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Abstract. A new method is developed that can profile and efficiently search for
pseudoknot structures in noncoding RNA genes. It profiles interleaving stems in
pseudoknot structures with independent Covariance Model (CM) components.
The statistical alignment score for searching is obtained by combining the align-
ment scores from all CM components. Our experiments show that the model can
achieve excellent accuracy on both random and biological data. The efficiency
achieved by the method makes it possible to search for the pseudoknot structures
in genomes of a variety of organisms.

1 Introduction

Searching genomes with computational models has become an effective approach to
the identification of genes. During recent years, extensive research has been focused on
developing computationally efficient and accurate models that can find novel noncod-
ing RNAs and reveal their associated biological functionalities. Functionalities of non-
coding RNAs are, to a large extent, determined by the secondary structures they fold
into. Secondary structures are formed by bonded base pairs between nucleotides and
may remain unchanged over evolution while the nucleotides of a sequence have been
significantly modified through mutations. Profiling models based solely on sequence
content such as Hidden Markov Model (HMM) [9] may miss important homologies
when directly used to search genomes for noncoding RNAs containing complex sec-
ondary structures. Therefore, models that can profile noncoding RNAs must include
both the content and structural information from the homologous sequences. The Co-
variance Model (CM) developed by Eddy and Durbin [5] extends the profiling HMM
by allowing the coemission of pairing nucleotides on certain states to model base pairs,
and introduces bifurcation states to emit parallel stems in the conformation. The CM
is capable of modeling secondary structures comprised of nested and parallel stems.
However, pseudoknot structures, where at least two structurally interleaving stems are
involved, cannot be directly modeled with the CM and remained computationally in-
tractable for searching [1][10][13][14][15].

So far, only a few systems have been developed for profiling and searching for RNA
pseudoknots. One example of related work includes ERPIN, developed by Gautheret
and Lambert [6][11]. ERPIN searches genomes by sequentially looking for single stem
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loop motifs contained in the noncoding RNA gene. Since ERPIN does not allow the
presence of gaps when it performs alignments, it is computationally very efficient. How-
ever, alignments with no gaps may miss distant homologies and thus result in a lower
sensitivity. Another example is from Brown and Wilson [2]. They proposed a more
realistic model comprised of a number of Stochastic Context Free Grammar (SCFG)
[5][16] components to profile pseudoknot structures. In their model, different compo-
nents are used to derive the interleaving stems in a pseudoknot structure. The optimal
alignment score of a sequence segment is computed by aligning it to all the components
iteratively. The model can be used to search sequences with simple pseudoknot struc-
tures efficiently. However, for pseudoknots with more complex structure, more than
two SCFG components may be needed and the extension of the iterative alignment al-
gorithm on k components may need to perform k! different alignments in total since all
components are treated equally in their model.

In this paper, we propose a new method to search for RNA pseudoknot struc-
tures using a model of multiple CMs. Unlike the model of Brown and Wilson, in-
dependent CM components are used to profile the interleaving stems in a pseudo-
knot. Based on the model, we have developed a generic framework for modeling
interleaving stems of pseudoknot structures; we propose an algorithm that can ef-
ficiently assign stems to components such that interleaving stems are profiled in
different components. The components with more stems are associated with higher
weights in determining the overall conformation of a sequence segment. In order to
efficiently perform alignments of the sequence segment to the model, our searching
algorithm aligns it to each component independently following the descending order
of component weights. The statistical log-odds scores are computed based on the
structural alignment scores on each CM component. Due to the conformational con-
straints inherently imposed by the CM components, stem contentions occur infre-
quently (less than 30%) and can be effectively resolved based on the conformational
constraints from the alignment results on components with higher weight values.
The algorithm is able to accomplish the search with a worst case time complexity
of O((k− 1)W 3L) and a space complexity of O(kW 2), where k is the number of
CM components in the model, W and L are the size of the searching window and
the length of the genome respectively.

We used the model to search for a variety of RNA pseudoknots inserted in randomly
generated sequences. Experiments show that the model can achieve excellent sensitivity
(SE) and specificity (SP) on almost all of them, while using only slightly more com-
putation time than searching for pseudoknot-free RNA structures. We then applied the
model and the searching algorithm to identify the pseudoknots on the 3’ untranslated
region in several RNA genomes from the corona virus family. An exact match between
the locations found by our program and the real locations is observed. Finally, in order
to test the ability of our program to cope with noncoding RNA genes with complex
pseudoknot structures, two DNA genomes of bacterias were searched to find the loca-
tion of the tmRNA genes. The results show that our program identified the locations
with a small amount of error (with a right shift of around 20 nucleotide bases). To the
best of our knowledge, these are the first experiments where a whole genome of more
than a million nucleotides is successfully searched for a complex structure that contains
pseudoknots.



