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A promising approach for musculoskeletal repair and regeneration is mesenchymal-stem-cell- (MSC-)based tissue engineering.
The aim of the study was to apply a simple protocol based on mincing the umbilical cord (UC), without removing any blood
vessels or using any enzymatic digestion, to rapidly obtain an adequate number of multipotent UC-MSCs. We obtained, at passage
1 (P1), a mean value of 4,2x10° cells (SD 0,4) from each UC. At immunophenotypic characterization, cells were positive for CD73,
CD90, CD105, CD44, CD29, and HLA-I and negative for CD34 and HLA-class II, with a subpopulation negative for both HLA-I
and HLA-II. Newborn origin and multilineage potential toward bone, fat, cartilage, and muscle was demonstrated. Telomere length
was similar to that of bone-marrow (BM) MSCs from young donors. The results suggest that simply collecting UC-MSCs at P1
from minced umbilical cord fragments allows to achieve a valuable population of cells suitable for orthopaedic tissue engineering.

1. Introduction

The repair and regeneration of bone, articular cartilage, and
muscle are a major challenge in biomedical research. One
of the most promising approaches is represented by mes-
enchymal stem-cell-based tissue engineering. Mesenchymal
stem cells (MSCs) have been under constant investigation
since the 1990s [1] for their excellent proliferation potential
and their capability for differentiation into multiple lineages.
Moreover, their immunosuppressive properties make them
a suitable candidate for allogenic cell therapy. Allogenic
cell-based approaches imply MSCs to be isolated from a
donor, expanded, and cryopreserved in allogenic MSC banks,
providing a readily available source for cell replacement
therapy.

Bone marrow (BM) represents the most commonly used
source of adult MSCs. BM-MSCs have been functionally
defined as plastic-adherent, nonhaematopoietic, multipoten-
tial cells that support haematopoietic stem cells expansion in
vitro and that are able to differentiate into cells of various
connective tissues. Various cell-surface markers have been
associated with a mesenchymal phenotype, as CD105, CD73,
CD90, and HLA-ABC proteins, while lack expression of
CD45, CD34, CD14, or CD11b, CD79 alpha or CD19 and
HLA-DR were also considered characteristic of this cell pop-
ulation [2]. Previous studies have extensively shown their
ability to differentiate into bone [3, 4], muscle [5], adipose
tissue [6], cartilage [7], and tendon [8]. Nevertheless, several
limitations as the painful procedure for BM collection, the
limited number of BM-MSCs available for autogenous use,
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and the concomitant reduction in allogeneic BM donations
have raised an increasing interest in identifying alternative
sources of MSCs.

Human umbilical cord (UC) has been recently suggested
as a valid alternative tissue for MSCs [9]. The UC is a
tissue of extraembryonic origin lying between the mother
and the fetus, consisting of two arteries, one vein, intervessels
connective tissue (the Wharton’s jelly), and umbilical epithe-
lium. The UC is normally discarded after birth. Therefore,
UC collection does not require any invasive procedure nor
implies major ethical concerns. MSCs have been isolated
from all compartments of the umbilical cord tissue, namely,
the umbilical vein endothelium and subendothelium and
the Wharton’s jelly. Within Wharton’s jelly, MSCs have
been isolated from three regions: the perivascular zone
(UC perivascular cells), the intervascular zone, and the
subamnion. MSCs can be also isolated from umbilical
cord blood, but the limited amount of blood that can be
collected and the technical difficulties of this procedure
make umbilical cord blood less suitable than UC connective
and perivascular tissues. Both Wharton’s jelly-derived cells
and umbilical vein perivascular cells (endothelium- and
subendothelium-derived MSCs) have shown multilineage
capability along with immunoregulatory properties [10,
11]. It has been shown that a single injection of MHC-
mismatched unactivated human UC-MSCs did not induce
a detectable immune response [12]; therefore, they can be
tolerated in allogeneic transplantation [13]. These cells share
with BM-MSCs several surface markers as CD73, CD90, and
CD105 and did not express CD34 [14]. Moreover, UC-MSCs
show low expression of HLA class I and no expression of HLA
class IT unless stimulated with IFN-y [15, 16].

