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Abstract

Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology.
In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task,
which consisted of rotating a single-joint ‘‘forearm’’ to a target. Learning was based on a reinforcement mechanism
analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or
increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating
stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated
around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory
event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2
muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using
spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued
signal: reward (+1), no learning (0), or punishment (21), corresponding to phasic increases, lack of change, or phasic
decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment
were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of
8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand
continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with
eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.
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Introduction

Sensorimotor mappings, for example between proprioceptive

input and motor output, are the basis for directed behavior,

including foraging, locomotion, and object manipulation. Artificial

neural networks, generally based on continuous unit states, have

used a variety of learning algorithms to learn these mappings;

examples include backpropagation [1,2], self-organizing maps [3],

and temporal difference learning [4].

Artificial neural network models, as well as lumped control

theory models, use processing units with continuous outputs which

encode continuous rates or probabilities of firing. By contrast,

recent models have begun to look more closely at biomimetic

mechanisms by using spiking models for dynamics and spike-

timing-dependent plasticity (STDP) for learning [5–12]. Spiking

units offer the advantage of allowing us to explore multiple

methods of neural encoding that are absent from continuous unit

models. These include exposing possible roles of synchrony in

perceptual feature binding and response selection [13], wave-front

encoding [14,15], and other time-based codes. Physiologically, the

degree of input spike synchrony is a major determinant of motor

neuron activation [16].

Sensorimotor mappings can be thought of as stimulus-response

mappings, suggesting reinforcement learning (RL) as a mechanism

for learning. The essence of this learning mechanism was

summarized over 100 years ago in Thorndike’s Law of Effect:

stimulus-response mappings are strengthened by global reward

and weakened by global punishment [17]. RL methods [18],

including temporal-difference learning [4], have been used

extensively in machine learning and offer an advantage over

teacher-supervised learning methods in that they do not require

a known desired output representation to match against the

model’s current (behavioral) output. However, unlike unsupervised

learning methods, they do offer some feedback regarding fitness of

the behavior. A further framework for explaining motor RL is the

perception-action-reward cycle [19]. The learning system is

divided into an actor, mapping perceptions to actions (P to A),

and a critic providing reward and punishment feedback to the actor

[8,20,21]. To utilize this scheme, the naive actor must produce

some actions. This is the role of motor babble [20,22,23], produced

in our model via noise.

One challenge in the learning of actor/critic RL systems is the

distal reward or credit assignment problem [7]: reinforcers are delivered

after the behavior is complete, after synaptic and neuronal

activations leading up to the output are no longer active. A
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synaptic eligibility trace can used to solve this problem: synapses

are tagged to receive a credit or blame signal that arrives later [8].

Synapses tagged with eligibility traces, possibly mediated by

transient phosphorylations [24] or dendritic Ca2+ currents [25,26],

may be reinforced by the global reinforcement signals mediated by

phasic reward bursts [27,28] and punisher dips [29] of dopamine

cell firing from ventral tegmental area (VTA) projecting to cortical

areas [30–34].

In this paper, we simulated a potential mechanism for the

learning of sensorimotor mappings, using a biologically-inspired

computational model consisting of spiking neuronal units whose

synaptic weights are trained via global reward and punisher

signals. This architecture was able to perform a stationary

targeting task as long as both reward and punishment signals

were present during the learning. Stable proprioceptive-to-motor

command mappings mediated performance of the task.

Methods

Neuron Model
Individual neurons were modeled as event-driven, rule-based

dynamical units with many of the key features found in real

neurons, including adaptation, bursting, depolarization blockade,

and voltage-sensitive NMDA conductance [35–40]. Event-driven

processing provides a faster alternative to network integration:

