mutations. For example, it detects phrases
like disease-free survival (DFS), progression-free survival (PFS), overall survival, as well as
phrases that denote risk ormetastases of a specific disease. This information provides insight
into how the mutations affect the diseases. For instance, in Example-16, the SNP rs1878022 is
found to be associated with poor overall survival (outcome) of non-small cell lung cancer
(disease).

Example-16: “SNP rs1878022 in the chemokine-like receptor 1 (CMKLR1) was statistically
significantly associated with poor overall survival in the MD Anderson discovery popula-
tion.” (PMID:21483023)

Table 1. Example sentences for different sections from PMID:10810408.

Rhetorical zone/
section

Example sentence

Title Missense alterations of BRCA1 gene detected in diverse cancer patients.

Introduction/
Background

BRCA1 gene mutations may also be related with other types of cancers such as
prostate cancer and colorectal cancer.

Methods/Aims We used PCR-NIRCA and PCR-SSCP methods for screening the BRCA1
mutation hot regions, exons 2, 5, 11, 16 and 20.

Results We have identified a rare sequence variant, A3537G (Ser 1140Gly) in a B cell
lymphoma patient and two polymorphisms, A1186G (Gln356Arg) in a brain cancer
patient and A3667G (Lys1183Arg) in a germline tumor patient.

Conclusion In conclusion, 3 missense alterations of BRCA1 gene have been identified in
cancers other than breast cancer.

doi:10.1371/journal.pone.0152725.t001
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DiMeX also detects phrases that denote the impact of a drug in treatment or therapy, such
as resistance or sensitivity to a drug. For instance, in Example-17, DiMeX will report that the
mutation 538G>A of gene ABCC11 is related toMTA sensitivity. This type of information is
helpful in understanding the efficacy of drugs in the treatment of diseases.

Example-17: “The A/A group showed a significant reduction in the IC (50) of MTA com-
pared with the combined G/G and G/A groups, indicating that the SNP (538G> A) in the
ABCC11 gene is an important determinant of MTA sensitivity.” (PMID:20718756)

Extraction of outcome information or the impact of drugs in cancer treatment is currently
limited by the use of trigger words, and we are focusing on improving the detection. The list of
patterns used to detect disease related outcomes is available in S2 File, along with the list of
phrases detected from the DiMeX database.

Meta-analysis and review. Our system also detects whether the conducted study in the
article is a meta-analysis. To detect meta-analysis studies, we search for textual variations of the
keyword “meta-analysis” (e.g., meta analysis, meta-analyses, meta-analyzing, etc.), as well as for
number of publications or studies the authors has reviewed. For instance, Example-18 is a title
which mentions that the work is a meta-analysis. A later sentence in the same abstract mentions
“A total of 11 publications containing 12 studies including 10,137 cases and 15,566 controls were
identified”. Combining the extracted information from these two sentences, we conclude that
this abstract talks about a meta-analysis study with data from 11 publications and 12 studies,
involving 25,703 subjects, information which is stored in the database for this abstract.

Example-18: “Lack of an association between a functional polymorphism in the interleukin-
6 gene promoter and breast cancer risk: a meta-analysis involving 25,703 subjects.”
(PMID:20043205)

Similar to detecting meta-analysis studies, we detect whether the article is a review study.
We look at the MeSH (Medical Subject Headings) terms of the Medline citation to see if it con-
tains the keyword “Review” under the tag PT (Publication Type).

We extracted<M,G,D> triplets and the above described additional information from a
subset of abstracts that were retrieved for a PubMed query “cancer[tiab]) AND (mutation[tiab]
OR variant[tiab] OR polymorphism[tiab])”. We built a database with all this information and
the results can be downloaded as well as queried from the web interface.

Evaluation
Our system involves 3 separate modules that detect mutations (M), associate mutations with
genes (<M,G>) and with diseases, leading to the extraction of<M,G,D> triplets. Mentions of
mutation-disease association refers to<M,G,D> extraction throughout the rest of the article.
Although the main focus of this work is to associate mutations with diseases, we have evaluated
our system on all three tasks. Any mistakes made in the mutation-gene association or mutation
detection will impact the mutation-disease association, as the accuracy of the later requires all
three pieces to be correctly extracted. We have used several datasets for evaluation, which were
externally developed. Whenever other tools were evaluated using any of these datasets, we
compared our results with them.