970 C. Liu et al.

2 Experiments and Results

To test the performance of the model, we developed a searching program in C lan-
guage and carried out searching experiments on a Sun/Solaris workstation. The work-
station has 8 dual processors and 32GB main memory. We evaluated the accuracy of
the program on both real genomes and randomly generated sequences with a number
of RNA pseudoknot structures inserted. To test the model, we chose 10 RNAs from
9 RNA families, tmRNA, srpRNA, Telomerase−vert, Corona−pk3, HDV−ribozyme,
Tombus−3−IV, Alpha−RBS, Antizyme−FSE and IFN−gamma, which have pseudo-
knot annotations in Rfam [8].

Model training and testing are based on the multiple alignments downloaded from
the Rfam database. For each RNA pseudoknot, we divide the available data into a train-
ing set and a testing set, and the parameters used to model it are estimated based on mul-
tiple structural alignments among 5− 90 homologous training sequences with pairwise
identity less than 80%. Pseudocounts dependent on the number of training sequences
are included to prevent overfitting of the model to the training data.

To measure the sensitivity and specificity of the searching program within a reason-
able amount of time, for each selected pseudoknot structure, we selected 10 − 40 se-
quence segments from the set of testing data and inserted them into each of the randomly
generated sequences of 105 nucleotides. In order to test whether the model is sensitive
to the base composition of the background sequence, we varied the C+G concentration
in the random background. The program computes the log-odds, the logarithmic ratio
of the probability of generating sequence segment s by the null (random) model R to
that by our model M . It reports a hit when the Z-score of s is greater than 4.0.

The program correctly identifies more than 80% of inserted sequence segments with
excellent specificity in most of the experiments. The only exception is the srpRNA,
where the program misses more than 50% inserted sequence segments in one of the
experiments. The relatively lower sensitivity in that particular experiment can be partly
ascribed to the fact that the pseudoknot structure of srpRNA contains fewer nucleotides;
thus, its structural and sequence patterns have larger probability to occur randomly. The
running time for srpRNA, however, is also significantly shorter than that needed by
most of other RNA pseudoknots due to the smaller size of the model. Additionally,
while alpha−RBS pseudoknot has a more complex structure and three CM components
are needed to model it, our searching algorithm efficiently identifies more than 95%
of the inserted pseudoknots with high specificities. Our results demonstrate that higher
C+G concentration in the background does not adversely affect the specificity of the
model. The program achieves better overall performance in both sensitivity and speci-
ficity on the background of higher C+G concentrations. We therefore conjecture that
the specificity of the model is partly determined by the base composition of the genome
and can be improved if the base composition of the target gene is considerably different
from its background.

To test the accuracy of the program on real genomes, we performed experiments
to search for particular pseudoknot structures in the genomes for a variety of organ-
isms. Table 1 shows the genomes on which we have searched with our program and
the locations annotated for the corresponding pseudoknot structures. It is evident from
the results that the program successfully identified the exact locations of known 3’UTR
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Table 1. The results obtained with our searching program on the genomes of a variety of organ-
isms. GA is the accession number of the genome; RL specifies the real location of the pseudoknot
structure in the genome; SL is the one returned by the program; RT is the running time needed
to perform the searching in hours; GL is the length of the genome in its number of bases. The
genome of Haemophilus searched in our experiment is the reversed complementary DNA strand

GA Organism ncRNA RL SL RT(hr) GL(bs)
NC000907 Haemophilus tmRNA 472210 − 472575 472177 − 472542 170.00 1.83 × 106

