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Abstract: The formation of functionally versatile protein complexes underlies almost every biological
process. The estimation of how fast these complexes can be formed has broad implications for
unravelling the mechanism of biomolecular recognition. This kinetic property is traditionally
quantified by association rates, which can be measured through various experimental techniques.
To complement these time-consuming and labor-intensive approaches, we developed a coarse-grained
simulation approach to study the physical processes of protein–protein association. We systematically
calibrated our simulation method against a large-scale benchmark set. By combining a physics-based
force field with a statistically-derived potential in the simulation, we found that the association rates
of more than 80% of protein complexes can be correctly predicted within one order of magnitude
relative to their experimental measurements. We further showed that a mixture of force fields derived
from complementary sources was able to describe the process of protein–protein association with
mechanistic details. For instance, we show that association of a protein complex contains multiple
steps in which proteins continuously search their local binding orientations and form non-native-like
intermediates through repeated dissociation and re-association. Moreover, with an ensemble of
loosely bound encounter complexes observed around their native conformation, we suggest that
the transition states of protein–protein association could be highly diverse on the structural level.
Our study also supports the idea in which the association of a protein complex is driven by a
“funnel-like” energy landscape. In summary, these results shed light on our understanding of how
protein–protein recognition is kinetically modulated, and our coarse-grained simulation approach
can serve as a useful addition to the existing experimental approaches that measure protein–protein
association rates.

Keywords: coarse-grained simulations; protein-protein association; physics-based force field;
statistical potential

1. Introduction

Nearly all biological processes in living cells are achieved by the interactions among functionally
different proteins [1–6]—for instance, the assembly of transient signaling complexes [7,8] or more
stable biomolecular machines [9–11]. The dynamic properties of protein interactions are not only
characterized by the dissociation constants (Kd), which determines the thermodynamic stability of
a protein complex [12], but also the association rate (kon), which measures its kinetics, i.e., how fast
this complex can be formed [13,14]. In a real cellular environment, interactions between proteins are
often under kinetic, rather than thermodynamic, control [15,16]. For instance, proteins in cell signaling
networks often have more than one binding partner that compete with each other. The difference in the
speed of binding between these interactions, no matter how strong they are, regulates the dynamics of
signal flows in the network. One example is the natural-killer (NK) cell receptor NKG2D (natural-killer
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group 2, member D) [17]. The receptor recognizes both cellular and viral ligands with the same binding
interface, indicating that these ligands must compete with each other for receptor binding when they
coexist in the system. As a result, the difference in association rates of receptor binding between
cellular and viral ligands directly regulates the NK cytolytic activity [18]. Additionally, mutations at
the binding interfaces of protein complexes often alter the rates of their associations and thereby result
in severe pathological outcomes [19]. Using the same example of NKG2D, individuals who carry
specific mutants that lower the binding specificity of the receptor to the viral ligands are more likely
to get infected by the virus [20]. Therefore, studies of the protein–protein association mechanism
on a quantitative level are significant for us to understand the dynamics of many cellular activities;
furthermore, they have broad impacts on many other fields, such as drug discovery and protein design.

Relative to the current experimental techniques for measuring the rates of protein–protein
interactions, such as surface plasma resonance (SPR) [21] and spectroscopic inhibition assay (IASP) [22],
computational modeling approaches are not only less time-consuming and labor-intensive, but can also
provide mechanistic details that are inaccessible in the laboratory. As a result, a large variety
of computational methods have already been developed to study protein–protein association.
Some methods can directly predict association rate constants by feeding the structural and chemical
features collected from the binding interfaces of protein complexes into machine-learning-based
models [23,24]. These models, however, are not able to provide any insights along the pathway of
protein–protein association. Methods using physics-based principles, on the contrary, are used to
simulate the detailed process of association. Among these methods, all-atom molecular dynamic (MD)
simulations based on the explicit solvent model can reveal the complete protein–protein association
kinetics [25–32]. Through MD simulation, it was found that the native protein complexes can be
associated through a very structurally diverse transition state ensemble in which no more than 20%
of native contacts remained [33]. These all-atom simulations, however, are extremely demanding
for computational resources and have so far only been successfully applied to a limited number
of cases [33,34]. In comparison, the Brownian dynamic (BD) simulations, based on the implicit
solvent model, are more computationally efficient and thus are widely used to study protein–protein
association [35–57]. In particular, a recent method based on BD simulation and a “transient-complex”
theory was proven to be able to successfully predict protein association rates and provide mechanistic
insights into the association processes [58–61].

We have previously also developed a coarse-grained simulation approach to study protein–protein
association [62]. Positive correlations have been observed between the experimental measurements and
our calculated values of association rates. However, the method has not been used to explore the detailed
mechanism of association. In this work, we discussed this possibility by systematically calibrating the
simulations against a comprehensive benchmark set. For each complex in the benchmark, a large number
of simulation trajectories was carried out. Based on the statistical distributions of these trajectories,
we showed that an ensemble of loosely bound encounter complexes were formed around their native
conformation, suggesting that the transition states of protein–protein association could be highly diverse
on the structural level. The analysis of each individual trajectory further suggested that association
could be a dynamic process for searching local binding configurations by repeated dissociation and
re-association. We found a correlation between the binding energy used in the simulations and the
structural similarity of encounter complexes to their native conformation, implying a “funnel-like”
landscape of protein–protein interactions along the pathways of their association. The correlation
between experimental and our computationally simulated rates of association became stronger after
we introduced a statistical potential into the simulations. Finally, we explored the combination of
different criteria for encounter complex formation. In summary, our results provided insights into
the common features underlying the general process of protein–protein association. This approach
therefore offers quantitative characterizations of the dynamics of protein complex formation and can
improve our understanding of the mechanisms of these important biological processes.
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2. Model and Methods