The aim of this study was to apply a simple protocol
based on mincing the whole UC, without removing any
blood vessels or using any enzymatic digestion, in order to
obtain an adequate number of multipotent UC-MSCs at P1.
This method did not imply selecting a single cell population
from the different UC regions (Wharton’s jelly, endothelium,
and subendothelium) but allowed for accessing to a mixed
population of MSCs from all UC areas. Multilineage poten-
tial of these cells, immunophenotype, origin, and telomere
length were verified at P1. This study intends to identify a
cell population suitable for tissue engineering applications
in orthopaedics and musculoskeletal medicine with a simple
method with minor cell manipulation, in order to establish
a good manufacturing practice protocol for the isolation and
expansion of multipotent UC-MSCs.

2. Materials and Methods

Approvals were obtained both from the Ethical Committee
of MBC (Molecular Biotechnology Center), University of
Torino, and from the Ethical Committee of Mauriziano
Hospital, Torino (Italy).

2.1. UC Collection and Processing. After obtaining patient’s
own informed consent, 4 fresh UC samples of women
with healthy pregnancies were retrieved at the end of

Stem Cells International

gestation during caesarean deliveries from the Department of
Obstetrics and Gynecology of Mauriziano Hospital (Torino,
Italy).

The UC samples (mean length 29,5 =+ 4,8 cm, range 25—
35 cm, weight 30,5 = 5,3 g, range 25-36 g) were collected
in a phosphate-buffered saline (PBS) transfer medium con-
taining 200 mg/100 mL ciprofloxacin (Bayer, Milan, Italy),
5001IU heparin (Pharmatex, Milan, Italy), and were imme-
diately processed. After transferring under a sterile laminar
flow cell culture hood, the cord length and weight were
estimated and the UC was washed twice in PBS to remove
the traces of contaminant red blood cells. The UC was
firstly cut into 3 cm long segments, which were subsequently
cut longitudinally and split open to expose the inner
surface. The UC segments were transferred to a 60 cm?
Petri dish (Corning, New York, NY, USA) containing 10 mL
MSC expansion medium, consisting of Dulbecco’s Modified
Eagle Medium/F-12 (D-MEM) (Invitrogen, Carlsbad, CA,
USA) enriched with 5% human platelet lysate obtained
from healthy donors, 10% Fetal Bovine Serum (FBS), 1X
penicillin/streptomycin, 1X sodium pyruvate, 1X nonessen-
tial amino acids (Invitrogen, Carlsbad, CA, USA), 500 IU
heparin (Pharmatex, Milan, Italy). The UC segments were
then manually minced into very small cuboidal fragments
(4-7mm length) using no. 15 sterile scalpels. The small
UC fragments were then transferred and evenly distributed
into 6-7 different 60 cm? Petri dishes (approximately 40-45
fragments/Petri dish) and incubated in the MSC expansion
medium at 37°C in a humidified atmosphere with 5% CO,
(day 0) (Figures 1(a), 1(b), and 1(c)). Fragments of UC were
left undisturbed in culture and monitored for up to 2 weeks
to allow identification of MSCs in the dishes.

2.2. Culture of UC-MSCs. After 2 weeks from the initial
seeding (day 14), the UC tissue was removed and adherent
cells were allowed to expand for 2 additional weeks. Forty
percent of the medium was changed every 3-4 days. After
this time period (day 28), the adherent cells (P0) were
trypsinized, centrifuged at 1200 rpm for 10 min, resuspended
in MSC expansion medium, and replated for one consecutive
expansion step at a density of 100-200 cells/cm?, until full
confluence was reached (P1). Cell confluence at P1 was
reached after approximately 14 days (day 42).

At the end of P1 passage (day 42), the living cells were
counted by trypan blue dye exclusion (Sigma-Aldrich, St.
Louis, MO, USA).

UC-MSCs from three UC were used for immunophe-
notypic characterization, multilineage differentiation, and
fluorescence in situ hybridization. UC-MSCs from one UC
were used for telomere length analysis.

2.3. Immunophenotypic Characterization of UC-MSCs. Im-
munophenotyping of the expanded UC-MSCs was done
using flow cytometry at the P1 passage of culture. 1,5 X 10°
UC-MSCs were used for flow cytometry.