NC003112 Neisseria tmRNA 1241197− 1241197− 170.00 2.2 × 106

meningitidis 1241559 1241559

NC003045 Bovine 3’UTR 30798 − 30859 30798 − 30859 1.24 31028
CoronaVirus pk

NC002645 Human 3’UTR 27063 − 27125 27063 − 27125 1.12 27317
CoronaVirus pk

NC001846 Murine 3’UTR 31092 − 31153 31092 − 31153 1.27 31357
HepatitusVirus pk

NC003436 Porcine 3’UTR 27820 − 27882 27820 − 27882 1.17 28033
DiarrheaVirus pk

pseudoknot in the four genomes from the family of corona virus. This pseudoknot was
recently shown to be essential for the replication of the viruses in the family [7]. In
addition, we performed an experiment where the genomes of bacterias, Haemophilus
influenzae and Neisseria meningitidis MC58, were searched for their tmRNA genes.
The Haemophilus influenzae DNA genome contains about 1.8 × 106 nucleotides and
Neisseria meningitidis MC58 DNA genome contains about 2.2 × 106 nucleotides. The
tmRNA functions importantly in the trans-translation process to add a C-terminal pep-
tide tag to the incomplete protein product of a broken mRNA [12]. The central part
of the secondary structure of tmRNA molecule consists of four pseudoknot structures.
Figure 1 shows the pseudoknot structures on the tmRNA gene.

In order to search the DNA genomes efficiently, the combined pseudoknots 1 and 2
were used to search the genome first and the program searches for the whole tmRNA
gene only in the region around the locations where a hit for Pk1 and Pk2 is detected.
We cut the genome into segments with shorter lengths (around 105 nucleotide bases for
each), and run the program in parallel on ten of them in two rounds. The result for Neis-
seria meningitidis MC58 shows that we successfully identified the exact locations of
tmRNA. However, the locations of tmRNA obtained for Haemophilus influenzae have
a shift of around 20 nucleotides with respect to its real location. This error can probably
be ascribed to our “hit-and-extend” searching strategy to resolve the difficulty arising
from the complex structure and the relatively much larger size of tmRNA genes; posi-
tional errors may occur during different searching stages and accumulate to a significant
value. Our experiment on the DNA genomes also demonstrates that, for each genome,
it is very likely there is only one tmRNA gene in it, since our program found only one
significant hit. To our knowledge, this is the first experiment where a whole genome of
more than a million nucleotides is successfully searched for a complex structure that
contains pseudoknot structures.
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Fig. 1. Diagram of the pairing regions on the tmRNA gene. Upper case letters indicate base se-
quences that pair with the corresponding lower case letters. The four pseudoknots constitute the
central part of the tmRNA gene and are called Pk1, Pk2, Pk3, Pk4 respectively

3 Models and Algorithms

The Covariance Model (CM) proposed by Eddy and Durbin [5][4] can effectively model
the base pairs formed between nucleotides in an RNA molecule. Similar to the emis-
sion probabilities in HMMs, the emission probabilities in the CM for both unpaired nu-
cleotides and base pairs are position dependent. The profiling of a stem hence consists
of a chain of consecutive emissions of base pairs. Parallel stems on the RNA sequence
are modeled with bifurcation transitions where a bifurcation state is split into two states.
The parallel stems are then generated from the transitions starting with the two resulting
states respectively.

The genome is scanned through by a window with an appropriate length. The ending
location of the window is scored by aligning all subsequence segments contained in the
window to the model with the CYK algorithm. The maximum log-odds score of the
segments is determined as the log-odds score associated with the location. A hit is
reported for a location if the computed log-odds score is higher than a predetermined
threshold value.

Pseudoknot structures are beyond the profiling capability of a single CM due to the
inherent context sensitivity of pseudoknots. Models for pseudoknot structures require a
mechanism for the description of their interleaving stems. Previous work by Brown and
Wilson [2] and Cai et al. [3] has modeled the pseudoknot structures with grammar com-
ponents that intersect or cooperatively communicate. A similar idea is adopted in this
work; a number of independent CM components are combined to resolve the difficulty
in profiling that arises from the interleaving stems. Interleaving stems are profiled in
different CM components and the alignment score of a sequence segment is determined
based on a combination of the alignment scores on all components.

However, the optimal conformations from the alignments on different components
may violate some of the conformational constraints that a single RNA sequence must
follow. For example, a nucleotide rarely forms two different base pairs simultaneously
with other nucleotides in an RNA molecule. This type of restriction is not considered
by the independent alignments carried out in our model and thus may lead to erroneous
searching results if not treated properly. In our model, stem contention may occur such
that two or more base pairs obtained from different components require the participa-
tion of the same nucleotide. We break the contention by introducing different priorities
to components; base pairs determined from components with the highest priority win
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the contention. We consider that, biochemically, components profiling more stems are
likely to play more dominant roles in the formation of the conformation and are hence
assigned higher priority weights.