a presynaptic spike is an event that arrives after a delay at

postsynaptic cells; this arrival is then a subsequent event that

triggers further processing in the postsynaptic cells. Cells were

parameterized as excitatory (E), fast-spiking inhibitory (I), and low-

threshold-spiking inhibitory (IL; Table 1). Each cell had a mem-

brane voltage state variable (Vm), with a baseline value determined

by a resting membrane potential parameter (VRMP). After synaptic

input events, if Vm crossed spiking threshold (Vth), the cell would

fire an action potential and enter an absolute refractory period,

lasting tAR. After an action potential, an after-hyperpolarization

voltage state variable (VAHP) was increased by a fixed amount

WAHP and then VAHP was subtracted from Vm. Then VAHP

decayed exponentially (with time constant tAHP) to 0. To simulate

voltage blockade, a cell could not fire if Vm surpassed the blockade

voltage (Vblock). Relative refractory period was simulated after an

action potential by increasing the firing threshold Vth by

WRR(Vblock{Vth), where WRR was a unitless weight parameter.

Vth then decayed exponentially to its baseline value with time-

constant tRR.
In addition to the intrinsic membrane voltage state variable,

each cell had four additional voltage state variables Vs

corresponding to synaptic input. These represent AMPA, NMDA,

and somatic and dendritic GABAA synapses. At the times of input

events, synaptic weights were updated by step-wise changes in Vs,

which were then added to the cell’s overall membrane voltage Vm.

To allow for dependence on Vm, synaptic inputs changed Vs by

dV~Ws(1{Vm=Es), where Ws is the synaptic weight and Es is

the reversal potential relative to VRMP. The following values were

used for the reversal potential Es: AMPA, 65 mV; NMDA,

90 mV; and GABAA, –15 mV. After synaptic input events, the

synapse voltages Vs decay exponentially toward 0 with time

constants ts. The following values were used for ts: AMPA, 20 ms;

NMDA, 300 ms; somatic GABAA, 10 ms; and dendritic GABAA,

20 ms. The delays between inputs to dendritic synapses (AMPA,

NMDA, dendritic GABAA) and their effects on somatic voltage

were selected from a uniform distribution ranging between 3–

5 ms, while the delays for somatic synapses (somatic GABAA) were

selected from a uniform distribution ranging from 1.8–2.2 ms.

Synaptic weights were fixed between a given set of populations

except for those involved in learning (described below).

System Design
The network system, shown in Fig. 1, consisted of (1) a simple

one-joint ‘‘forearm,’’ with flexor and extensor muscles; (2)

proprioceptive neurons, each tuned to fire at a specific joint

angle; (3) sensory cells, which received spiking input from the

proprioceptive cells; (4) motor command cells, which received

spiking input from sensory cells and sent elbow rotation

commands to the muscles; and (5) a reinforcement learning critic,

which evaluated the change of hand-to-target visual error and sent

a global reward or punisher training signal to the plastic synapses.

The proprioceptive, sensory, and motor neurons were implemen-

ted using the model described above; further details on the system

are provided below.

Input to the sensory cells was provided by 48 proprioceptive (P)

cells, representing muscle lengths in 2 groups (flexor- and extensor-

associated). Each was tuned to produce bursting approaching

100 Hz over a narrow range of adjacent, non-overlapping lengths.

The cortical network consisted of both sensory and motor cell

populations. The sensory (S) population included 96 excitatory

sensory cells (ES cells), 22 fast spiking sensory interneurons (IS),

and 10 low-threshold spiking sensory interneurons (ILS); similarly,

the motor (M) network had 48 EM, 22 IM, and 10 ILM cells. The

EM population was divided into two 24-cell subpopulations

dedicated to extension and flexion, which projected to the extensor

and flexor muscles, respectively.

Cells were connected probabilistically with connection densities

and initial synaptic weights varying depending on pre- and post-

synaptic cell types (Table 2). In addition to spikes generated by

cells in the model, subthreshold Poisson-distributed spike inputs to

each synapse of all units except the P and ES units were used to

provide ongoing activity and babble (Table 3).

The virtual forearm consisted of a single segment of length l

with a joint angle h that was allowed to vary from 0u (arm straight)

to 135u (fully flexed). An extensor and flexor muscle (lengths mext

and mflex) always reflected the current joint angle according to the

following relationship:

Table 1. Parameters of the neuron model for each major population type.