The following antibodies were used: CD90-Peridinin
Chlorophyll Protein (PerCP)-cyanine dye Cy5.5, CD105-
fluorescein isothiocyanate (FITC) (Biolegend, San Diego,
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(c)

FiGure 1: Umbilical cord processing method (a, b, c).

CA), CD73-Allophycocyanin (APC), CD34-phycoerythrin
(PE), HLA-DR-FITC, HLA-PerCP, HLA-ABC-PE, CD29-
APC (BD Biosciences, San Jose, CA), CD44-Alexa Fluor (Cell
Signaling Technology, Danvers, MA), PE-conjugated anti-
mouse immunoglobulin G (IgG) (Southern Biotechnology
Associates, Birmingham, Alabama, USA), isotypematched
IgG-FITC, IgG-PE and IgG-PE-Cy5 control antibodies (Bio-
legend, San Diego, CA).

Analysis was performed on a FACScan (Becton Dickin-
son (BD), Buccinasco, Italy) for at least 10.000 events and
using CellQuest software (BD).

2.4. UC-MSCs Differentiation. UC-MSCs at P1 from three
UC samples were assessed for multilineage differentiation.

The adipogenic, osteogenic, chondrogenic, and myogen-
ic differentiation ability of UC-MSCs was determined as
briefly described, following previously published methods
1, 14].

For adipogenic differentiation, 5 x 10> UC-MSCs were
cultured with EUROMED Adipogenic Differentiation Kit
(EuroClone, Pavia, Italy) for 3 weeks. To evaluate the differ-
entiation, cells were fixed with 4% paraformaldehyde in PBS
for 20 minutes at room temperature and stained with 0.5%
Oil Red O (Sigma-Aldrich, Milan, Italy) in methanol (Sigma-
Aldrich, Milan, Italy) for 20 minutes at room temperature.

Osteogenic differentiation was assessed by culturing
5% 10> UC-MSCs in EUROMED Osteogenic Differentia-
tion Kit (EuroClone, Pavia, Italy). Medium was changed
twice a week for 3 weeks. To evaluate the differentiation, cells
were fixed with 4% paraformaldehyde for 20 minutes and
stained with Alizarin Red, pH 4.1 (Lonza, Bergamo, Italy)
for 20 minutes at room temperature. Cells were also studied
with Alkaline Phosphatase stain (Alkaline Phosphatase Kit-
based on naphthol AS-BI and fast red violet LB, Sigma-
Aldrich). For immunofluorescence analysis, we also cultured
cells directly on coverslips in the same conditions to identify
the presence of osteocalcin (Abcam, Cambridge, UK) [17].

A pellet culture system was used for chondrogenesis
(Figures 5(a) and 5(b)). Approximately 1 x 10° UC-MSCs
were centrifuged in 15-mL conical polypropylene tube
(Falcon BD Bioscience, Milan, Italy) at 150 g for 5 minutes
and washed twice with DMEM. The pellets were cultured in
EUROMED Chondrogenic Differentiation Kit (EuroClone,
Pavia, Italy) supplemented with 10 ng/mL of Transform-
ing Growth Factor 3 (SeroLab, Lausanne, Switzerland).
Medium was changed every 3 days for 28 days. Pellets were
fixed in ethanol 80% overnight, and the paraffin-embedded
sections were stained for glycosaminoglycans using Safranin
O and for sulfated proteoglycans with Alcian blue (Sigma-
Aldrich, Milan, Italy) an with Toluidine Blue [18].



Myogenic differentiation was performed using 5 x 10°
UC-MSCs, plated in six-well culture plates (BD Falcon,
Milan, Italy) on coverslips in DMEM with 10% knockout
serum, 1% penicillin, 1% streptomycin, 0.1 mM S-mercap-
toethanol, and 40 ng/mL fibroblast growth factor (FGF) [14].
The medium was changed every 3 days. After 21 days in cul-
ture, cells were immunostained with a monoclonal antibody
against human myogenin (Abcam, Cambridge, UK).

The same osteogenic, chondrogenic, and adipogenic
differentiation protocols were used on a population of BM-
MSCs as a control.

