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Two-step synthesis of chiral fused tricyclic
scaffolds from phenols via desymmetrization
on nickel
Ravindra Kumar1, Yoichi Hoshimoto 1,2, Eri Tamai1, Masato Ohashi1 & Sensuke Ogoshi 1

Tricyclic furan derivatives with multiple chiral centers are ubiquitous in natural products.

Construction of such tricyclic scaffolds in a stereocontrolled, step-economic, and

atom-economic manner is a key challenge. Here we show a nickel-catalyzed highly

enantioselective synthesis of hydronaphtho[1,8-bc]furans with five contiguous chiral centers

via desymmetrization of alkynyl-cyclohexadienone by oxidative cyclization and following

formal [4 + 2] cycloaddition processes. Alkynyl-cyclohexadienone was synthesized in one

step from easily accessible phenols. This reaction represents excellent chemo-selectivity,

regio-selectivity, diastereo-selectivity, and enantio-selectivity (single diastereomer, up to

99% ee). An extraordinary regioselectivity in the formal [4 + 2] cycloaddition step with

enones revealed the diverse reactivity of the nickelacycle intermediate. Desymmetrization of

alkynyl-cyclohexadienones via oxidative cyclization on nickel was supported by the isolation

of a nickelacycle from a stoichiometric reaction. Enantioenriched tricyclic products contain

various functional groups such as C=O and C=C. The synthetic utility of these products was

demonstrated by derivatization of these functional groups.

DOI: 10.1038/s41467-017-00068-8 OPEN

1 Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. 2 Frontier Research Base for Global Young
Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. Correspondence and requests for materials should be
addressed to S.O. (email: ogoshi@chem.eng.osaka-u.ac.jp)

NATURE COMMUNICATIONS |8:  32 |DOI: 10.1038/s41467-017-00068-8 |www.nature.com/naturecommunications 1

http://orcid.org/0000-0003-0882-6109
http://orcid.org/0000-0003-0882-6109
http://orcid.org/0000-0003-0882-6109
http://orcid.org/0000-0003-0882-6109
http://orcid.org/0000-0003-0882-6109
http://orcid.org/0000-0003-4188-8555
http://orcid.org/0000-0003-4188-8555
http://orcid.org/0000-0003-4188-8555
http://orcid.org/0000-0003-4188-8555
http://orcid.org/0000-0003-4188-8555
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hydronaphtho[1,8-bc]furan rings with multiple chiral
centers are a common structural motif in biologically
active natural products (Fig. 1a)1–5. Such tricyclic struc-

tures are also found in key synthetic intermediates that are
employed in a large number of sesquiterpenoids6–9. Owing to
diverse biological activities and synthetic potentials associated
with these fused tricyclic structures, a significant amount of
attention has been paid to their enantioselective syntheses.
Despite the existence of various stepwise stereoselective
methods1–9, direct access to such tricyclic fused rings in a com-
pletely enantio-controlled, diastereo-controlled, step-economic,
and atom-economic manner would be a remarkable develop-
ment10–13. Recently, Alemán reported a straightforward method
for the construction of tricyclic fused rings from a cyclohex-
adienone tethered alkenal by employing an organocatalyzed
asymmetric desymmetrization strategy (Fig. 1b)14. In this process,
desymmetrization step involved the intramolecular [4 + 2]
cycloaddition of chiral dienamine with a diastereotropic enone
constructed tricyclic fused rings with three chiral centers.

We envisaged the enantioselective desymmetrization15–19 of
alkynyl-cyclohexadienone via an intramolecular oxidative cycli-
zation on nickel in the presence of a chiral ligand. Alkynyl-
cyclohexadienone were synthesized in one step from easily
accessible phenols. The oxidative cyclization of an enantiotropic
enone with a tethered alkyne unit would form a tricyclic fused

nickelacycle20–24 with three chiral centers, which could react with
another olefin to yield a tricyclic product with the concomitant
generation of two more chiral centers. Nickel(0)-catalyzed
trimerization of an alkyne with two enones has been reported
by Montgomery et al.25–28 and by us29, 30. Here, we report a
nickel(0)-catalyzed enantioselective synthesis of chiral hydro-
naphtho[1,8-bc]furans with five contiguous chiral centers via
desymmetrization of alkynyl-cyclohexadienone and following
intermolecular formal [4 + 2] cycloaddition reaction processes.