DiMeX’s performance in extracting mutations and associating them with genes and diseases
has been evaluated using annotated gold dataset from two different sources. The first dataset is
a manually annotated corpus from the BioMuta [6] project, which we will call BiomutaC. Bio-
Muta is an integrated database aiming to provide a framework for automated and manual
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curation and integration of cancer-related variations. This set is not specific to any particular
cancer. Although BioMuta considers full text, the annotation included in this data set is based
on abstract text alone. BiomutaC contains 62 abstracts with 119 mutation-gene-disease associa-
tion triplets.

A second collection of two publicly available datasets described in Doughty et al. [16] was
used for evaluating DiMeX. These allowed for the comparison of our work with previously
published results. We will call the two sets PCa_filtered_UD and BCa_filtered_UD, correspond-
ing to abstracts from prostate cancer (PC) and breast cancer (BC), respectively. There are 97
and 132 abstracts in PCa_filtered_UD and BCa_filtered_UD, respectively. Originally, we
wanted to evaluate DiMeX on the exact datasets PCa_filtered (113 abstracts) and BCa_filtered
(147 abstracts) that were used in [16], giving us a chance to directly compare performances
with already published results. However, instead of the exact datasets, we received two larger
datasets from the authors and the filtering criteria to regenerate the datasets they have used.
The first author of [16] clarified the filtering criteria to remove either an abstract or a mutation
based on certain conditions. Abstracts were removed if:

• Curator and validator disagreed.

• Wild-type amino acid (wtaa) and mutant-type amino acid (mtaa) were the same.

• Contained incomplete mutation (missing wtaa, mtaa, mutant position, or gene).

• Mutant position started with a “-”.

• wtaa or mtaa was “INS”, “DEL”, “IVS”, “DUP”, “INDEL”.

Similarly, mutations were removed if:

• Wild-type or mutant-type were stop codons (XAA, X, Stop)

• Detected mutation was not related to target disease (PC or BC).

Although we have strictly applied the filtering criteria on the larger datasets, we ended up
with a slightly different set of abstracts than the ones referred to in [16]. That’s why we had to
rename them differently (UD stands for University of Delaware). We have applied both
DiMeX and EMU on these two datasets (PCa_filtered_UD and BCa_filtered_UD) so that the
evaluation results are directly comparable.

To evaluate mutation-gene association, we used the same sets that we used for mutation-dis-
ease association, namely BiomutaC, PCa_filtered_UD, and BCa_filtered_UD. We evaluated
DiMeX’s mutation detection using three different corpora. The first one is Mutation Finder
[20], which we will refer to asMF. We choseMF for this evaluation as it is the most popular
benchmark which has been used in Jimeno Yepes et al. [44] to compare different mutation
detection systems. TheMF set consists of 910 point mutation mentions from 508 abstracts. One
thing to note is that MF identifies only point mutations, whereas our system extracts deletion,
insertion, frameshift and dbSNP identifiers as well. For comparison purposes, we only consid-
ered the point mutations. To test the wide coverage of mutation extraction, we evaluated our
system on two other corpora: tmvar [28] and Variome [33]. The tmVar corpus contains 464
mutation annotations from 166 abstracts. The Variome is a corpus of 10 full text publications
which includes both the specific mutation mentions as well as generic references to mutations
such as “mutations” or “somatic mutations”. As we detect specific mentions only, we identified
118 instances of specific mutation mentions in the annotated corpus and used for evaluation.
There are other corpora available too, such as OSIRIS [25] and Thomas [45], which could be
used for evaluating mutation extraction and mutation normalization to dbSNP entries.
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Table 2 summarizes the six datasets used for evaluation in this study. BiomutaC is available
as supplementary information (S1 Dataset). As indicated above, both PCa_filtered_UD and
BCa_filtered_UD were created by applying appropriate filtering criteria on two larger datasets.
These datasets were obtained by contacting the corresponding author of Doughty et al. [16].
The list of PMIDs of PCa_filtered_UD and BCa_filtered_UD are included as supplementary
information (S2 Dataset). Together with the above mentioned filtering criteria and the original
annotated datasets, which can be obtained by contacting the authors of [16], our evaluation
data can be recreated in their entirety. The MF dataset is available at http://mutationfinder.
sourceforge.net/. The Variome corpus is available at http://www.opennicta.com.au/home/
health/variome. The tmVar corpus is available at http://www.ncbi.nlm.nih.gov/CBBresearch/
Lu/Demo/tmTools/#tmVar.