2.5.  Immunofluorescence  Analysis. Immunofluorescence
analysis of cells is briefly described as it follows.

The UC-MSCs grown on glass coverslips were rinsed
briefly in phosphate-buffered saline (PBS 1X) and fixated
with 4% paraformaldehyde in PBS pH 7.4 for 15min at
room temperature. Samples were washed three times with
PBS 1X. To obtain permeabilization, samples were incubated
for 1 min with PBS 1X containing 0.5% Triton X-100 and
washed three times with PBS 1X. For blocking, cells were
incubated with 1% BSA in PBS 1X for 1 hour to block
unspecific binding of the antibodies; then samples were incu-
bated with the primary diluted antibody (antiosteocalcin or
antimyogenin, depending on the cell line) in 0.1% BSA in
PBS 1X in a humidified chamber for 1 hr at room tempera-
ture (dilution 1:50). Then, the cells were washed three times
in PBS 1X and subsequently incubated with the secondary
antibody (anti-mouse conjugated with Alexa Fluor 488,
Invitrogen, Milan, Italy) in 0.1% BSA for 1hr at room
temperature in dark (dilution 1:1000). The solution was
washed three times with PBS, and, for counterstaining, cells
were incubated with DAPI (4',6-diamidino-2-phenylindole,
DNA stain) for 7 min. Then, cells were rinsed with PBS 1X
three times for 15min; finally, the coverslip was mounted
with a drop (5 yL) of mounting medium for observation.

2.6. Fluorescence In Situ Hybridization. The origin of UC-
MSCs was performed using a fluorescence in situ hybridiza-
tion (FISH) for 2 UC samples. This was carried out in the
two cases of male newborns among the four UC specimens
collected. 1 x 10° cells were used.

The probes used were X centromere Xpll.l-qll.1
(DXZ1) (green) and Y heterochromatin Yq12 (DYZ1) (red).
The enumeration probe set contained chromosome specific
DNA repeat sequences located at the centromere of chromo-
some X and in the heterochromatic block of chromosome Y
(Cytocell Aquarius, Cambridge, UK).

Cells derived from P1 were fixed in Carnoy’s fixative,
according to the institutional protocol guidelines. FISH
protocol was performed according to the manufacturer’s
instructions (Cytocell Aquarius, Cambridge, UK). Results
were analyzed using fluorescence microscope (Olympus-
BX41, magnification 100x, triple filter RED-GREEN-DAPI).

2.7. Telomere Length Analysis. Telomere length was evaluated
on UC-MSCs at P1 from one UC, and results were compared
to telomere length of bone marrow MSCs taken from bone
marrow aspirate of 6 healthy adult volunteers (age 20-30).
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Approximately, 4 x 10° cells were used for telomere
length analysis. This analysis was performed on one UC
only. Telomere length was determined using a Southern Blot
analysis as previously described [19]. 2ug of DNA were
digested by mixing Hinf I (20U) and Rsa I (20 U; Roche
Diagnostic, Mannheim, Germany) and incubated at 37°C for
2 hours. Digested DNA fragments were separated by 0.8%
agarose gel electrophoresis in 1X Tris-acetate-EDTA running
buffer. Positively charged nylon membrane was used to
transfer DNA separated by electrophoresis. After overnight
transfer, the nylon membrane was exposed to ultraviolet
light to fix DNA fragments. TeloTAGGG Telomere Length
Assay Kit (Roche Diagnostic) was used for the hybridization
phase. The membrane was submerged in a prehybridization
solution for 2 hours at 62°C under gentle stirring and
then incubated in the hybridization solution (2uL of the
digoxigenin (DIG-) labeled telomere-specific probe added
to the prehybridization solution) for 3 hours at the same
temperature. After hybridization, the membrane was washed
twice at room temperature in stringent wash buffer I (2X
SSC, 0,1% SDS) for 10 minutes and then twice at 37°C
in stringent wash buffer II (0.2X SSC, 0,1% SDS) for 20
minutes; it was incubated with blocking solution 1X for
30 minutes at room temperature and then with a DIG-
specific antibody covalently coupled to alkaline phosphatase
(AP). Finally, CDP Star, a chemiluminescent substrate, was
dropped onto the membrane to stimulate AP to produce
light emission. This emission was detected by X-ray film
(Lumi-Film Chemiluminescent Detection Film, Roche Diag-
nostic) and scanned for analysis. Analysis was performed
using Quantity One (BioRad). For each telomere smear,
peak telomere restriction fragments length and the point of
maximum signal intensity defining the highest concentration
of telomere repeats were calculated as the median value of
telomere length of the cell population examined.

