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Abstract: Parkinson’s disease (PD), one of the most common neurodegenerative diseases, is characterized by movement 
disorders and a loss of dopaminergic (DA) neurons. PD mainly occurs sporadically, but may also result from genetic mutations 
in several PD-linked genes. Recently, genetic studies with Drosophila mutants, parkin and PINK1, two common PD-associated 
genes, demonstrated that Parkin acts downstream of PINK1 in maintaining mitochondrial function and integrity. Further 
studies revealed that PINK1 translocates Parkin to mitochondria and regulates critical mitochondrial remodeling processes. 
These findings, which suggest that mitochondrial dysfunction is a prominent cause of PD pathogenesis, provide valuable 
insights which may aid in the development of effective treatments for PD.
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(also known as PARK7) (Bonifati et al., 2003), and ATP13A2 
(Ramirez et al., 2006). Among these, alpha-synuclein and 
LRRK2 mediate autosomal dominant forms of PD, and the 
others mediate autosomal recessive forms. Discovery of 
these PD-linked genes has enabled an understanding of the 
molecular mechanisms underlying familial PD pathology, 
providing valuable insight into the pathological mechanisms 
involved in sporadic cases.

Mitochondrial dysfunction has been heavily implicated 
in PD pathogenesis (Henchcliffe & Beal, 2008). The activity 
of complex I, a major component of the mitochondrial 
respiratory chain, is decreased in substantia nigra and other 
tissues in PD patients (Keeny et al., 2006; Parker et al., 
2008). Moreover, several complex I inhibitors successfully 
reproduce key features of PD such as loss of DA neurons 
and motor deficits. Exposure to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) causes parkinsonism in humans 
(Langston et al., 1983). Administration of rotenone or 
paraquat also induces selective loss of DA neurons and 
produces locomotor defects in various animal models 
(Betarbet et al., 2000; Coulom & Birman, 2004; Cicchetti 
et al., 2005). Recent findings that parkin and PINK1 have 

Introduction

Parkinson’s disease (PD), the second most common 
neurodegenerative disease in the world, is characterized by 
locomotor disorders including rigidity, tremor, bradykinesia, 
and postural instability (Lang & Lozano, 1998). In addition, 
massive and selective degeneration of dopaminergic (DA) 
neurons in the substantia nigra is the neuropathological 
hallmark of the disease. The majority of PD cases are sporadic; 
however, familial forms have also been reported. Over the 
past decade, mutations linked to familial forms of PD have 
been identified in a number of genes such as alpha-synuclein 
(also known as SNCA) (Polymeropoulos et al., 1997), leucine-
rich repeat kinase 2 (LRRK2) (Paisán-Ruíz et al., 2004), 
parkin (also known as PARK2) (Kitada et al., 1998), PTEN-
induced putative kinase 1 (PINK1) (Valente et al., 2004), DJ-1 
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critical roles in maintaining mitochondrial function and 
integrity have suggested that mitochondrial dysfunction is the 
prominent cause of PD pathogenesis, enabling investigation 
of the pathological mechanisms of PD at the molecular level 
(Clark et al., 2006; Park et al., 2006; Yang et al., 2006). The 
following is a brief review of the recent findings related to the 
roles of parkin and PINK1 in mitochondria.