3.1 Model Generation

In order to profile the interleaving stems in a pseudoknot structure with independent CM
components, we need an algorithm that can partition the set of stems on the RNA se-
quence into a number of sets comprised of stems that mutually do not interleave. Based
on the consensus structure of the RNA sequence, an undirected graph G = (V,E) can
be constructed where V , the set of vertices in G, consists of all stems on the sequence.
Two vertices are connected with an edge in G if the corresponding stems are in paral-
lel or nested. The set of vertices V needs to be partitioned into subsets such that the
subgraph induced by each subset forms a clique.

We use a greedy algorithm to perform the partition. Starting with a vertex set S
initialized to contain a arbitrarily selected vertex, the algorithm iteratively searches the
neighbors of the vertices in S and computes the set of vertices that are connected to
all vertices in S. It then randomly selects one vertex v that is not in S from the set
and modifies S by assigning v to S. The algorithm outputs S as one of the subsets in
the partition when S can not be enlarged and randomly selects an unassigned vertex
and repeats the same procedure. It stops when every vertex in G has been included
in a subset. Although the algorithm does not minimize the number of subsets in the
partition, our experiments show that it can efficiently provide optimal partitions of the
stems on pseudoknot structures of moderate structural complexity.

The CM components in the profiling model are generated and trained based on the
partition of the stems. The stems in the same subset are profiled in the same CM compo-
nent. For each component, the parameters are estimated by considering the consensus
structure formed by the stems in the subset only.

3.2 Searching Algorithm

The optimal alignments of a sequence segment to the CM components are computed
with the dynamic programming based CYK algorithm. As we have mentioned before,
higher priority weights are assigned to components with more stems profiled. The com-
ponent with the maximum number of stems thus has the maximum weight and is the
dominant component in the model. The algorithm performs alignments in the descend-
ing order of component weights. It selects the sequence segment that maximizes the
log-odds score from the dominant component. The alignment scores and optimal con-
formations of this segment on other components are then computed and combined to
obtain the overall log-odds score for its corresponding position on the genome.

More specifically, we assume that the model contains,in descending order of com-
ponent weights, k CM components M0,M1, · · · ,Mk−1 . The algorithm considers all
possible sequence segments sd that are enclosed in the window and uses Equation (1) to
determine the sequence segment s to be the candidate for further consideration, where
W is the length of the window used in searching, and Equation (2) to compute the over-
all log-odds score for s. We use smi to denote the parts of s that are aligned to the
stems profiled in CM component Mi. Basically, Log odds(smi|Mi) accounts for the
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contributions from the alignment of smi to Mi. The log-odds score of smi is counted
in both M0 and Mi and must be subtracted from the sum.

s = arg max
0<|sd|<W

{Log odds(sd|M0)}. (1)

Log odds(s|M) = Log odds(s|M0)

+
k−1∑

i=1

∑

smi∈Mi

(Log odds(smi|Mi) − Log odds(smi|M0)). (2)

4 Conclusions and Future Work

In this paper, we have introduced a new model that serves as the basis for a generic
framework that can efficiently search genomes for the noncoding RNAs with pseudo-
knot structures. Within the framework, interleaving stems in pseudoknot structures are
modeled with independent CM components and alignment is performed by aligning
sequence segments to all components following the descending order of their weight
values. Stem contention occurs with a low frequency and can be resolved with dynamic
programming based recomputation. The statistical log-odds scores are computed based
on the alignment results from all components. Our experiments on both random and bi-
ological data demonstrate that the searching framework achieves excellent performance
in both accuracy and efficiency and can be used to annotate genomes for noncoding
RNA genes with complex secondary structures in practice.

We were able to search a bacterial genome in about one week on our Sun work-
station. It would be desirable to improve our algorithm so that we could search larger
genomes and databases. The running time, however, could be significantly shortened if
a filter can be designed to preprocess DNA genomes and only the parts that pass the
filtering process are aligned to the model. Alternatively, it may be possible to devise
alternative profiling methods to the covariance model that would allow faster searches.

Supplementary Material

We have put RNA information we used for the estimation of model parameters, the
experimental results of the model on the RNA pseudoknots, and the detailed stem con-
tention explanation and experimental results for stem contention rates on the web. They
are available at http://www.uga.edu/RNA-Informatics/pksearch/.
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