Cell type VRMP (mV) Vth (mV) Vblock (mV) tAR (ms) WRR tRR (ms) WAHP (mV) tAHP (ms)

Excitatory –65 –40 –25 5 0.75 8.0 1.0 400

Inhibitory –63 –40 –10 2.5 0.25 1.5 0.5 50

Low-threshold –65 –47 –10 2.5 0.25 1.5 0.5 50

VRMP = resting membrane potential; Vth = threshold voltage; Vblock =blockade voltage; tAR = absolute refractory time constant; WRR = relative refractory weight;
tRR = relative refractory time constant; WAHP = after-hyperpolarization increment; tAHP = after-hyperpolarization time constant.
doi:10.1371/journal.pone.0047251.t001

Reinforcement Learning in a Spiking Neuron Model
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mext~
l(h{hmin)

hmax{hmin

ð1Þ

mflex~l{mext: ð2Þ

Arm position updates were provided at 50 ms intervals, based

on extensor and flexor EM spike counts integrated from a 40 ms

window that began 90 ms prior to update time (50 ms network-to-

muscle propagation delay). The angle change Dh for the joint was

the difference between the flexor and extensor EM spike counts

during the prior interval, with each spike causing a 1u rotation. P
drive activity updated after an additional 25 ms delay which

represented peripheral and subcortical processing. Reinforcement

occurred every 50 ms with calculation of hand-to-target error.

The target remained stationary during the simulation.

The RL algorithm implemented Thorndike’s Law of Effect using

global reward and punishment signals [17]. The network is the Actor.

Feedforward ES? EM AMPA weights were trained to implement

the learned sensorimotor mappings. The Critic, a global reinforce-

ment signal, was driven by the first derivative of error between

position and target during 2 successive time points (reward for

decrease; punishment for increase). As in [7], we used a spike-timing-

dependent rule to trigger eligibility traces to solve the credit

assignment problem. The eligibility traces were binary-stated,

turning on for a synapse when a postsynaptic spike followed

a presynaptic within a timewindowof 100 ms; eligibility ceased after

100 ms. When reward or punishment was delivered, eligibility-

tagged synapses were potentiated (long-term potentiation LTP), or

depressed (long-term depression LTD), correspondingly.

Weights w(t) were updated utilizing weight scale factors, ws:

w(t)~w0ws(t)

.

ws(tz1)~ws(t)zDws

Dws~
1{ws(t)=w

max
s for LTP reward

{ws(t)=w
max
s for LTD punisher

�

where wmax
s (5 in all simulations) is maximum weight scale factor,

and w0 is the initial synaptic weight. ws is initialized to 1.0 for all

synapses and varies between 0 and wmax
s .

The model was implemented in NEURON 7.2 [41] for Linux

and is available on ModelDB (https://senselab.med.yale.edu/

Figure 1. Overview of model. A virtual forearm with joint angle h, controlled by 1 flexor and 1 extensor muscle, is trained to align to a target. A
proprioceptive preprocessing block translates muscle lengths into an arm configuration representation. Plasticity is restricted to the mapping between
sensory representation and motor command representation units (dashed oval). Motor units drive the muscles to change the joint angle. The Actor
(above) is trained by the Critic which evaluates error and provides a global reward or punishment signal.
doi:10.1371/journal.pone.0047251.g001

Reinforcement Learning in a Spiking Neuron Model
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modeldb). One minute of simulated time took approximately 80 s

of CPU time on an Intel XEON 2.27 GHz CPU.
Results

Average spiking rates (in Hz) were: P, 1.9; ES, 0.4; IS, 4.4; ILS,

2.9; EM, 0.5; IM, 4.3; and ILM, 3.1, in the absence of learning

and the presence of babble noise (Fig. 2). Inhibitory cells fired

faster than excitatory cells, consistent with observed rates in cortex.

The top units in Fig. 2 represent the proprioceptive (P) inputs from

the flexor and extensor muscles. Each of the 2 muscles stimulates 1

or 2 of the P cells to fire, with the particular cells depending on

current muscle length.

Table 2. Area interconnection probabilities and starting weight.