2.1. A Benchmark Set of Protein Complexes for Testing the Simulations of Protein Association

Our benchmark set contains a total number of 62 protein complexes. The experimental data
of these complexes, including their atomic structures with the corresponding protein data bank
(PDB) IDs, experimentally observed associations and ionic strength used in the measurements, are all
publicly accessible. Detailed information about this benchmark set is summarized in Table S1 in the
Supplementary Materials. Specifically, these complexes, representing a large variety of protein–protein
interactions, such as enzyme/inhibitor, ligand/receptor, regulator/effector and antibody/antigen,
are collected from two sources. One is a group of 49 protein complex structures collected by
Qin et al., which was used as a training set in our previous study [63]. The second source is from
the SKEMPI, which is a comprehensive database that contains not only the absolute values but also
the changes in binding constants for wild-type and mutated protein complexes. The most updated
version, SKEMPI 2.0, includes data of 345 wild-type protein complexes and their 7085 associated
mutants [64]. Among all 345 wild-type protein complexes, 114 contain information on association rates.
All these data are available online at https://life.bsc.es/pid/skempi2/. Combining these two sources,
excluding the overlapping cases, we obtained a total of 108 entries.

For these entries, we only consider the protein complexes with no more than 500 amino acids in total,
and the experimentally measured rate constants within the range from 1.0 × 105 to 1.0 × 109 M−1s−1,
in order to systematically test our simulations in a computationally feasible manner. We further
removed the protein complexes with non-consistent experimental data of association rates that were
collected from different studies. Most of these studies using SPR or IASP may suffer from a number of
technical limitations. Moreover, the protein complexes with atypical association pathways or irregular
binding interfaces were also eliminated. For example, the complex formed between transcriptional
coactivator CBP/p300 and nuclear receptor p160 (PDB 1KBH) exists as a cooperatively folded helical
heterodimer. The association of this type of complex cannot be simulated by our method. They are
thus excluded from the study. Consequently, the number of protein complexes in the final benchmark
was narrowed down from 108 to 62. Coarse-grained Monte Carlo simulations were carried out on all
remaining protein complexes, as described in the next section.

2.2. A Coarse-Grained Kinetic Monte Carlo Algorithm for Simulating Protein Association

The association of binding partners in a given protein complex is simulated by a previously
developed kinetic Monte Carlo (KMC) algorithm [62,65]. The atomic structure of proteins in this
method is reduced by a simplified model, in which each residue is coarse-grained into two sites: one
is the Cα atom and the other is the functional center of its side-chain. As described in our previous
study, the side-chain functional center of a residue is selected based on its specific chemical properties.
The simulation is initiated from a random conformation (Figure 1), in which two binding partners of
the complex are randomly placed in the three-dimensional cubic box (10nm×10nm×10nm). Essentially,
the three-dimensional Cartesian coordinates are randomly assigned within the simulation box to the
center of mass of the first protein. A random orientation the along three-dimensional Euler angles
is then randomly generated to rotate the molecule, which is centered at its newly assigned center
of mass. The same procedure is followed for the second protein. This newly generated random
conformation will be further checked to exclude any steric clashes between two binding partners.
Moreover, if multiple trajectories are carried out, the initial conformation in each individual trajectory
is randomly regenerated so that there is no correlation between any two trajectories. The construction
of random initial orientations between two proteins which are different from multiple trajectories
reflects the realistic conditions in experimental systems and can prevent the simulations from attaining
non-physical biases in transition states. After the simulation starts, both binding partners undergo
random translational and rotational diffusions within each simulation step. The translational and
rotational diffusion constants were obtained by fitting data calculated by a precise boundary element
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model [66,67]. This hydrodynamic model utilizes the excluded volume of a rigid protein that is obtained
from crystallographic coordinates and surrounds the protein with a uniform hydration thickness. It has
been found to yield properties such as diffusion coefficients in excellent agreement with the experiment
and is more than 10 times as successful as traditional bead-based methods. Diffusions are further
guided by the intermolecular interactions, which are described by a hybrid force field introduced in the
next section. A periodic boundary condition is then applied to any protein that reaches the boundary
of the simulation box.

Figure 1. In the kinetic Monte Carlo algorithm, both binding partners in a protein complex undergo
random translational and rotational diffusions after an initial random conformation. Diffusions are
guided by the intermolecular interactions, which are described by a combination of physics-based
force fields and statistically derived potentials. The probability of accepting a new configuration after
diffusions is calculated by comparing its energy with the old configuration. If the new configuration
is accepted, we further check whether an encounter complex can be formed based on a predefined
association criterion. If an encounter complex is formed, the current simulation trajectory will be
terminated; otherwise, the simulation continues until it reaches the maximal time duration. Rate of
association can be finally estimated by generating a large number of simulation trajectories with
this algorithm.

A new configuration for different binding partners in the simulation box is obtained after each
step of diffusions. The total energy of intermolecular interactions is derived for the new configuration,
based on the hybrid force field. The probability of accepting the diffusions is further calculated based
on the metropolis criterion, by comparing the total energy of the old configuration before diffusions
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and the new configuration after diffusion [68]. If the new configuration is accepted, we further
check whether an encounter complex can be formed between two binding partners based on a
predefined association criterion. Based on our previous study, we assume that an encounter complex
is formed if at least three native-like contacts between two binding partners are restored. A native-like
contact between the functional centers of two residues is restored if the difference in their distance
is less than 2 Å from the original distance observed in the native complex. In the current study,
we further explored the combination of other different criteria, such as the percentage of restored native
contacts, the root-mean-square difference (RMSD) between the current configuration and the native
structure of the protein complex, and the distance between the interfaces of two binding partners.
Detailed results obtained using the combination of different association criteria are discussed in the
results. Finally, if an encounter complex is formed, the current simulation trajectory will be terminated.
Otherwise, the simulation continues until it reaches the maximal time duration (Figure 1). In this study,
each simulation trajectory consists of 103 steps, and each time step is 1ns, so that the total simulation
time for each trajectory is 1µs.