2.8. Statistical Methods. The Student’s t-test was used to
compare telomere lengths evaluated in UC-MSCS and in
healthy people bone marrow. Differences were considered
significant for P < 0, 05. Statistical analysis was carried out
with the statistical software package GraphPad Prism 5.0
(GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Morphologic and Immunophenotypic Characterization
of UC-MSCs. In primary cultures, typical spindle-shaped
adherent cells were observed migrating from the UC tissue
fragments and initiating the colony formation approximately
at day 14 after UC fragments seeding. After removing the
UC fragments at day 14, cells at PO took approximately 10-
days period to gain 60% confluence (Figure 2), while full
confluence was observed after 14 days. The UC-MSC clones
(P0O) were then collected at day 28 and replated for further
expansion (P1). Confluence at P1 was observed after 14 days
of culture (day 42).

At day 42, we obtained at P1 a mean value of 4,2 x 10°
cells + 0,4 from each UC. From the initial UC fragments
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FiIGUre 2: MSCs from the umbilical cord tissue during cell
culture. Cell cultures (PO) 10 days after UC fragments removal
(24 days of culture), magnification 10x. Cells show a fibroblast-like
morphology.

seeding (day 0), we obtained at the end of P1 (day 42)
0,14 x 10° cells/g of UC seeded.

The phenotype of UC cells was analyzed by flow cytom-
etry. Data from one representative experiment are reported
in Figure 3. The majority of collected UC cells showed a
positive expression of the main MSC markers CD73, CD90,
and CD105, as well as of CD44 and CD29. Furthermore, they
were negative for the typical haematopoietic marker CD34.

The data also demonstrated the presence of HLA-ABC
proteins and the absence of HLA-DR. Additionally, we have
visualized a notable presence (40%) of negative double cells
for both HLA-ABC and HLA-DR proteins.

3.2. Differentiation of UC-MSCs. In the osteogenic-stimu-
lated cultures, significant calcium deposition was observed
with Alizarin Red staining inside the cluster of cells after 21
days, consistent with osteogenic commitment of UC-MSCs.
UC-MSCs showed a pattern similar to bone-marrow MSCs
after 21 days of cultures with the same medium, as it is shown
in Figures 4(a) and 4(b).

Cells were also positive for alkaline phosphatase stain
(Figure 4(c)).

Osteocalcin was found in cytoplasm at immunofluores-
cence in UC-MSCs after commitment toward osteogenic
pathway (Figures 4(d) and 4(e)).

Chondrogenic commitment with the pellet culture sys-
tem was observed at 28 days. At the histological evaluation,
pellets of UC-MSCs from all three UCs exhibited positive
staining for Alcian Blue and Safranin O (Figure 5) and Tol-
uidine blue methods (data not shown). UC-MSCs showed
roundish shape and a pattern similar to bone-marrow MSCs
cultured in the same conditions, as it is shown in the Figure 5.

Myogenic commitment was observed in cell cultures
(Figure 6) after 21 days. At immunofluorescence, cells from
all three UCs were positive for antimyogenin antibody.
Positivity was observed predominantly in the nuclei and
lesser in the cytoplasm, according to the literature [20].

In the adipogenic-stimulated cultures (Figure7), UC-
MSCs showed lipid deposition and changes in the cellular
morphology after 21 days. In all cultures from three UCs,

intracellular lipid granules staining positive with Oil Red O
were detected after 3 weeks. At variance with bone marrow
derived adipocytes, that show larger vacuoles, in our culture
UC-MSCs showed smaller lipid vacuoles, possibly related to
brown fat commitment.

3.3. Fluorescence In Situ Hybridization of UC-MSCs. Cytoge-
netic analysis of UC-MSCs was performed in two cases of
male newborns. The method showed that UC-MSCs were
mainly XY (95% and 100%, resp.). This is consistent with
a prevalent newborn origin of these cell populations.