Presynaptic type Postsynaptic type Connection probability Synaptic weight

P ES 0.10 8.77

ES IS 0.43 1.90

ES ILS 0.51 0.95

ES EM 0.08 5.28*

IS ES 0.44 4.50

IS IS 0.62 4.50

IS ILS 0.34 4.50

ILS ES 0.35 1.25

ILS IS 0.53 2.25

ILS ILS 0.09 4.50

EM IM 0.43 1.90

EM ILM 0.51 0.95

IM EM 0.44 4.50

IM IM 0.62 4.50

IM ILM 0.34 4.50

ILM EM 0.35 1.25

ILM IM 0.53 2.25

ILM ILM 0.09 4.50

*shows plastic connections, for which the initial weight is listed.
doi:10.1371/journal.pone.0047251.t002

Table 3. Noise stimulation to synapses of the different cell
types.

Cell type Synapse type Synaptic weight Average rate (Hz)

IS AMPA 4.13 300

IS NMDA 1.50 50

IS soma
A GABA 1.88 125

IS dend
A GABA 1.88 125

ILS AMPA 3.00 300

ILS NMDA 0.38 50

ILS soma
A GABA 1.88 125

ILS dend
A GABA 1.88 125

EM AMPA 3.94 300

EM NMDA 0.75 50

EM soma
A GABA 1.88 125

EM dend
A GABA 1.88 125

IM AMPA 4.13 300

IM NMDA 1.50 50

IM soma
A GABA 1.88 125

IM dend
A GABA 1.88 125

ILM AMPA 3.00 300

ILM NMDA 0.38 50

ILM soma
A GABA 1.88 125

ILM dend
A GABA 1.88 125

doi:10.1371/journal.pone.0047251.t003

Figure 2. Baseline spiking before learning. Raster of spikes from
individual cells: ES, excitatory sensory units; IS, fast-spiking inhibitory
sensory units; ILS, low-threshold inhibitory sensory units; EM, excitatory
motor units; IM, fast-spiking inhibitory motor units; ILM, low-threshold
inhibitory motor units; and P, proprioceptive input units.
doi:10.1371/journal.pone.0047251.g002
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We ran 500 simulations (4 learning modes: no learning, reward-

only, punisher-only, reward-and-punisher65 target angles: 0u,
35u, 75u, 105u, 135u65 wiring random seeds65 babbling noise

input random seeds) to assess performance of the model in

learning to reach for a single target. For each trial, final error was

measured by the average absolute value angle difference between

hand and target in the last 20 s of the 200 s trials. A Shapiro-Wilk

test on all final errors for the reward-and-punisher condition found

that the null hypothesis of normality could be rejected (pv10{14),

so non-parametric statistics have been used throughout. The

reward-and-punisher learning algorithm showed clear superiority

over reward-only or punisher-only methods (Fig. 3A; pv10{6,

Kruskal-Wallis test). Final error was much less with both reward

and punishment (median= 8.07, IQR=5.10–15.23) than with the

other cases (median = 38.96, IQR=19.85–78.53 for the reward-

only condition). Therefore, reward-and-punisher learning was

used for all of the additional studies.

Learning with this algorithm was successful with arbitrary

choice of random babble inputs. However, some randomly chosen

wirings produced networks that would not learn adequately across

the set of targets (pv0:0003 difference for wirings; Kruskal-Wallis

test with Bonferroni correction). The difference across different

network architectures was explained by noting that poorly

performing networks had a relatively high proportion of poorly

connected EM neurons, defined as cells with fewer than five inputs

from sensory cells (Fig. 3B). These neurons would not receive

adequate drive and would therefore contribute less to the

dynamics. Conversely, networks with more consistent numbers

of inputs per cell were more flexible and thus better at learning. In

addition, the wirings that produced unevenly-performing (across

targets) networks often appeared to have a strong innate bias

towards flexion or extension. Fig. 4 compares a wiring that

produced good learning across all 5 targets (3 shown; Fig. 4A)

compared to another wiring that would only learn the 2 most

flexed targets (1 shown; Fig. 4B). Note that all the random babble

activations in Fig. 4B produced networks that learned the flexion

position (135u) and did not learn any other position, save 105u (not
shown). Furthermore, these networks learned flexion more quickly

than any of the networks of Fig. 4A.