Evaluation metrics
We counted true positives (TP), false positives (FP), and false negatives (FN), and used the
standard information retrieval metrics of Precision (P), Recall (R), and F-measure (F) for per-
formance evaluation, where P = TP/(TP+FP), R = TP/(TP+FN) and F = 2PR/(P+R).

Results and Discussion

Evaluation using the BiomutaC set
DiMeX’s performance on the BiomutaC set is summarized in Table 3. We have separately calcu-
lated the precision, recall and F-measure for mutation-gene (<M,G>) and mutation-disease
associations, which eventually refers to the whole triplet<M,G,D> extractions. We achieved
high precision and recall on this set, with an F-measure of 0.88 for<M,G,D> and 0.93 for<M,
G>. In-depth analysis of the false positive (FP) and false negative (FN) cases revealed that most
of the errors are due to gene mention and disease detection problems. For example, in five cases,
the gene mention detector failed to detect the target gene name. Because the correct gene was
missed, our algorithm linked the wrong gene, contributing towards both FP and FN. In a hand-
ful of cases, the mistakes were made in the mutation detection, mutation-gene association or

Table 2. Summary information of the datasets used for evaluation purposes.

Name of dataset Used for tasks of Used for evaluation of Size

BiomutaC <M,G,D> & <M,G> DiMeX 62 abstracts (119 <M,G,D> triplets)

PCa_filtered_UD <M,G,D> & <M,G> DiMeX & EMU 97 abstracts (170 <M,G,D> triplets)

BCa_filtered_UD <M,G,D> & <M,G> DiMeX & EMU 132 abstracts (216 <M,G,D> triplets)

MF M DiMeX 508 abstracts (910 point mutations)

Variome M DiMeX 10 full text articles (118 mutations)

tmVar M DiMeX 166 abstracts (464 mutations)

<M,G,D> refers to mutation-disease associations. <M,G> refers to mutation-gene associations. M refers to mutation detection.

doi:10.1371/journal.pone.0152725.t002

Table 3. DiMeX’s performance of mutation-disease (<M,G,D>) and mutation-gene (<M,G>) association on BiomutaC set.

Dataset DiMeX performance in <M,G,D> extraction DiMeX performance in <M,G> extraction

P R F P R F

BiomutaC 0.87 0.89 0.88 0.90 0.95 0.93

doi:10.1371/journal.pone.0152725.t003
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mutation-disease association. Overall, only two mutations were not detected by DiMeX that
contributed towards FN. In only one case, our algorithm associated a wrong gene with a muta-
tion. The main focus of our work, mutation-disease associations, failed only in two cases.

Evaluation using the PC and BC related sets
Table 4 lists the evaluation results for mutation-disease (<M,G,D>) associations using the
PCa_filtered_UD and BCa_filtered_UD sets. Since, these sets of abstracts were only annotated
for prostate cancers (PC) and breast cancers (BC), the extracted triplets with any disease other
than PC or BC were not considered in our evaluation. F-measures of 0.91 and 0.89 were
achieved by DiMeX for the PCa_filtered_UD and BCa_filtered_UD set, respectively with the
PCa_filtered_UD set yielding higher precision and recall. EMU [16] yielded F-measures of
0.75 and 0.67 for the PCa_filtered_UD and BCa_filtered_UD sets, respectively. We performed
paired t-test to check for statistical significance on these datasets (p = 0.002 and p = 0.00007,
respectively). We have also evaluated DiMeX for<M,G> extraction on the same sets (see
Table 5). F-measure was 0.94 for both PCa_filtered_UD and BCa_filtered_UD sets. EMU
scored F-measure of 0.76 and 0.68 on the PCa_filtered_UD and BCa_filtered_UD sets, respec-
tively. Again statistical significance was achieved with p = 0.003 and p = 0.0007, respectively.

Since BCa_filtered_UD showed a little lower precision (0.93), recall (0.85) and F-measure
(0.89) than PCa_filtered_UD in<M,G,D> extraction, we analyzed the errors on this set. Simi-
lar to the BiomutaC set, analyzing the BCa_filtered_UD results revealed that most FPs and FNs
are due to mistakes in gene or disease detection. There are six cases of mutations being errone-
ously detected, mostly described in regular text rather than standard formats used for muta-
tions. In four cases, the mutation detection component missed the mutations entirely,
contributing to FN. For example, in PMID:10207667, the phrase “This germ line mutation
leads to the replacement of isoleucine by asparagine” gives the wild-type and mutant-type but
the codon position is mentioned in the previous sentence. There were five cases of a wrong
gene associated with a mutation. Similarly, there were several cases of mutation-disease associ-
ations being erroneously inferred, mostly because multiple diseases were mentioned in the con-
text of the abstract and our extraction technique attached the wrong disease to the mutations.
DiMeX failed to extract a handful of mutation-disease associations, which contributed towards
lower recall as well. Many of these associations were described using patterns that were not
part of our pre-compiled list of sentence patterns. In some cases, our definition of an

Table 4. DiMeX’s performance of mutation-disease association (<M,G,D>) on PC and BC related sets and comparison with EMU’s performance.