Parkin is critical in maintaining mitochondrial 
integrity

Parkin is an E3 ubiquitin ligase encoded by parkin, the 
most commonly affected PD gene conserved in various 
organisms from Drosophila to humans (Shimura et al., 
2000). Parkin is composed of an ubiquitin-like domain in its 
N-terminus and two RING-finger domains in its C-terminus. 
In mammalian cell-based studies, Parkin can ubiqutinate 
and degrade several proteins including CDCrel-1 (Zhang 
et al., 2000), parkin-associated endothelin receptor-like 
receptor (Pael-R) (Imai et al., 2001), and cyclin E (Staropoli  
et al., 2003). From these results, endoplasmic reticulum (ER) 
stress resulting from accumulated Parkin substrates was 
proposed as the cause of DA neuronal death by loss of parkin. 
However, further studies failed to establish a meaningful 
relationship between these putative Parkin substrates and 
PD pathogenesis. To overcome the limitations of the cell-
based study, several groups generated and characterized 
parkin null animal models. Although parkin null mice could 
not reproduce human PD symptoms, Drosophila parkin 
mutants demonstrated obvious phenotypes including 
locomotive defects and DA neuron degeneration (Greene  
et al., 2003; Pesah et al., 2004; Cha et al., 2005). In addition, 
administration of L-DOPA substantially rectified the 
behavioral defects of the parkin mutants, further confirming 
that parkin mutant fly models successfully parallel human 
PD patients (Cha et al., 2005). These mutants also showed 
defective wing posture and a crushed thorax. Histological 
examination of the parkin mutants demonstrated indirect 
flight muscle degeneration, which probably contributed to 
the locomotive defects along with DA neuron degeneration. 
Furthermore, mitochondrial swelling was found in the 
indirect flight muscles of the parkin mutants, suggesting that 
mitochondrial dysfunction may be an important cause of PD. 
However, these data cannot confirm whether mitochondrial 
swelling is a primary or secondary effect of parkin mutation. 

Further evidence is needed to confirm the importance of 
mitochondrial dysfunction in PD pathogenesis.

PINK1 and Parkin act in a common pathway in 
mitochondrial protection

PINK1 is a serine/threonine kinase localized to the 
mitochondrial membrane via a mitochondrial targeting 
motif in its N-terminus (Valente et al., 2004). Most of 
the currently reported mutations are located in its kinase 
domain, indicating that PINK1 kinase activity is required 
for its role in PD protection (Klein & Lohmann-Hedrich, 
2007). Interestingly, PINK1 fly mutants demonstrated 
phenotypes remarkably similar to parkin mutants, including 
flight disability, slow climbing speed, indirect flight muscle 
degeneration and a reduced number of DA neurons (Clark 
et al., 2006; Park  et al., 2006; Yang et al., 2006). Moreover, 
mitochondrial swelling was also observed in the indirect 
flight muscles and DA neurons (Fig. 1). Upon further genetic 
analysis, over-expression of mitochondrial protein Bcl-2 was 
found to rescue mitochondrial dysfunction and defective 
phenotypes in PINK1 mutants, indicating that mitochondrial 
defects are the main cause of PD-related phenotypes in PINK1 
mutants (Park et al., 2006).

Because of the marked phenotypic similarities between 
parkin and PINK1 mutants, subsequent Drosophila genetic 
analysis were performed to test whether PINK1 and Parkin 
act in a common pathway. Transgenic expression of parkin 
markedly ameliorated the phenotypes of PINK1 mutants; 
however, parkin mutant phenotypes could not be recovered 
by over-expression of PINK1 (Clark et al., 2006; Park et 
al., 2006; Yang et al., 2006; Fig. 2). These data established 
that PINK1 and Parkin are linked in the same pathway to 
protect mitochondrial integrity and function with Parkin 
acting downstream of PINK1. In addition to the Drosophila 
results, over-expression of parkin successfully rescued the 
mitochondrial dysfunction induced by PINK1 knockdown 
in the mammalian system, demonstrating that the PINK1-
Parkin pathway is conserved in flies and mammals (Exner et 
al., 2007). 

Following the establishment of the PINK1-Parkin 
pathway, researchers have been trying to investigate the 
relationship between these two proteins. Using human DA 
cells and Drosophila models, Kim et al. demonstrated that 
PINK1 translocates Parkin to mitochondria in its kinase 
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activity-dependent manner (Kim et al., 2008). Further 
analysis suggested that PINK1 phosphorylates Parkin on its 
linker region and promotes its mitochondrial translocation. 
Additional studies showed that PINK1 selectively translocates 
Parkin to impaired mitochondria, confirming the PINK1-
dependent Parkin translocation that Kim et al. reported 
(Matsuda et al., 2010; Narendra et al., 2010). 