In order to calibrate the computational performance of the method, we also use the test system
2VLN as a specific example. It takes approximately 10 seconds to generate a trajectory of 100 ns on a
regular Linux desktop. Based on previous literature, it has been shown that for a protein complex
with normal size, it takes on average one hour to generate a typical 100 ns trajectory of a Brownian
dynamic (BD) simulation on a regular Linux desktop [69,70]. This indicates that our coarse-grained
(CG) simulations are much faster than the traditional all-atom BD simulations. Finally, this KMC
simulation program is now available for download at https://github.com/wulab-github/KassKMC.
This package contains all the source codes used for simulation in the FORTRAN77 programming
language and as an executable file. The parameter files which contain all the force constants in the
statistical potential are included. The package also contains the list of 62 protein complexes in the
benchmark set. The package further offers a demonstration example (PDB 2VLN) with both the protein
structure in PDB format as an input file and an output file that contains the simulation results of
104 trajectories. The program work on a Linux platform and downloading is free for academic users.

2.3. A Hybrid Force Field of Intermolecular Interactions for Guiding Monte Carlo Simulations

We constructed a hybrid force field to describe the total intermolecular energy between two
binding partners of a protein complex. As mentioned in the last section, this force field is used to guide
the Monte Carlo simulations of protein complex association. It can be written as follows:

Etot = (1−w) × Ephysics + w× Estatistics (1)

Equation (1) consists of two terms: a physics-based potential and a statistics-based potential
(Figure 1). The parameterωdefines the relative contributions of these two potentials. The physics-based
potential can further be written as follows:

Ephysics =
∑
i, j

qiq j/
(
4πε0De f f ri j

)
+ωα

∑
i, j

[
HPi + HP j

]
+

∑
i, j

εi j

(σ0

ri j

)12

−

(
σ0

ri j

)6 (2)

The first term is the Kim–Hummer model [71,72], which describes the electrostatic interaction
between the ith and the jth residues at the binding interface of a protein complex, where qi gives the
charge of residue i at the functional center of its side-chain, and ε0 is the vacuum electric permittivity.
In order to capture the shielding effect between two residues, an effective dielectric coefficient,
De f f = Ds exp

(
ri j/ξ

)
, was defined in which ξ is the Coulomb Debye length used to mimic the screening

effect at different ion strengths. The second term of the physics-based potential is used to estimate
the hydrophobic effect between proteins, in which HPi is the Kyte–Doolittle hydrophobic score for
residue i with its corresponding type [73]. The weight constant wα is used to balance the hydrophobic
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and electrostatic interactions. Finally, the third term takes into account the excluded volume effect.
The depth of the potentials εij is a step function depending on the distance between two specific
representative sites rij. It equals 0 if the distance is larger than σ0; otherwise, it equals 5kT. The parameter
σ0 has constant values which depend on the type of distance between the two representative sites.
In particular, like the values used in our previous study, it equals 3.8 Å between two Cα atoms, 2.8 Å
between a Cα atom and a side-chain functional center and 2.2 Å between two side-chain functional
centers, respectively.

In addition to the physics-based potential used in our original simulation method, we further
introduced a statistics-based potential that was derived from analyzing the available protein complexes
in the current structural database [74]. In detail, it has the following form:

Estatistics =
∑

i j∈inter

g

∣∣∣uSC(i, j)
∣∣∣×


 r0

i j

ri j


12

− f (uSC(i, j)) ×

 r0
i j

ri j


6

 (3)

The summation in Equation (3) is taken across all residue pairs at the interface between two
binding partners of a protein complex, which is recognized if the inter-molecular distance between
any atoms of their side-chains is less than 5.5 Angstrom. The distance between the functional centers
of these residues is ri j, while r0

i j gives their relative distance in the native structure. The function f(x)
equals 1 when x is smaller than 0 and -1 when x is larger than 0. This function ensures that the negative
energy parameters derived from the statistics are attractive, while the positive parameters are repulsive.
On the other hand, the function g(x) equals -1 when x is smaller than 0 and 0 when x is larger than 0.
In turn, usc(i,j) determines the strength of the interaction between residue types i and j. The specific
value of the parameter was derived from the statistics of structurally available protein complexes [75].
In detail, it can be written as follows:

usc(i, j) = −kT ln
Nobs(i, j)
χiχiNobs

(4)

In Equation (4), Nobs(i, j) is the observed number of pairs between residue type i and type j,
which form contact at the binding interfaces; the denominator in the equation represents the expectation
number of pairs between residue type i and type j under the quasi-chemical approximation [76,77],
in which Nobs represents the total residue pairs at the binding interface and χi represents the mole
fraction of residues with type i at the binding interfaces. Two residues are considered to form a contact if
a pair of any atoms belonging to the side-chains of these residues is closer than the distance cut-off value
(5.5 Angstrom). In order to obtain different values for the energy parameter, we counted all the observed
numbers of corresponding residue pairs in Equation (4) through a large-scale structural library of
protein complexes that was constructed based on the original 3did database [75]. The database selected
all inter-domain interactions from protein complexes for which high-resolution three-dimensional
structures are available. We further reduced the sequence redundancy from this database, which led
to a final library consisting of 4960 entries of protein–protein interactions. The detailed procedure of
extracting the energy parameters was described in our previous study [74].