Datasets DiMeX performance in <M,G,D> extraction EMU performance in <M,G,D> extraction

P R F P R F

PCa_filtered_UD 0.95 0.88 0.91 0.76 0.75 0.75

BCa_filtered_UD 0.93 0.85 0.89 0.64 0.71 0.67

doi:10.1371/journal.pone.0152725.t004

Table 5. DiMeX’s performance of mutation-gene association (<M,G>) on PC and BC related sets and comparison with EMU’s performance.

Datasets DiMeX performance in <M,G> extraction EMU performance in<M,G> extraction

P R F P R F

PCa_filtered_UD 0.96 0.92 0.94 0.77 0.75 0.76

BCa_filtered_UD 0.94 0.94 0.94 0.65 0.72 0.68

doi:10.1371/journal.pone.0152725.t005
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association might have differed from the annotation guidelines used for BCa_filtered_UD. For
instance, Example-19 sentence sets the context of the abstract with mentions of what was stud-
ied. But later in the abstract, there were no definite conclusions about the association of the
mutation Val384Asp with breast cancer. Our system did not extract this association, but it was
included in the annotated gold set.

Example-19: “A case-control study was taken to investigate the role of Val384Asp in
hMLH1 gene in developing these four carcinomas. 233 colorectal, 273 gastric, 90 esophageal
and 111 breast cancer patients were included, as well as 268 healthy individual served as
controls.” (PMID:15769334)

The PCa_filtered_UD dataset also showed similar distribution of errors for the false posi-
tives and false negatives.

Evaluating mutation detection
We have evaluated the performance of DiMeX’s mutation detection component on three cor-
pora: MF, Variome and tmVar. Table 6 provides DiMeX results on these corpora along with
the results of the tools MF [20], EMU [16], tmVar [28], and SETH [30]. The results in Table 6
for the other tools are published results from the original papers, the SETH tool website
(https://rockt.github.io/SETH/) as well as from [44]. The latter reports a comprehensive study
of the mutation detection tools on the Variome corpus which covers a variety of mutation
types. We ran tmVar, SETH and EMU on the Variome corpus and found that DiMeX’s perfor-
mance was not statistically significantly different from them. In order to include EMU’s perfor-
mance on MF, we had to consider performance for normalized mutations, since EMU only

Table 6. Evaluation of mutation detection systems on various datasets.

Tool Performance measures Corpus

MF (MF mutations normalized) Variome tmVar

MF P 0.98 (0.98) 0.94 -

R 0.82 (0.81) 0.16 -

F 0.89 (0.89) 0.24 -

EMU P - (0.99) 0.97 -

R - (0.81) 0.76 -

F - (0.89) 0.85 -

tmVar P 0.99 (0.98) 0.97 0.91

R 0.90 (0.84) 0.91 0.91

F 0.94 (0.90) 0.94 0.91

SETH P 0.98 (0.97) 0.99 0.94

R 0.82 (0.81) 0.76 0.81

F 0.89 (0.88) 0.86 0.87

DiMeX P 0.99 (0.98) 0.96 0.94

R 0.89 (0.89) 0.92 0.89

F 0.94 (0.93) 0.94 0.91

The values in precision (P), recall (R) and F-measure (F) for tools other than DiMeX are obtained from comparisons performed in [44] and published

results in [20], [28] and SETH tool website. A dash (‘-’) indicates unavailability of data. The tools are MutationFinder (MF), Extractor of Mutations (EMU),

tmVar and SNP Extraction Tool for Human Variations (SETH) and DiMeX. For the MF corpus, the results in parenthesis represent evaluation on

normalized mutations where multiple occurrences of the same mutation are normalized to one entry.

doi:10.1371/journal.pone.0152725.t006
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reports results for normalized mutations, where multiple occurrences of the same mutation are
normalized to one entry and evaluation is done on the normalized mutation instead of consid-
ering all occurrences.