Results
Reaction optimization. Prior to developing the reaction in an
asymmetric fashion, achiral ligands were examined using
cyclohexadienone-yne (1a) and 4-methoxychalcone (2a) for the
model transformation to hydronaphtho[1,8-bc]furan 3aa (Fig. 2,
see also Supplementary Table 1 for detail). 1,3-Bis-(2,6-diiso-
propylphenyl)imidazol-2-ylidene (IPr) proved to be an optimal
ligand to deliver rac-3aa in 96% yield, whereas PCy3 failed to give
any product. A single diastereomer of 3aa was obtained out of
sixteen possible isomers. Moreover, it is remarkable that an
extraordinary regioselectivity was observed in the formal [4 + 2]
cycloaddition step, fixing two carbonyls at the 1,4-positions in
3aa, whereas 1,5-dicarbonyl compounds were obtained in reports
of nickel(0)-catalyzed cycloaddition reactions20–30. Considering
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the efficiency of N-heterocyclic carbene (NHC) in this transfor-
mation, chiral (R,R)-NHCs, generated in situ by treating the
corresponding imidazolinium salts with NaOtBu, were investi-
gated to afford enantioenriched 3aa (Fig. 2). It is worth men-
tioning that despite much exploration of the use of chiral NHCs,
there has been less reports with nickel-catalyzed reactions31–40.
N-(2-Biphenyl)- (L*1) and N-(2-isopropylphenyl)- (L*2) sub-
stituted NHCs41 were ineffective to give 3aa. In a similar manner,
N-(2,7-diisopropylnaphthyl)- (L*4)42 and N-(2,7-dicyclohex-
ylnaphthyl) (L*5)34-substituted NHCs also failed to yield any
products. However, N-2,6-diethylphenyl-substituted NHC
(L*3)43 successfully gave hydronaphtho[1,8-bc]furan 3aa in 13%
yield with high enantioselectivity (94% ee). NHCs L*635 and
L*734 furnished 3aa in moderate chemical yields (36 and 48%,
respectively) with excellent enantioselectivities (98 and 89% ee,
respectively). Given the excellent enantioselectivity with L*6,
extensive effort was devoted to improving the yield. When the
reaction was conducted at 60 °C using a lower concentration
(0.02 M of 2a), 3aa was obtained in 74% yield with 98% enan-
tioselectivity (see Supplementary Table 1 for detail).

Substrate scope. With the aforementioned optimal reaction
conditions, we explored the scope of substrates (Fig. 3). A range
of electron-rich and electron-deficient aryl-substituted enones 2
was examined with 1a. The reaction proceeded smoothly with 2b
and 2c, giving 3ab and 3ac in 73 and 72% yields, respectively,
with enantioselectivities of 98% each. Reaction with an enone
containing 2-furyl group (2d) was also examined with 1a to
afford 3ad in 72% yield with 99% ee. In contrast, the reaction of
1a with 1-aryl-2-buten-1-ones (2e–2i) gave 3ae–3ai in slightly
lower yields (62–70%), albeit enantioselectivities remained
excellent (94–97% ee). In these cases, about 5% of fully-

intermolecular [2 + 2 + 2] cycloaddition products (3′) of an
alkyne unit of dienone-yne (1a) with two enones (2e–2i) were
observed (See Supplementary Fig. 10 for 3ae′). When ethyl group
at R3 of an enone was introduced, a complex mixture was
obtained. Next, alkynyl-cyclohexadienone substrates (1) were
investigated by varying the substituents R1 and R2. Ethyl as well
as 2-methoxyethyl-substituted alkynyl-cyclohexadienone (1b and
1c) gave 3bb, 3bj, 3ca, and 3ck with 2b, 2j, 2a, and 2k, respec-
tively in good yields (60–73%) with excellent enantioselectivities
(96–99%). Aryl and alkyl groups on alkynes were also examined.
Phenyl-acetylene-substituted dienone 1d gave 3de in good yield
with excellent enantioselectivity (70% yield and 99% ee).
Electron-rich anisyl-group substrate 1e gave 3ec (71% yield and
98% ee) and 3ek (68% yield and 99% ee) with p-halogenated
(F– and Cl–) chalcones 2c and 2k, respectively. No corresponding
dehalogenated products were detected. An alkynyl-dienone 1f
bearing an electron-deficient p-CO2EtC6H4– group gave 3fc with
2c in 60% yield with 98% ee, whereas 3ge was obtained in 71%
yield with 96% ee from p-CF3-substituted 1g. An ethyl-group and
a triethylsilyloxy-methyl-substituted alkynyl-cyclohexadienone
(1h and 1i, respectively) gave corresponding tricyclic fused
rings 3he, 3ic, and 3ik with 2e, 2c, and 2k, respectively, in
good yields and enantioselectivities (69–77% yields, 95–98% ee).
A N-tosyl analog of alkynyl-cyclohexadienone 1j failed to give the
desired product 3jc with 2c under the present reaction conditions.
This could have been due to coordination ability of tosyl group
to nickel which inhibits the coordination of 2c44, 45.
The absolute configurations of all five chiral centers in 3
were assigned according to an analogy with 3ik, which was
unambiguously determined by X-ray crystallographic analysis
(Fig. 3). It also supports all the stereo selective and regioselective
outcomes in 3.
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Gram scale synthesis and transformations of product 3aa. To
demonstrate applicability, a half-gram-scale reaction of 1a (0.53 g,
3.0 mmol) was carried out with 2a (0.6 g, 2.5 mmol) to afford 3aa
in 73% yield and 98% ee. These enantioenriched tricyclic pro-
ducts could be useful synthetic intermediates for further trans-
formations (Fig. 4). The methylene group of a tetrahydrofuran