PINK1 and Parkin remodel mitochondria

Since fly genetic analysis clearly demonstrated that the 
PINK1-Parkin pathway is involved in the protection of 
mitochondrial integrity and function, various efforts have 
concentrated on investigating the particular role of this 

Fig. 1. PINK1 mutation induces mitochondrial defects. Drosophila 
PINK1 mutants (B9) demonstrated the crushed-thorax phenotype (top 
panel, white arrows), an indicator of flight muscle degeneration, and 
mitochondrial swelling in indirect flight muscles (middle panel) and 
DA neurons (bottom panel). Toluidine blue staining of longitudinal 
thorax sections revealed mitochondrial morphology of indirect flight 
muscles (middle panel). Expression of mitochondria-targeted green 
fluorescent protein (mito-GFP, green) showed mitochondria shape and 
size in the DA neurons of adult fly brains (bottom panel). Wild type 
controls (WT) showed an intact thorax structure and mitochondrial 
morphology. Scale bar=yellow, 5 μm.

Fig. 2. Transgenic expression of parkin ameliorates PINK1 mutant 
phenotypes, but not vice versa. Over-expression of parkin successfully 
rescued mitochondrial swelling, mtDNA content, and ATP levels 
in PINK1 mutants. However, the PINK1 transgene failed to restore 
these defects in parkin mutants. (A) Mitochondria in indirect flight 
muscles from PINK1 mutants (B9), Parkin-expressing PINK1 
mutants (B9, parkin), parkin mutants (park1), and PINK1-expressing 
parkin mutants (park1, PINK1). (B) Quantification of mtDNA in fly 
thoraces. Quantitative real-time PCR was performed using primers 
from the mtDNA sequences of the following mitochondrial genes: 
Cox I, cytochrome c oxidase subunit I; Cox III, cytochrome c oxidase 
subunit III; Cyt B, cytochrome b. Results are expressed as fold change 
compared relative to WT controls. (C) Comparison of ATP content 
in fly thoraces. The relative ATP level was calculated by dividing the 
measured ATP concentration by the total protein concentration. In 
mtDNA and ATP assays, averages±SDs are from three experiments. 
Significance was determined by one-way ANOVA (*P<0.01; NS, not 
significant). Error bars indicate mean±SD. Scale bar=yellow, 5 μm.
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pathway in mitochondria. Recent fly genetic studies showed 
that the PINK1-Parkin pathway regulates the mitochondrial 
remodeling process including mitochondrial fusion and 
fission. Mitochondria are dynamic organelles that constantly 
fuse and divide. Uncontrolled fusion-fission processes lead to 
severe damage of mitochondria morphology and function, 
causing the impairment of various cellular process and even 
cell death (Chan 2006). Surprisingly, in Drosophila, over-
expression of Drp1, a guanosine triphosphatase (GTPase) 
for mitochondrial fission, or down-regulation of Opa1 or 
Marf expression, GTPases for mitochondrial fusion, rescued 
PINK1 and parkin mutant phenotypes, suggesting that the 
PINK1-Parkin pathway regulates mitochondria remodeling 
by promoting mitochondrial fission (Deng et al., 2008; Poole 
et al., 2008; Yang et al., 2008; Park et al., 2009). Therefore, loss 
of PINK1 or parkin may induce uncontrolled mitochondrial 
remodeling leading to severe mitochondrial dysfunction and 
subsequent DA neuronal degeneration. Results from other 
human cell-based studies, however, are not in agreement. 
Co-expression of PINK1 and Parkin, or expression of 
mitochondria-targeted Parkin induces mitochondrial 
aggregation in human DA neuroblastoma cells (Kim et al., 
2008). Moreover, mitochondrial fragmentation was found 
in human neuronal cells lacking PINK1 or in the primary 
cells from human patients with PINK1 mutations (Exner  
et al., 2007; Kim et al., 2008; Wood-Kaczmar et al., 2008). 
To account for these different patterns in mitochondrial 
remodeling, researchers are attempting to dissect the exact 
mechanism involved in PINK1 and Parkin-mediated 
mitochondrial remodeling.