3.4. Telomere Length Analysis. Telomere length of UC-MSCs
from one UC was determined and compared to telomeres of
BM-MSCs at P1 taken from 6 adult volunteers (age 20-30)
(Figure 8).

No significant difference was observed between the two
cell population. Median value of UC-MSC telomere was 9023
base pairs (9,023 kbp), while median value from all 6 donors
was 9340 base pairs (range 7,872-9,867 kbp).

4. Discussion

In this study, we apply an easy, reliable, and repeatable
method to isolate a mixed population of UC-MSCs from
umbilical cord fragments. This protocol was based on simply
mincing UCs directly in the MSC expansion medium with
minimal mechanical manipulation. We did not remove any
blood vessels, and we did not use any enzymatic digestion
or any additional purification steps in order to avoid the
possible selection of cellular subpopulations. With this
feasible method, we collected an adequate number of UC-
MSCs already at P1. At immunophenotypic characterization,
cells at P1 were positive for the major MSC markers (CD73,
CD90, CD105, CD44, and CD29) and negative for the typical
haematopoietic marker CD34. Furthermore, we did not find
HLA class II in all cells, and we have also observed the
presence of a peculiar subpopulation of double negative
(HLA-I and HLA-II) UC-MSCs. UC-MSCs obtained with
this protocol seem to have a newborn origin and are capable
to be committed towards multiple lineage as bone, fat,
cartilage, and muscle. Telomere length was similar to that
of BM-MSCs taken from young donors. Taken together, all
these observations suggest that collecting UC-MSCs at P1
from minced umbilical cord fragments allows to achieve
a valuable population of UC-cells that could be used for
orthopaedic tissue engineering applications.

In orthopaedics, cell therapy is widely used to enhance
tissue repair in different pathologic conditions involving
long bone defects or osteochondral lesions. Different cell
sources are proposed by tissue engineering, as autologous
bone marrow aspirate or allogeneic cells (i.e., allogeneic BM-
MSCs or allogeneic chondrocytes). These cells are usually
loaded onto suitable scaffolds and directly transferred to the
lesion site. This “one-stage” approach eliminates patient’s
own cell “in vitro” expansion and is considered less expensive
than traditional autologous cell culture and implantation,
especially in the field of cartilage repair [21].
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HLA-DR proteins.

Autologous bone marrow cells and bone marrow con-
centrate are regarded as the “gold standard” for bone and
cartilage repair [22, 23]. Nevertheless, donor site morbidity is
a drawback of this cell source. Additionally, proliferative and
differentiation capacity of BM-MSCs are shown to decline
with increasing patient’s age [24]. Moreover, in bone marrow
concentrate, a small number of MSCs are available, thus
reducing the efficacy of the cell delivery.

Allogeneic bone marrow could be considered as a
solution for these limitations [25], but reduced availability
of this resource and decline in BM donations [26] make
this solution impractical for large-scale clinical use in
orthopaedics.

UC has been recently introduced as a potential alter-
native to BM in musculoskeletal tissue engineering. Many
hypothetical advantages make UC an interesting source of

cells. UC is readily available in great quantity, as it is usually
discarded during both normal vaginal delivery or cesarean
sections. Collecting this source of cells implies no invasive
procedure and low costs. Being UC an extraembryonic tissue
usually abandoned at the end of the delivery, few ethical
problems and legal concerns are involved in this procedure,
provided that a complete and informed written consent is
obtained from the mothers. Recent studies have shown that
MSCs can be obtained from all different compartments of
UC, as the Wharton’s jelly [10], the perivascular regions
[27], and the subendothelium and endothelium areas of
UC vessel [11]. All these works have also shown the
multilineage potential of these cell populations. Greater
expansion capability and long telomere sequences have
been observed in UC-MSCs, suggesting a late onset of
senescence of this cell population compared to BM-MSCs
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(d)

FIGURE 4: Osteogenic differentiation. Alizarin red staining revealing formation of calcium deposition in UC-MSCs (a) and in human BM-
MSCs (b); (c) alcaline phosphatase cytoenzymatic staining of UC-MSCs; immunofluorescence for osteocalcin in UC-MSCs cultured in
osteogenic medium; (d) osteocalcin stained with primary antibody against and with a secondary antibody anti-mouse (conjugated with
Alexa Fluor 488) and merged with DAPI (blue, nuclei), (e) negative control with DAPI and secondary antibody only.