Finally, it is worth mentioning that in our simulation of protein–protein association, we only
consider the intermolecular non-covalent interactions between two binding partners. We assume that
the tertiary structure of each individual protein is well conserved during the process of association.
In order to reach this goal, all the intramolecular degrees of freedom are fixed, and proteins undergo
translational and rotational diffusions as rigid bodies in the simulation. As a result, it is not necessary
to reflect the covalent bonds that are used to maintain protein tertiary structures in our model.
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3. Results

In order to systematically test the generality of our kinetic Monte Carlo (kMC) simulation in
estimating the association rates of different protein complexes, we collected 62 protein complexes from
previous literature as a benchmark set. The criteria of benchmark construction are described in the
Methods. Detailed information about the benchmark set, including the PDB IDs, the index of two
binding partners and their corresponding experimental values of association rates, is listed in Table S1
in the Supplementary Materials. For all these protein complexes, 104 trajectories were carried out by the
kinetic Monte Carlo simulation algorithm (a detailed description of the algorithm can be found in the
Methods and in Figure 1). Each trajectory started from a different initial random configuration. After the
initial conformation, diffusions of each binding are guided by the intermolecular energies. At the end of
each trajectory, two binding partners either successfully or unsuccessfully form an encounter complex
through the pre-defined association criteria. Based on counting how many encounter complexes are
observed from all the trajectories, the association probability can be derived for each complex in the
benchmark set. The calculated association probability Pi for complex i will be further converted into a
rate constant ki

on by the following equation:

ki
on = kmin

on × 10(
Pi−Pmin

Pmax−Pmin
)×N (5)

The parameters Pmin and Pmax in Equation (5) stand for the minimal and maximal values
of association probabilities that were obtained from all the protein complexes in the benchmark.
The parameter kmin

on equals 1.03 × 105, which stands for the lowest value of experimentally measured
association rates observed in the benchmark. The parameter N indicates how many orders of
magnitudes for experimental association rates are considered in our benchmark. As described in the
Methods, because we only considered protein complexes whose rate constants are within the range of
1.0 × 105 and 1.0 × 109 M−1s−1, the value of N equals 4 in Equation (5).

The force field which was developed to delineate the intermolecular interaction in our kinetic
Monte Carlo simulations combines a previously constructed physics-based potential with a newly
added statistics-based potential. A weight constant,ω, is used to define the relative contributions of
these two potentials, as shown in Equation (1). In order to explore the capability of this new hybrid force
field in estimating the association rates of different protein complexes, we adjusted the value of this
weight constant from 0 to 1. Only the physics-based potential is used in the simulations when the weight
constant equals 0, while only the statistics-based potential is used when the weight equals 1. Given a
specific value for the weight constant, the association rate was calculated for each protein complex in
the benchmark based on the statistical analysis from its 104 simulation trajectories, as illustrated in the
previous paragraph. We compared the calculated association rates of all protein complexes with their
corresponding experimental measurements. Consequently, the Pearson correlation coefficient (PCC)
between these two datasets was obtained under different values of weight constant.

In detail, the variation between weight constant and calculated PCC is plotted in Figure 2a.
The figure shows that without the statistics-based potential (ω = 0), we can still achieve a positive
correlation between simulations and experiments. A log 10 base plot between our calculated values of
association rates and their experimental data for all 62 complexes is displayed in Figure 2b under this
circumstance, with a Pearson correlation coefficient of 0.656. When the statistics-based potential started
to be added into the force field, Figure 2a suggests that a higher correlation was obtained. The value of
PCC peaks when the weight constant equals 0.6. The comparison between simulated and experimental
association rates for all 62 complexes is displayed in Figure 2c under this circumstance, with a Pearson
correlation coefficient of 0.693. However, the correlation between simulations and experiments will
drop if the weight of the statistics-based potential increases further. Finally, the lowest correlation
(PCC = 0.6) was attained without the physics-based potential (ω = 1). Taken together, our simulation
results indicate that our kinetic Monte Carlo simulation can distinguish the kinetics of protein–protein
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interactions within a wide range of association rates. Moreover, the optimal combination between the
physics-based and the statistics-based potentials was able to improve the simulation’s accuracy.

Figure 2. We adjusted the value of parameterω, which balances the weights between the physics-based
and statistics-based potentials from 0 to 1. Under each specific value, the association rates were
calculated for all protein complexes in the benchmark and compared with their corresponding
experimental measurements. The calculated Pearson correlation coefficient (black bars) and the number
of errors (red dots and line) in the correlation between simulated and experimental association rates
are plotted in (a) as a function of the value of this weight constant. One-to-one detailed comparisons
between simulated and experimental association rates are shown in the log 10 base plots when the
value of the weight constant equals 0.0 (b) and 0.6 (c), respectively. The red lines are from the linear
regression fit between simulated and observed log10kon values. The slope of the red line in (b) equals
0.66 (standard error equals 0.093) and the intercept equals 2.21 (standard error equals 0.61), while the
slope of the red line in (c) equals 0.63 (standard error equals 0.084) and the intercept equals 2.35 (standard
error equals 0.55). We further calculated the common logarithm of the ratio between simulated and
experimental association rates. The distribution of our calculations for all 62 protein complexes is
plotted on histograms in (d).