In addition to balancing between mitochondrial fusion 
and fission processes, the PINK1-Parkin pathway may also 
be involved in another mitochondrial remodeling process: 
mitophagy, the specific autophagic turnover of mitochondria. 
Narendra et al. reported that Parkin is selectively translocated 
to damaged mitochondria upon treatment of mitochondria 
damaging agents, and induces the turnover of damaged 
mitochondria through an autophagy-related gene 5 (ATG5)-
dependent mechanism (Narendra et al., 2008). This finding 
elicited further studies to test whether PINK1 is required for 
the mitophagy-promoting activity of Parkin. In human DA 
neuroblastoma cells, co-expression of PINK1 and Parkin 
induces the formation of perinuclear mitochondrial clusters 
surrounded by autophasic vacuoles (Vives-Bauza et al., 2010). 
Moreover, knock-down or knock-out of PINK1 successfully 
inhibits mitochondrial damage-induced mitophagy 

(Matsuda et al., 2010; Narendra et al., 2010). Further analysis 
determined that PINK1 is selectively stabilized on impaired 
mitochondria, and activates the autophagic degradation of 
these mitochondria by recruiting Parkin (Matsuda et al., 2010; 
Narendra et al., 2010). These data provide the functional 
link between PINK1, Parkin, and the selective autophagy of 
mitochondria, suggesting that PINK1 and Parkin maintain 
mitochondrial integrity and function by selectively removing 
impaired mitochondria.

Mitochondrial targets of the PINK1-Parkin 
pathway in mitochondrial remodeling

In biochemical studies using Parkin proteins containing 
disease causing mutations, the ubiquitin ligase activity of 
Parkin is critical for normal physiological activities. Moreover, 
Parkin-mediated mitochondrial ubiquitination was observed 
in mitochondrial damaging agent-treated cells. Over-
expression of dominant negative ubiquitin mutants prevented 
Parkin-induced mitophagy, demonstrating that ubiquitination 
links between Parkin and mitophagy (Geisler et al., 2010; Lee 
et al., 2010; Matsuda et al., 2010). To identify a putative Parkin 
target on mitochondria, molecular weight changes of various 
mitochondrial proteins upon mitochondrial damaging-agent 
treatment were evaluated. Surprisingly, a molecular weight 
shift of voltage-dependent anion channel 1 (VDAC1) was 
observed. Further biochemical analysis identified VDAC1 as a 
target for Parkin-mediated mitochondrial ubiquitination and 
subsequent mitophagy (Geisler et al., 2010). The ubiquitin-
binding autophagic component p62 and HDAC6 were also 
essential for Parkin-dependent mitophagy (Geisler et al., 
2010; Lee et al., 2010), suggesting that ubiquitinated VDAC1 
may be an important adapter molecule for p62 and HDAC6. 
In addition, Ziviani et al. reported that the pro-mitochondrial 
fusion protein Marf is ubiquitinated by Parkin, inferring that 
Parkin prevents refusion of damaged mitochondria to support 
proper mitophagic degradation (Ziviani et al., 2010). These 
mitochondrial Parkin targets further confirmed the role of 
the PINK1-Parkin pathway in mitochondrial remodeling, 
suggesting a mitochondrial quality control system driven by 
PINK1 and Parkin (Whitworth & Pallanck, 2009). Under 
mitochondrial damaging stress, PINK1 selectively translocates 
Parkin to impaired mitochondria. In mitochondria, Parkin 
ubiquitinates its targets, prevents refusion of damaged 
mitochondria, and finally removes damaged mitochondria 
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to protect mitochondrial function and integrity. These novel 
Parkin targets have only been studied in cell-based PD 
models and are yet to be confirmed in animal PD models. 
Therefore, further studies are required to confirm and refine 
the molecular mechanisms of PINK1 and Parkin with regards 
to regulating the mitochondrial remodeling process.

Concluding remarks

After the cloning of PD-associated genes, their roles 
in protection against PD were investigated in cell-based 
PD models. However, pioneering work using a genetic fly 
model revealed that the most affected PD gene, parkin, 
acts downstream of another PD gene, PINK1, to protect 
mitochondria, confirming the link between mitochondrial 
dysfunction and PD pathogenesis. Additional studies based 
on this finding revealed the exact role of the PINK1-Parkin 
pathway in mitochondria: balancing between mitochondria 
fusion and fission, and selective mitophagy of damaged 
mitochondria. Further studies investigating the molecular 
mechanisms of PINK1 and parkin in regulating mitochondrial 
remodeling will provide an enhanced understanding of PD 
pathogenesis and the development of an effective treatment 
strategy for PD.
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