during in vitro expansion [28]. Immunosuppressive capacity
of UC-MSCs and the absence of tumorigenic potential and
cytogenetic abnormalities of this cells, when expanded in
culture or implanted in vivo, have been extensively described
in previous studies [26, 29]. Finally, the theoretical possibility
to combine UC-MSCs from multiple donors increases the
availability of this source of cells and might be beneficial
when a great number of cells are required for a single
procedure [30, 31]. All these observations confirm the
attractive therapeutic potential of UC-MSCs.

In this study, we have applied an easy and rapid method
to collect an adequate number of UC-MSCs, by simply
mincing the UCs and cultivating the small UC fragments
and the migrating MSCs for a total of 6 weeks in a standard
culture medium enriched with human platelet lysate and
fetal bovine serum.

Previously reported methods have described the isolation
of MSCs from UC through multiple steps in order to select
a specific cell source. In 2003, Mitchell et al. introduced a
technique to collect multipotent stem cells from Wharton
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Figure 5: Chondrogenic differentiation. Cells growing in pellet culture system in chondrogenic medium (a, b). Histological section after
chondrogenic commitment; UC-MSCs (c) and BM-MSCs (d) stained with Alcian Blue; UC-MSCs (e, f) and BM-MSCs (g) stained with

Safranin O (f): higher magnification).

(c)

(d)

FIGURE 6: Myogenic differentiation. Phase contrast microscopy of cultures grown in myogenic medium for 21 days (a) at low magnification,
immunofluorescence for myogenin in cells cultured in myogenic medium for 21 days; (b) myogenin stained with primary antibody against
and with a secondary antibody anti-mouse (conjugated with Alexa Fluor 488); (c) merged with DAPI (blue, nuclei); (d) negative control

with DAPI and secondary antibody only.

jelly by removing all vascular network [32]. In 2004, Wang et
al. proposed to scrape off the Wharton jelly from the whole
UC and to perform an enzymatic digestion with collagen-
ase and trypsin [33]. Recently, Montanucci et al. [34] dem-
onstrated a procedure involving multiple enzymatic diges-
tion with hyaluronidase and human recombinant Liberase

of UC samples and centrifugation of the digestion prod-
uct to cleave the cells out of the original Wharton jelly
matrix. Complex methods are also required to isolate
human umbilical cord perivascular cells, implying tissue
dissection in order to isolate UC vessel, collagenase digestion,
centrifugation, and magnetic bead depletion protocol [27].
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FiGureg 7: Adipogenic differentiation. Oil Red O staining of adipogenic differentiation of UC-MSCs (a) with formation of smaller lipid

vacuoles and of BM-MSCs (b) with formation of large vacuoles.

In all these studies, selected cell populations were obtained
with detailed procedures that, albeit effective, implied non-
negligible tissue manipulation. All these procedures may be
considered too complicated for a clinically oriented large-
scale cell therapy.

These observations encouraged us to apply a simple,
practical, and economic method to rapidly obtain a mixed
MSC population from minced umbilical cord, similarly to
recent studies [26, 30].

In order to reduce the risk of external contamination,
only UCs from cesarean sections were utilized. In our
opinion, UCs from cesarean sections are more suitable for
tissue engineering than UCs from vaginal delivery, due to the
possibility to collect these samples in the clean environment
of the operating room.

The method described in this study has some practical
advantages. It allows to cut off time-consuming steps involv-
ing the use of enzymatic solution and the need for long
incubating period. It involves a minimal tissue manipulation
consisting in mechanically mincing the tissue. This principle
does not impair the vitality of the tissue, as shown in previous
work involving cartilage biopsies [35] and UC samples [30].
Moreover, a mixed MSC population is obtained with our
method, in order to preserve the “mesenchymal properties”
of all UC compartments.