ring was oxidized with PCC46 to yield a butyrolactone scaffold
(4, 90% yield), that is present in natural products and also is a key
synthetic intermediate in many sesquiterpenoids (Fig. 1a)6–9.
Epoxidation and Michael addition of an enone gave the corre-
sponding functionalized products 5 and 6 as single diastereomers
in 75 and 85% yields, respectively, whereas hydrogenation of an
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enonic C= C bond with H2/Pd(C) in ethyl acetate gave 7 in 89%
yield. The enantioselectivity remained consistent in all these
transformations.

Stoichiometric experiment. In order to gain deeper insight into a
possible reaction mechanism, stoichiometric experiments were
conducted in C6D6. An attempts to isolate a chiral nickelacycle
corresponds to 1g using an optimal NHC L*6 and Ni(cod)2
was unsuccessful. 19F NMR spectra showed seven peaks, revealed
the existence of several intermediates, in which one of them might
be much more reactive leads to desired product in the presence of
an enone. However, an η3-oxaallyl nickelacycle (8) was isolated in
99% yield when a stoichiometric reaction of 1a was conducted
with IPr and Ni(cod)2. The molecular structure of 8 was
confirmed by X-ray crystallography (Fig. 5). The 1H, 13C, and 2D
NMR analyses of 8 demonstrated that its structure in solution

was consistent with that observed in crystal lattice. The reaction
of 8 with 2e gave rac-3ae in 95% isolated yield, which supported
that desymmetrization by oxidative cyclization would play a key
role in the present transformation.

A plausible reaction mechanism is drawn on the basis of the
results of the stoichiometric experiment and previous reports
(Fig. 6)20–30, 33–42. First, the intramolecular oxidative cyclization
of 1 via the simultaneous coordination of an alkyne and an
enantiotropic enone to the chiral Ni(0)/L* species gives a
desymmetrized nickelacycle A, which would be in equilibrium
with its η3-oxaallylnickel structure A′. Coordination of 2 to nickel
center of A giving B, followed by insertion through a Ni–Csp

2

bond could form a thermodynamically favorable η3-oxaallylnickel
structure either C or C′. Then, a subsequent reductive elimination
could afford a tricyclic fused structure 3 as a single diastereomer
with the regeneration of nickel(0) species.

In conclusion, a catalytic enantioselective method has been
developed for the rapid construction of hydronaphtho[1,8-bc]
furans with five contiguous chiral centers via desymmetrization of
alkynyl-cyclohexadienone and formal [4 + 2] cycloaddition reac-
tion with nickel. The synthetic utility of tricyclic products was
also demonstrated. Isolation of desymmetrized η3-oxaallyl
nickelacycle and subsequent reactions in the stoichiometric
experiment revealed that desymmetrization by oxidative cycliza-
tion is the key in this transformation. Furthermore, unusual
regioselectivity in the insertion step of enone revealed the diverse
reactivity of an η3-oxaallyl nickel-complex. The developed
strategy involving two steps from the easily accessible phenols,
demonstrates a practical and step economic protocol to access
synthetically valuable fused tricyclic frameworks bearing five
consecutive chiral carbon centers with excellent
enantioselectivities.

Methods
General procedure for tricyclic product 3. To a screw cap vial in a glove box was
added L*6·HBF4 (10 mol%) and NaOtBu (10 mol%) and toluene (5 ml). The sus-
pension was allowed to stir at room temperature for 10 min and then Ni(cod)2 (10
mol%) was added. After further stirring for 10 min at room temperature was added
a solution of alkynyl-cyclohexadienone (1, 0.24 mmol) and enone (2, 0.20 mmol) in
toluene (5 ml). The reaction mixture was taken out of glove box and heated at 60 °
C for 36 h with stirring. After cooling to room temperature, the mixture was
filtered through celite and washed with Et2O. The filtrate was concentrated in
vacuo and the residue was purified by silica gel flash chromatography (5–20% ethyl
acetate in hexane) to afford the desired product 3.
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Data availability. The X-ray crystallographic coordinates for structures reported in
this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC) under deposition numbers CCDC 1523827 (3ik) and 1523828 (8). These
data can be obtained free of charge from The CCDC via www.ccdc.cam.ac.uk/
data_request/cif. All other data supporting the findings of this study are available
within the article and its Supplementary Information file or from the authors
upon reasonable request. For NMR spectra of the compounds in this article, see
Supplementary Figs. 2–31.
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