The successful performance seen in Fig. 4A might have

depended on metastable learning: learning due solely to ongoing

reward and punishment feedback changing the proprioceptive-to-

motor mapping in an ad hoc fashion, as opposed to a stable

mapping being learned to guide the arm in the correct direction.

We therefore tested for stability by assessing performance with

learning turned off after training. Performance remained stable

with median final error of 6.8u (IQR=4.1–13.0; N=125

simulations), statistically unchanged from the final error with

learning turned on. Stable learning suggested the development of

an attractor around the target that was sufficiently deep to

compensate for deviations produced by ongoing babble input.

In order to assess learning algorithm adaptability to altered

environmental circumstances, we switched targets after training

(targetswitch). We performed a Wilcoxon sign-rank test to

compare performance on the first and second target positions

and found that there was no significant difference (p~0:18,
N~50). Likewise, when we performed a Wilcoxon rank-sum

statistic test comparing performance on the first target sequence

(Fig. 5A) vs. the second (Fig. 5B), we found no significant difference

(p~0:62, N~25). This suggests that target switching performance

is independent of target ordering or place in the sequence. The

new target was generally learned rapidly, within 25 s after the

switch. Those wirings that could not learn the separate single

target trials for both first and second target could also not learn

target switching between the two.

Plasticity was confined to ESREM weights. Reward-only and

punisher-only algorithms each only allowed change in 1 direction

and thus produced monotonic alterations in weights. The reward-

and-punisher algorithm produced a net increase in weights, but

allowed weights to balance in a way not possible with only one

learning direction. Separate populations of EM cells drove

extension and flexion of the virtual forearm, with overall arm

motion being determined by the difference between the aggregate

subpopulation firing rates. To understand the net effect of

learning, we examined the activity produced at each arm angles

at increments of 5u. Fig. 6A shows the rotation commands that are

the differences of flexor (red) and extensor (blue) EM cell aggregate

firing rates for post-learning. The black vertical line indicates the

target the model was trained to reach for (35u). The dotted vertical

line at 25u indicates a condition where the arm angle is less than

the target, and the dotted line at 65u indicates a condition where

the arm angle is greater than the target. Fig. 6B shows the firing of

the individual EM cells under the over-extended example (25u).
Both flexion and extension EM cells learn to burst here in response

to 25u, but the net firing of the flexion cells (red) wins. Fig. 6C

shows the firing of the individual EM cells under the over-flexed

example (65u). Here, only extension cells effectively learn to burst

in response to 65u, making extension (blue) the clear winner.

Learning generally caused certain cells to burst at rates up to

12 Hz in response to particular detected angles. With some

notable exceptions (e.g. 10u and 70u), Fig. 6A indicates that flexion

wins, as is desired, when the arm angle is less than the target, and

Figure 3. Performance across learning conditions and random
wiring seeds. A. End-of-trial errors under different learning conditions:
no learning, reward-only, punisher-only, reward-and-punisher; N~125
for each: 5 target angles (0u, 35u, 75u, 105u, 135u)65 random wirings65
random babble noise inputs. B. Learning performance as a function of
the percentage of EM cells that have low-convergence, defined as
having fewer than five afferent inputs. The final error appears to be
strongly correlated with the proportion of low-convergence cells (N~5;
Pearson’s r~0:83, p~0:08).
doi:10.1371/journal.pone.0047251.g003

Reinforcement Learning in a Spiking Neuron Model

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e47251



extension wins when the angle is greater. The aggregate learning

effect is an attractor around the target at 35u.

Discussion

We have created a model of motor reinforcement learning for

a simple target reaching task for a virtual forearm, using spiking

units whose weights are trained using a reinforcement learning

algorithm. Baseline spiking rates were adjusted to be comparable

with rates observed in cortical tissue (Fig. 2). Both reward and

punishment together were essential for learning the task (Fig. 3A).

The model was able to learn a stable attractor for the target, not

merely relying on metastable, ad hoc learning for performance.