The common logarithm of the ratio between simulated and experimental association rates
log10(k

calc
on /kexp

on ) was further calculated for all complexes in the benchmark, under the optimal value of
weight constant (ω = 0.6). If this value was larger than 1 for a protein complex, its association rate
was overestimated over an order of magnitude relative to the experimental data. On the other hand,
a protein complex with a value smaller than -1 indicates that its association rate was underestimated
over an order of magnitude relative to the experimental data. Figure 2d shows the distribution of
our calculations. The histogram in the figure indicates that among all 62 complexes, only six were
underestimated over an order of magnitude, and five were overestimated over an order of magnitude.
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The association rates of the remaining 51 protein complexes were reproduced within one order of
magnitude. We assume that the association rate of a protein complex can be correctly predicted if
the difference between our calculated value and its corresponding experimental data is below one
order of magnitude. This is a reasonable estimation given the fact that the experimentally observed
association rates span an extremely wide range, with over ten orders of magnitudes. Based on this
criterion, we show that our simulation to predict the protein–protein association rates can reach an
overall accuracy of 80%. The calculated association probabilities and rates for all protein complexes in
the benchmark under the weight constant 0.6 are listed in Table S1.

Based on the definition of log10(k
calc
on /kexp

on ), we further counted the number of errors in the
prediction of association rates for all protein complexes in the benchmark. The error of prediction for a
specific protein complex is marked as its absolute value of calculated log10(k

calc
on /kexp

on ), which is larger
than 1, indicating that the difference between experimental and predicted association rates is higher
than one order of magnitude. The total numbers of errors from the prediction were derived under all
different values of the weight constant ω. The values are plotted in Figure 2a as red dots and lines.
The figure shows that the change in prediction errors as a function of weight constantω correlates well
to the variation in PCC. The highest value of PCC corresponds to the lowest number of errors when ω
equals 0.6. This result confirms that the accuracy in predicting the rates of protein–protein association
can be marginally improved when an original version of the physics-based potential is complemented
with a new statistics-based potential with an optimal weight.

We selected a protein complex from the benchmark as a specific example to characterize the
dynamic mechanisms of association. In detail, the complex formed between the E9 DNase domain of
colicin endonucleases and immunity protein Im9 (PDB id 2VLN) was selected as a test system [78].
Among a total number of 104 simulation trajectories, with a maximal duration of 1000 ns for each
individual trajectory, we found that encounter complexes were successfully formed in 1819 of them.
This indicates that the value of the association probability equals 0.1819. Using Equation (5), we further
calculated the rate of association between proteins E9 DNase domain and Im9. The association
rate of the complex equals 9.86 × 107 M−1s−1, which is close to the experimental measurement
(1.0 × 108 M−1s−1) [78]. The physical processes along four representative simulation trajectories are
illustrated in Figure 3. The changes in the total intermolecular interactions between two binding
partners in these four trajectories are plotted by black curves in Figure 3a,c,e,f as a function of simulation
steps, while their changes in the root-mean-square difference (RMSD) from the native complex are
plotted by red curves in Figure 3b,d,f,g, respectively. The RMSD is large at the beginning of all
four trajectories, resulting from their initial random configurations. As a result, the intermolecular
interactions at the initial stage of association in all four systems are very close to 0, indicating that two
binding partners were separated from each other and diffused independently in the simulation box.



Biomolecules 2020, 10, 1056 10 of 21

Figure 3. The protein complex 2VLN was selected from the benchmark as a specific example to
characterize the dynamic mechanisms of association. Among its 104 simulation trajectories, we further
picked four representatives to illustrate the detailed association processes. The changes in the total
intermolecular interactions between two binding partners in these four trajectories are plotted by black
curves on the left side in (a), (c), (e) and (f) as a function of simulation steps, while their changes in
the root-mean-square difference (RMSD) from the native complex are plotted on the right side by red
curves in (b), (d), (f) and (g), respectively. Finally, four representative kinetic steps along the association
pathways are marked by the numbers “1”, “2”, “3” and “4” in (c) and (d).

In the first system, small fluctuations in total energy were observed at around 0 throughout the
simulation trajectory, as shown in Figure 3a. In comparison, a high level of RMSD was sustained along
the trajectory, with large fluctuations (Figure 3b), indicating that the proteins cannot associate into
complexes by the end of the maximal time duration in this system. On the contrary, complexes were
successfully formed in the next three trajectories. This is reflected by the fact that the intermolecular
interactions dropped to negative values in these systems, while their RMSD values also decreased to
levels below 10 Å by the end of the simulations. In these cases, the proteins have spatially approached
each other and found their actual binding sites after they diffused throughout the simulation box.
Additionally, Figure 3 shows that the formation of the protein complex is faster in some trajectories
than others. For instance, the complex in the second trajectory was formed at 470 ns, whereas the
complex in the third trajectory was formed at 630 ns. Moreover, in most of these trajectories, we found
that local energy minimal states were formed between proteins along the pathways to their final
associations. Similar to the process of folding [79], protein complexes are able to overcome the energy
barrels between these local minimal states and reach the final native-like configuration. For instance,
in the second trajectory, following the initial configuration, which has an energy level of zero and a
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large RMSD value, we found that the system formed a relatively stable structure, in which both energy
and RMSD dropped to relatively low levels. The initial configuration is denoted by the number “1”
in Figure 3c,d, and its corresponding snapshot from the trajectory is shown in Figure 4a. The local
energy minimal state is denoted by the number “2” in the figures, and its corresponding snapshot from
the trajectory is shown in Figure 4b. A tentative binding interface is formed between two proteins,
as observed in the figure. After the formation of this tentative complex, both the energy in the system
and the RMSD of the protein complex started to increase and peaked at the point denoted by the
number “3” in Figure 3c,d and the corresponding snapshot shown in Figure 4c. The comparison
between structures in Figure 4c suggests that the tentative complex was dissociated, and two proteins
were reorganized into a different orientation. Finally, both the energy in the system and the RMSD of
the two proteins started to drop again until they formed the final encounter complex, which is denoted
by the number “4” in Figure 3c,d and the corresponding structure shown in Figure 4d. The comparison
between structures in Figure 4b,d suggests that a more compact complex was formed in the final
configuration compared to the tentative complex.