With our protocol, an adequate number of cells was
obtained to perform all studies from each UC without
multiple expansion passages. This study was not designed
to primarily obtain large number of cells, harvesting the
maximum number of UC-MSCs from each cord as a clinical
use should require. This method was aimed to extract a
consistent number of cells with minimal manipulation for a
preliminary in vitro pilot study. Indeed, the natural tendency
of MSCs to attach to plastic dishes was the main element of
our separation technique. For this reason, a great amount
of umbilical cord was discarded after 15 days of incubation
and not used to obtain more MSCs. The final number of
cells, albeit not exceedingly high, was nevertheless sufficient

for the whole design of the experiment including the cell
characterization and the commitment toward osteoblastic
or chondroblastic or myoblastic or adipoblastic line. In
light of an in vivo application, these methods could be
anyway suitable, because the umbilical cord is a virtually
unlimited source of cells normally discarded after birth
and the extraction efficiency can be therefore a secondary
problem when the primary source of cells is widely available
at no costs. We are nevertheless aware that processing the
whole umbilical cord with different harvesting procedures
and different method of mincing and expanding the cell
population would theoretically lead to a greater number of
cells available from each UC.

The MSCs collected showed a fibroblast-like morphol-
ogy, when adherent to the plastic dishes. At the immunophe-
notypic characterization, cells exhibited a phenotype similar
to that of BM-MSCs, being positive for the main MSC
markers (CD73, CD90, CD105), for CD44, CD29, and HLA
class I and negative for the haematopoietic marker CD34
and for HLA class II, in agreement with other reports [36].
Interestingly, a peculiar population of UC-MSCs negative
both for HLA class I and HLA class II was found. This
“double negative” cell population seems particularly suitable
for an allogeneic use. Further studies will aim to properly
separate these specific cells in order to apply them in future in
vivo experiments. The mixed UC-MSC population obtained
with this method was shown to have a newborn origin. This
can partially explain the great plasticity of these cells.

Indeed, we obtained osteogenic, adipogenic, chondro-
genic, and myogenic early commitment after culture with
differentiation media. We are aware that we did not reached
a morphology similar to differentiated tissues, but rather we
observed a commitment toward a specific cell type or, in
other words, a progression toward an osteoblastic or chon-
droblastic or myoblastic or adipoblastic line. Moreover, we
still observed differences in the plasticity of these cells com-
pared to BM-MSCs, that show a more advanced differen-
tiation stage in similar culture conditions (see comparative
Figures 4, 5, 6, and 7).
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FiGUre 8: Telomere length of UC-MSCs compared to telomere length of BM-MSCs from 6 different donors (age 20-30) as assayed by

Southern Blot analysis of DNA restriction fragments.

Published data on UC-MSC differentiation potential are
still controversial; our results are in contrast with some pre-
viously reported observations showing low capacity of UC-
MSC to differentiate towards bone, adipocytes, and chondro-
cytes [15, 26, 37]. We believe that the osteogenic, adipogenic,
and chondrogenic commitment obtained in this study may
be related to the specific composition of the medium used in
this protocol and possibly could be further improved. These
early commitment stages could be further enhanced by the
influence of the in vivo microenvironment to complete the
differentiation process.

For all these reasons, these cells could be considered a
putative candidate for cell therapy in orthopaedic tissue engi-
neering.

We have also assessed the length of the telomere in
UC-MSCs collected with this method, as indicator of cell
replication history and senescence, and we have compared
the result with the telomere length of BM-MSCs obtained
from healthy young donors. We observed analogous results

in the two different cell populations. This is in agreement
with the literature [28] and shows that the mixed UC-
MSCs population at P1 obtained with this method share
an equivalent proliferative potential with MSCs from BM
aspirate of young donors. Nonetheless, it also suggests that
the procedure of cell isolation described in our study does
not induce substantial cell senescence in the UC-MSCs.

5. Conclusion

In conclusion, UC-MSCs can be obtained after a primary
culture at P1 with this simple and rapid method. This
mixed cell population of predominant newborn origin has
shown signs of osteogenic, adipogenic, and chondrogenic
commitment along with long telomere sequences suggestive
for a high proliferative potential. Thus, UC-MSCs at P1
seem to have the potential to be good candidates for tissue
engineering applications in orthopaedics. The concept of this
study may indeed be considered as a future hypothetical
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option for patients who might benefit from stem cells
therapy. However, given these preliminary results, testing
in vivo the regenerative potential of this cell population in
an animal models, including large animals, will be the next
logical step.
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