The model was not only able to learn under different initial target

training situations, but was able to relearn (Fig. 5). Reinforcement

learning worked by shaping the collective activity of the EM cells

through synaptic plasticity in the ES to EM projection (Fig. 6).

This plasticity shaped EM responses to the proper mixture of ES

activations to produce the desired behavior. We note that the

simplicity of our one degree-of-freedom task, compared to the

complexities of limb movement, reduces the scope of what can be

demonstrated in this model. In particular, the network did not

need to obtain stable intermediate synaptic strengths, as would be

required in higher-dimensional tasks.

We predict that learning of a motor task will require both

reward and punishment signals, hence both LTP and LTD in

motor cortex, regulated through differential dopaminergic signal-

ing. However, there are many additional synaptic influences in

neocortex that were not included in this model. Adaptation in cell

firing rate based on global synaptic input (homeostasis) or

interactions between the strength of synapses (normalization)

could provide alternative ways of achieving synaptic decrementa-

tion without punishment/LTD. All of frontal cortex, including

M1, is innervated extensively by dopaminergic projections from

the ventral tegmental area which could provide regulation of

plasticity [30–32]. There is evidence that increased dopamine

concentration leads to synaptic LTP and that decreased dopamine

concentration leads to synaptic LTD mediated via action of D1-

family receptors [42,43]. We therefore predict that dopaminergic

innervation of M1 from the VTA would be required for learning,

and that antagonism of D1 would be likely to impair acquiring of

Figure 4. Target learning for twomodel wirings. Columns A and B show different wiring seeds, while each panel shows 5 different babble input
random seeds with median final performance in red (calculated over 100–200 s; only 0–120 s shown).
doi:10.1371/journal.pone.0047251.g004

Figure 5. Serial target learning. A. 35u 0u. B. 0u 35u. (blue: 4 babble
traces; red: median trial; wiring from Seed 1 of Fig. 4.).
doi:10.1371/journal.pone.0047251.g005

Reinforcement Learning in a Spiking Neuron Model
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motor tasks. Various kinds of learning are impaired by disruption

of dopaminergic pathways [44–48]. Parkinson disease patients,

who have damage to midbrain dopaminergic nuclei, including

VTA [49], have deficits reward-based learning [49–51].

Stable learned mappings can still permit rapid learning and

unlearning due to shifting reinforcement conditions (Fig. 5).

Similar metastable behavior is seen in the ongoing error

corrections in adult bird-song production, which relies on

sensorimotor integration [52]. Shifting reinforcement conditions

are a typical feature of an animal’s environment. Areas of the

habitat once rich in food may become depleted, or once-safe areas

may later be occupied by predators, making the capability for

rapid unlearning and relearning of reward and punishment

conditions important for survival.

Babble noise in a motor system is likely to be important in the

exploration needed to drive successful animal reinforcement

learning. Random motor activity provides the variation required

by selection. Movements or programs can then be reinforced,

consistent with a selective hypothesis [53]. This interaction of

babble and learning has been most clearly demonstrated in the

variability of Bengalese finch bird-song. In this species, the lateral

magnocellular nucleus of the anterior nidopallium (LMAN), a part

of the basal-ganglia forebrain circuit, projects to pre-motor areas

which activate song production. LMAN provides a source of

variability which is required for song-learning to take place via

a process of random exploration and learning [54,55]. In primates,

exploratory behavior has been associated with activity in anterior

cingulate cortex (ACC) [56,57] and frontopolar cortex (BA 10)

[58,59], which is also connected to ACC [60]. It has been

proposed that there may be a ventral striatal-to-cortical loop

gating activity in one or both of these areas that mediates the onset

and offset of motor babbling noise applied to the cortical actor

[20].

In our present model, babble remained at the same level

throughout learning. Babble thus interfered with the stability of

learned mapping. This interference could be reduced by setting

babble noise adaptively to reflect the current level of reward and

punishment that the actor is receiving: high levels of punishment

or low levels of reward should encourage babbling, whereas high

levels of reward should discourage it [20]. This would reduce

overall exploratory behavior, but allow it to be re-engaged during

environmental change. Variability in the motor system should be

maintained, yet be carefully regulated [55].
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