Creation of the text-mined database
In order to extract the vast amount of mutation-disease association information already avail-
able in free text, DiMeX can be applied on the entire Medline collection and store the extracted
results in a database. However, we still need to develop a full-functional and user friendly inter-
face to support various types of searches, an undertaking beyond the scope of this work. In the
meantime, for illustrative purposes, we make available a database that includes information
extracted from roughly 10,000 abstracts and have developed a rudimentary interface. To obtain
these abstracts, we ran a search on PubMed using the query “cancer[tiab]) AND (mutation[tiab]
OR variant[tiab] OR polymorphism[tiab])” and selected abstracts from 2009 to 2011. This
yielded a total of 9873 PMIDs, among which 9727 had abstract text. We applied DiMeX on this
set of 9727 abstracts, extracting the mutations, associating them with genes and diseases, and
storing the triplets<M,G,D> along with the additional information in the local database. The
purpose of this exercise was to test the scalability and the ability to support various use case sce-
narios including those previously mentioned in the discussion of Module C. The results are dis-
played in two different ways: the triplet-view and the PMID-view. The triplet-view (see Fig 2)
shows the extracted triplets and additional information for these triplets. The PMID-view (see
Fig 3) shows the information at an abstract level rather than for individual triplets.

Table 7 lists some of the key characteristics of the extractions from the 9727 PMIDs. It is
noteworthy that triplets were extracted from only 26% of the abstracts. This is due to the fact
that, often, the abstract hints to a possible mutation-disease association but the specific details
are contained in the full-length article. 7175 triplets were found across all abstracts, among
which 6410 were unique. To evaluate the quality of this large scale extraction of triplets, we
have randomly chosen 200 abstracts from the database. Using the same evaluation guideline as
in BiomutaC dataset, the precision, recall and F-measure was found to be 0.87, 0.86 and 0.87,
respectively which is similar to results presented in Table 3. Analysis of the FPs and FNs
revealed that most errors were due to gene mentions that were missed by the gene mention
detector. If the correct gene for a mutation was missed by the detector, it resulted in an FN.
Since our algorithm always attempts to associate a mutation with some gene, the mutations in
these cases were associated with some other gene in the abstract, thus yielding an FP as well.
Most of the remaining errors were mistakes in picking the wrong disease to be associated with
the mutation. The extractions for this set of 200 abstracts are available as supplementary infor-
mation (S3 Dataset).

Currently, the stored results and the web interface that supports various types of searches
can be found at: http://biotm.cis.udel.edu/dimex/. We have conducted the following 3 sample
queries into our database to demonstrate the usability of the system.

1. a. Search the database for the disease pancreatic cancer. A search for pancreatic cancer
retrieved 87<M,G,D> triplets spread across 37 abstracts from the three year period. Fig
2-A shows a screenshot of the displayed results (partial). The PMID, mutation, gene, dis-
ease, extraction zone and related outcome are shown in a tabular format, with the last
column (text evidence) providing a link to see the actual abstract text. The entire results
table can be downloaded as a spreadsheet with the Download results link placed on top of
the webpage. The next line shows a link with a select option which opens a pop-up win-
dow showing the number of abstracts from which meta-analysis and population infor-
mation were extracted.
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b. Find the populations that were studied for pancreatic cancer-mutation associations. To
see the populations that are extracted from the resulting PMIDs, the Population link in
the pop-up window (see Fig 2-B) is clicked. The link switches to PMID-view to display
the abstracts that are found to be associated with one or more populations. The popula-
tion information is associated at the abstract level rather than with triplets, and hence the
population information is shown in a separate PMID-view. As seen from Fig 2B, in the
case of pancreatic cancer-mutation associations, 9 abstracts were connected to one or
more populations. Fig 3 displays a screenshot of the PMID-view, which lists the popula-
tions for each PMID. For pancreatic cancer, the populations were spread across Italian,
Hispanic, Czech, German, European, African and Chinese.