Figure 4. The snapshots of four representative kinetic steps along the association pathways are
illustrated for protein complex 2VLN. Two binding partners in the complex are shown in red and
green, respectively. The initial configuration is shown in (a). In (b), a tentative binding interface is
formed between two binding partners, corresponding to a local energy minimal state denoted by the
number “2” in Figure 3. This tentative complex was then dissociated, and two binding partners were
reorganized into a different orientation, as illustrated in (c) and the number “3” in Figure 3. At the end
of the simulation, the final encounter complex forms, as shown in (d).
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Taken together, the analysis of simulation details reveals the dynamic mechanism of association.
We showed that the individual association pathway is a multistep process which involves continuously
searching local binding configurations and repeatedly forming kinetic intermediates with dissociation
and re-association. A similar phenomenon has also been observed in a previous study using all-atom
molecular dynamic simulations [33,34].

In addition to the analysis of the individual association pathways, it is also helpful to compare
results between different simulation trajectories. As a result, protein complex 2VLN was still used
as a test system. We plotted the spatial distribution of the final configurations that were generated
from all the simulation trajectories in order to obtain an overview of the structural similarity among
all the successfully formed encounter complexes. This distribution is plotted in Figure 5a. In the
figure, the native structure of the protein complex is placed in the center of the box, while the protein
E9 DNase domain is shown in green with its surface profile and Im9 is shown in red in the cartoon
representation. In order to attain a better visual effect, 103 final configurations were randomly selected
from the 104 trajectories to avoid spatial crowding in the figure. The structures of protein E9 DNase
domain in these configurations were aligned with the native configuration, while the centers of mass
for the protein Im9 are represented by the grey points. Figure 5a shows that there are a number
of grey points uniformly distributed in the simulation box. These points represent the situation in
which protein Im9 still diffuses around its binding partner. With the exception of these configurations,
the majority of grey points are distributed around the center. These points represent the situation in
which Im9 has formed a physical interface with protein E9 DNase domain.

Figure 5. We plotted the spatial distribution of 103 randomly selected final configurations from all the
104 simulation trajectories of protein complex 2VLN. In (a), the native structure of the protein complex
is placed in the center of the box, while the protein E9 DNase domain is shown in green with its surface
profile and Im9 is shown in red in the cartoon representation. The structures of protein E9 DNase
domain from our simulations were aligned with the native configuration, while the centers of mass
for their corresponding protein Im9 are represented by the grey points. In (b), we further plotted the
spatial distribution of those configurations in which encounter complexes were successfully formed.
The centers of mass for the protein Im9 in these configurations are represented by the red points.
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According to the association probability calculated for protein complex 2VLN, encounter complexes
were successfully formed in about 200 final configurations out of 103 selected trajectories. We further
plotted the spatial distribution of these configurations in Figure 5b. As in Figure 5a, the native structure
of the protein complex is placed in the center of the box, with the protein E9 DNase domain in a
green surface profile and Im9 in a red cartoon representation, while the centers of mass for the protein
Im9 are represented by the red points. The figure shows that the centers of mass for almost all Im9
proteins in the encounter complexes are distributed relatively closer to the native conformation than
the distribution observed in Figure 5a, although a highly noticeable range of spatial deviation exists.
This indicates that encounter complexes constitute an ensemble of loosely bound structures formed
around their native conformation. This ensemble of encounter complex thus suggests that the transition
states of protein–protein association could be highly diverse on the structural level. Furthermore,
the combination of Figure 5a,b with the previous two figures enables the following mechanistic insights
into the physical process of protein association. There are overall three outcomes observed in the
simulations of association. In particular, two binding partners either 1) freely diffuse by the end of
the maximal time duration, 2) form a physical interface that is different from the native conformation
and remain kinetically trapped in this nonnative state, or 3) form an initial tentative contact, that is
different from the native conformation, but later successfully transit into the correct binding interface
through the process of dissociation and re-association. Moreover, for all trajectories in which encounter
complexes were formed through the third pathway, their structures displayed a wide variety of relative
protein–protein orientations around the native conformation.

In summary, the analysis of the overall simulation trajectories reveals, firstly, that association
between proteins could be kinetically trapped into nonnative states, secondly, that the pathway
towards the final formation of the encounter complex is a dynamic process consisting of local structural
reorganization and, finally, that even the structures in the final ensemble of encounter complexes are
highly diverse. These features are consistent with the observations in another previous study using
all-atom molecular dynamic simulations [33,34].

In the last three trajectories plotted in Figure 3, we found that the decreases in the intermolecular
energy in the systems co-variated with the RMSD between the conformation of the protein complex and
its native structure. This suggests that the simulations of association were driven by the intermolecular
energy. In order to further test whether this energetic variable could be used as an indicator to capture
the features shared among encounter complexes, we compared the values of RMSD with intermolecular
energy for all the final configurations taken from the end of 104 trajectories. The correlation is shown
in Figure 6a for the complex 2VLN. Each of the ten thousand points in the figure stands for the
final configuration from one trajectory, while its y-axis equals the intermolecular energy calculated
based on this configuration, and the x-axis is its RMSD from the native structure of the protein
complex. The group of trajectories in which two binding partners failed to form a contact are reflected
by the tip in the top-right corner of the figure. The distribution below the tip, on the other hand,
indicates a large variety of complexes formed between these two binding partners in the remaining
trajectories. We found a strong positive correlation in this distribution. The calculated Pearson
correlation coefficient equals 0.7. In particular, a large group of encounter complexes formed through
the lowest intermolecular energy, as indicated by the red arrow in Figure 6a, show small values of
RMSD of around 7 Å. We further calculated the Pearson correlation coefficient between RMSD and
intermolecular energy from the end of the 104 simulation trajectories for all 62 protein complexes in the
benchmark. The distribution of Pearson correlation coefficient values is plotted in Figure 6b. The figure
shows that the correlations for all protein complexes are positive, while more than half of them have
strong correlations that are higher than 0.5. This positive correlation between binding energy and
RMSD from the native structures suggests that protein complexes formed with native-like protein
interfaces tend to have lower binding energies than complexes that are trapped in the non-native
states. As a result, the structural similarity embedded in the ensemble of encounter complexes can be
characterized by the intermolecular energy. In other words, the positive correlation between energetic
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and structural features in protein complex formation indicates that protein–protein association is a
kinetic process similar to protein folding [79], in which diffusions of binding partners are driven by a
“funnel-like” energy landscape.