2. a. Search the database for the mutations of MLH1. A search forMLH1 yielded 96<M,G,
D> triplets spread across 29 abstract, with 59 unique mutations. The results are dis-
played in the triplet-view.

b. Find the articles that describe studies on diseases affected by the MLH1 mutations. A
click on the column name Location (as shown in Fig 2-C) sorts and groups together the
rows based on the rhetorical zone in the abstract from where the triplets were extracted.
According to our hypothesis, articles that describe studies are likely to mention the

Fig 2. Querying the database with “pancreatic cancer”. (A) Screenshot from the DiMeX website showing a portion of the triplet-view results for the query
(B) Options to select PMID-view for abstracts that are review and/or meta-analysis studies or associated with one or more populations. (C) An example
showing that the results can be instantly sorted by clicking on the column name.

doi:10.1371/journal.pone.0152725.g002
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mutation-disease associations in the Results or Conclusion part of the abstract. By sort-
ing on the column Location, it is easy to see that 71 out of the 96<M,G,D> triplets were
extracted from either the Results or Conclusion sections from 23 abstracts. This indicates
that these 23 articles describe studies on diseases associated with MLH1 mutations. By
sorting on the disease column, we can see that 31 triplets were associated with colorectal
cancer, 16 with hereditary non-polyposis colorectal cancer (HNPCC), 11 with gastric
cancer, 5 with colon cancer, 4 with prostate cancer, 2 with lung cancer, 1 with pancreatic
cancer and 1 with breast cancer.

3. a. Search the database for the mutation Arg194Trp of XRCC1. A search for XRCC1
Arg194Trp mutation retrieved 35<M,G,D> triplets spread across 29 abstracts displayed
with the triplet-view.

b. Find the meta-analysis studies that have discussed the XRCC1 Arg194Trp mutation. The
Review/Meta-analysis link in the pop-up window (as shown in Fig 2-B) is clicked to see
the 5 abstracts that were detected as meta-analysis or review studies. The PMID-view dis-
plays the number of studies being examined for each meta-analysis. In these 5 abstracts,
Arg194Trp was associated with oral cancer, esophageal cancer, gastric cancer, colorectal
cancer and skin cancer.

Fig 3. Querying the database with “pancreatic cancer”. This screenshot from the DiMeX website shows a portion of the PMID-view results for abstracts
that are associated with one or more populations.

doi:10.1371/journal.pone.0152725.g003

Table 7. Characteristics of the extracted results. The query used to select the PMIDs is “cancer[tiab])
AND (mutation[tiab] OR variant[tiab] OR polymorphism[tiab])”, with abstracts selected from 2009 to 2011.

Characteristics Counts

Abstracts 9727

Abstracts with at least one triplet 2511

Total <M,G,D> triplets 7175

Unique <M,G,D> triplets 6410

Unique mutations 3204

doi:10.1371/journal.pone.0152725.t007
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Conclusions
In this paper, we have described the text-mining system DiMeX, which extracts mutations and
identifies their association with diseases in Medline abstracts. We have employed NLP tech-
niques to capture the relationship from text. The system achieved state-of-the-art perfor-
mances for all three tasks, namely mutation detection, mutation-gene and mutation-disease
associations. The evaluation results on three different test sets showed that our system outper-
forms the EMU system. The two separate modules for mutation detection and mutation-gene
association are portable and they can be used in the context of any other problem definition,
irrespective of the mutation-disease association.

The scalability and robustness of DiMeX were validated by applying it to extract mutation-
disease associations from a large set of abstracts in Medline. The extracted mutation-disease
associations are stored together with the sentences and the abstracts from which they were
extracted, as well as with additional relevant information that were obtained from these
abstracts. At this point in time, the website (http://biotm.cis.udel.edu/dimex/) shows a rudi-
mentary interface to a database based on roughly 10,000 abstracts. In order to make the full-
fledged database available to the larger scientific community, we will need to work further on
the development of the database as well as the search interface. Currently, only the extracted
mutations are normalized to a standard format. In a similar way, rather than storing the disease
terms appearing in text, we need to standardize them. Normalizing the disease terms to Disease
Ontology (DO) terms and IDs will allow for more effective searches as well as enable the use of
DO’s hierarchical structure. Similarly, the genes will be normalized to UniProt or Entrez gene
IDs. Such developments are beyond the text mining work described here. Finally, we would
like to extend our system to run on full-length articles.

Supporting Information
S1 Dataset. BiomutaC dataset used for evaluation of DiMeX.
(XLSX)

S2 Dataset. PMIDs of datasets PCa_filtered_UD and BCa_filtered_UD.
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S3 Dataset. Extractions from 200 abstracts used for evaluation of the database.
(XLSX)

S1 File. List of patterns used to extract mutation to disease association.
(TXT)

S2 File. List of patterns to detect disease related outcomes and extracted phrases.
(TXT)
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