Figure 6. We compared the values of RMSD with intermolecular energy for all the 104 final configurations
taken from the simulations of protein complex 2VLN in (a). We also calculated the correlation between
RMSD and intermolecular energy for all 62 protein complexes in the benchmark. The distribution
of these calculated Pearson correlation coefficients is plotted in (b). We further enumerated the
combination of different binding criteria for encounter complex formation. The log 10 base plot in
(c) shows that by optimizing the combinations and values of different binding criteria, we were able
to achieve a high correlation between experimental and simulated association rates for all protein
complexes in the benchmark. Finally, using energy cutoff as an example, we found that the high
correlation between simulation results and experimental data could only be achieved when the values
of the binding criteria were adopted within a small range (d).

In the last section of the Results, we explored the combination of different criteria for encounter
complex formation. As described in the Methods, the number of intermolecular contacts recovered
from the native structure was used as a single criterion to determine whether an encounter complex can
be successfully formed along simulations. Here, in addition to the number of native contacts, we further
considered four other criteria. The first criterion is that the percentage of native contacts must be above
a cutoff value. The percentage is calculated by the ratio of the number of recovered native contacts
to the total number of intermolecular contacts in the native complex. The second criterion is that
the RMSD between the encounter complex and the native complex needs to be below a cutoff value.
The third is the distance cutoff between the interfaces of two binding partners, while the last criterion
is the energy cutoff calculated by Equation (1). The number of encounter complexes observed in all
simulation trajectories strongly depends on the combinations and values of these different binding
criteria. We enumerated all different combinations for these criteria. For each combination, a wide range
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of discretized values was adopted for different criteria. In detail, the range of native contact numbers
was initially 0 to 10, with an interval of 1; the range of the native contact percentage was initially 0% to
10%, with an interval of 1%; the range of RMSD was initially 0 to 30Å, with an interval of 3Å; the range
of interface distance cutoff was initially 0 to 10Å, with an interval of 1Å; and the range of binding
energy cutoff was initially 0 to -30kT, with an interval of 3kT. For all possible combinations and values,
we calculated association probabilities for each protein complex in the benchmark. Consequently,
we found that by selecting the optimal combinations and values of these binding criteria, we were
able to achieve a higher correlation between experimental and simulated association rates than using
individual binding criterion. One example is shown in Figure 6c. The specific combination of binding
criteria adopted in the figure is as follows: the native contact percentage should be higher than 6%;
the native contact number should be more than 5; the binding energy should be lower than -15kT;
finally, the RMSD and interface distance should be lower than 12 and 10 Å, respectively. Under this
combination of binding criteria, a high PCC value of 0.79 was achieved.

We further found that this correlation also depends on the values of the adopted binding criteria.
For instance, in Figure 6d, we found that a high correlation between simulation results and experimental
data can only be attained when the value of energy cutoff was adopted within a small range. For instance,
the best PCC of 0.79 could only be attained with an energy cutoff of -15.0kT, as shown at the end
of the last paragraph. Under higher energy cutoff values, e.g., -3.0kT, the highest PCC found in the
system is 0.76, if the native contact percentage is higher than 4% or the native contact number is
more than 5, with the RMSD and interface distance cutoffs equal 15 and 1 Å, respectively. Similarly,
under lower energy cutoff values, e.g., -27.0kT, the highest PCC found in the test is also lower than
0.77, if the native contact percentage is higher than 3%, or the native contact number is more than five,
with the RMSD and interface distance cutoffs equal to 12 and 10 Å, respectively. This can be explained
as follows: if the energy cutoff is too low, the criterion for association will not be strict enough and
systems will contain encounter complexes that are not correctly bound. As a result, the association
probability will be overestimated. On the other hand, if the energy cutoff is too high, the criterion
for association will be too strict and systems will not contain enough encounter complexes that are
correctly bound. As a result, the association probability will be underestimated. In general, the range
of energy cutoff that results in a high correlation with experimental association rates corresponds to the
scope of average binding energy that is found in the transition state ensemble of all protein complexes.
Taken together, our statistical results imply that although there is strong diversity in the structures and
energetics of different protein complexes, the common mechanisms underlying their association can be
characterized by a combination of different binding criteria.

4. Concluding and Discussions

The versatile functions of protein complexes in cells strongly depend on how quickly the building
blocks in these complexes can be assembled together [80–82]. This kinetic property of protein–protein
interactions is quantified by the association rate, which can be traditionally measured through various
experimental methods. Compared with these methods, computational modeling approaches are much
less time-consuming and labor-intensive. Moreover, they can provide a mechanistic understanding
of biophysical problems on a spatial-temporal level, which is currently inaccessible in the laboratory.
Relative to other all-atom simulation techniques that are highly demanding in terms of computational
resources, we study the physics process of protein–protein association using a coarse-grained model
and a new hybrid force field which contains both physics-based and statistics-based potentials.
Our physics-based potential consists of two terms that describe the electrostatic interactions and
hydrophobic effect. The parameter used to balance the weights between these two factors has been
tuned in order to achieve the best performance, as in our previous study [62]. However, there are
various types of molecular interactions missing in this simplified potential, such as the side-chain
hydrogen bonds, the dipole–dipole interactions and the π-stacking of aromatic rings between different
side-chains. We assume that the contributions of these complicated energy contributions can be
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implicitly included in the statistics-based potential, thereby complementing the original physics-based
potential. This assumption was verified by our results, in which we showed that a mixed form of these
two different potential functions can improve the correlation between simulated and experimental
association rates, although this improvement is not substantial. The best correlation was obtained when
the weight constant between the contributions of the physics-based and statistics-based potentials was
equal to 0.6. However, it is worth mentioning that the value of this weight depends on the protein
complexes tested in the benchmark. In other words, when a various selection or a subset of benchmarks
is used, it is likely that the best correlation will be derived under a different value of weight constant.
Nevertheless, it is beyond the scope of this study to offer an optimal value of weight constant that
can provide the best prediction of the association rate of any protein complex. The purpose here is to
explore the idea that a mixture of force fields derived from complementary sources is better able to
describe the process of protein–protein association.

Previous works showed that the association rate constant of forming transient complexes purely
via unbiased diffusions in which the diffusion coefficients of individual proteins can be calculated by
methods such as Hydropro [83] is ~105M−1s−1 [50,84,85]. The real values of association rates higher than
this “basal” rate constant are the result of the intermolecular interactions between proteins, such as the
long-range electrostatic attraction, which biases diffusions toward the formation of transient complexes.
As a result, the association rates calculated from simulation models that incorporate both diffusions and
intermolecular interactions, such as the method developed in this study, can differ by several orders of
magnitude and thus are closer to the experimentally observed values. We systematically calibrated
our simulation method against a large-scale benchmark set. For each complex in the benchmark,
a large number of simulation trajectories were carried out. Based on the statistical analysis of these
trajectories, we found that common mechanisms underlie the association of structurally diverse protein
complexes. In particular, we revealed that the association of a protein complex contains multiple
steps, in which proteins continuously search their local binding orientations and form non-native-like
intermediates through repeated dissociation and re-association. Moreover, we showed that encounter
complexes constitute an ensemble of loosely bound structures formed around their native conformation,
suggesting that the transition states of protein–protein association could be highly diverse on the
structural level. Finally, a positive correlation between the binding energy and structural similarity of
encounter complexes with their native conformation was found, which indicates that protein–protein
association is a kinetic process in which the diffusions of binding partners are driven by a “funnel-like”
energy landscape. We also noticed that encounter complexes formed in a number of trajectories have
a low binding energy but a large RMSD from the native structure, as shown by the black arrow in
Figure 6a, indicating that the binding partners of the protein complexes in these trajectories associate
into non-native-like encounter complexes. These low-energy, non-native-like encounter complexes
cannot be discerned by other binding criteria either, including the number or the percentage of native
contacts and the distance between the binding interfaces. The formation of these complexes is either due
to the fact that they are kinetically trapped in the intermediate states during the repeated dissociation
and re-association process along their association pathways or due to the large energy frustration in the
simplified force field used in this study. In summary, these results shed light on our understanding of
how protein–protein recognition is kinetically modulated, and the computational method developed
in this study can therefore complement existing experimental approaches that measure protein–protein
association rates.

In our previous study, the association rates were derived directly from the calculated association
probability and related simulation parameters, such as volume and length of association time. However,
the potential used to describe the intermolecular interactions in the simulation is simplified and thus
not accurate enough, so the energy landscape for guiding association is not funnel-like. As a result,
one problem in estimating the association rates in our previous study is that the association with high
experimental rate constants tends to be underestimated, while the association with low experimental
rate constants tends to be overestimated. To tackle this issue, in this study, we attempt to use an
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empirical formula (as shown in Equation (5)) to minimize the effect of the simplification of force field.
It is worth mentioning that this equation is only applied to rescaled simulation results. There is no free
parameter which can be adjusted to fit against the experimental data. The parameters kmin

on and N are
experimental constants observed in the benchmark. The association probabilities Pi were derived from
the first-principle simulation, while their upper and lower limits Pmin and Pmax were fixed variables,
as long as all the association probabilities were derived. Therefore, there is no issue of overfitting when
using Equation (5) to compare our simulation results with experimental data. However, it is possible
that this empirical formula could bring some artifacts. For instance, the probability of association is
time dependent. It will approach a value of 1 when given an extremely long simulation time, but it
will approach 0 with an extremely short simulation time. This effect, fortunately, can be potentially
canceled out by calculating the relative difference of association probability from its maximal and
minimal values, as shown in the equation. Moreover, the length of simulation duration in our study is
carefully determined to obtain an appropriate range of association probability, while the same value
was applied to all protein complexes in the benchmark. Additionally, there is another limitation in
Equation (5). It only takes into account the association rates across four orders of magnitude, as the
range considered in the benchmark set. Although we adopted this limited range of rate constant values
in the equation, it can still be performed to study protein associations whose rates are beyond this
range. For instance, if the simulated probability for one protein complex is smaller than the minimal
probability in Equation (5), this will lead to the result that the calculated association rate is lower than
105M−1s−1. On the other hand, if the simulated probability for one protein complex is larger than the
maximal probability in Equation (5), this will lead to the result that the calculated association rate is
higher than 109M−1s−1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/7/1056/s1,
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