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To develop new crop varieties and monitor plant growth, health, and traits, automated analysis of aerial crop images is an
attractive alternative to time-consuming manual inspection. To perform per-microplot phenotypic analysis, localizing and
detecting individual microplots in an orthomosaic image of a field are major steps. Our algorithm uses an automatic
initialization of the known field layout over the orthomosaic images in roughly the right position. Since the orthomosaic
images are stitched from a large number of smaller images, there can be distortion causing microplot rows not to be entirely
straight and the automatic initialization to not correctly position every microplot. To overcome this, we have developed a
three-level hierarchical optimization method. First, the initial bounding box position is optimized using an objective function
that maximizes the level of vegetation inside the area. Then, columns of microplots are repositioned, constrained by their
expected spacing. Finally, the position of microplots is adjusted individually using an objective function that simultaneously
maximizes the area of the microplot overlapping vegetation, minimizes spacing variance between microplots, and maximizes
each microplot’s alignment relative to other microplots in the same row and column. The orthomosaics used in this study
were obtained from multiple dates of canola and wheat breeding trials. The algorithm was able to detect 99.7% of microplots
for canola and 99% for wheat. The automatically segmented microplots were compared to ground truth segmentations,
resulting in an average DSC of 91.2% and 89.6% across all microplots and orthomosaics in the canola and wheat datasets.

1. Introduction

Changing climate, increasing population, and demand for
high-quality food will challenge producers to grow more
food with greater efficiency. A major pillar of the efforts to
address this challenge is the selective breeding of higher-
yield crop varieties with greater tolerance to extreme envi-
ronments. Breeding routinely involves assessment of plants
from candidate genetic lines to quantify desirable pheno-
types. Current methods for assessing plant phenotypes are
time-consuming, relying on laborious manual qualitative
assessment, and often only consider a subsampling of the
plants grown. For in-field trials, where a field area is subdi-
vided into many microplots, within which are grown many
plants from a single genetic line, breeders must physically

visit each microplot and visually assign scores based on
qualitative and quantitative traits of plants and rank the
plants at multiple stages of development. A new technique
known as image-based phenotyping has potential to
improve this subjective process [1, 2].

Image-based phenotyping uses machine learning and
image processing techniques to obtain quantitative measure-
ments of the structural and functional properties of plants.
For in-field trials, growth, health, and physical traits can be
quantified from overhead images acquired from cameras
mounted on tractors or unmanned aerial vehicles (UAV).
Aerial imaging has potential for faster and more accurate
assessment of a field [1, 3]. A camera-equipped UAV
typically collects many high-resolution, overlapping aerial
images of small sections of the field. Using software, aerial
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images are stitched together to generate an orthomosaic
image, providing a complete view of all the microplots in
the field in a single image. Most subsequent analysis relies
on knowing the precise locations and identities of each
microplot in the orthomosaic image [4, 5]. It is this problem
that we study in this paper since localizing microplots in the
orthomosaic image is a fundamental first step for any kind of
image-based microplot-level phenotype analysis.

Microplots may or may not be regularly shaped or
aligned due to inaccuracy during planting/seeding. Even if
they are aligned, for example, in a grid-like arrangement
(which is common), the orthomosaic may be warped due
to small, cumulative errors in the stitching process or inac-
curacies in geolocation information, which makes microplot
localization more challenging. For example, such warping
can make it difficult or impossible to rely on an expectation
that microplot boundaries are perfectly straight lines.

Microplots can theoretically be extracted from UAV
orthomosaics based on GPS data alone. Usually, this means
combining GPS data derived from the orthomosaic with
preestablished GPS-based microplot shapefiles. However,
both GPS sources are not always present. Or depending on
the precision of GPS systems, the two GPS sources could
disagree, sometimes in a nonlinear way, by 10 meters or
more [6]. Finally, as the growing season progresses, micro-
plots can grow beyond their preestablished shapes in unpre-
dictable ways. Taken together, these factors make it difficult
to propagate known plot locations from one orthomosaic
image to another of the same field taken later or earlier in
the season, necessitating an approach to microplot extrac-
tion based on image analysis rather than on GPS alone.

Automated detection and segmentation of microplots
would enable automatic monitoring and quantification of
microplot phenotypes, allowing a faster selection process that
requires much fewer person-hours than manual assessment.

There are three general approaches used to extract
microplots from orthomosaic images such as manual, semi-
automatic, and automatic methods.

The first method is the manual method that localizes a
microplot using the geolocation information on the drone
to generate bounding boxes generated geometrically.
Haghighattalab et al. implemented a simple grid-based
method to extract microplots [7]. As this method was
based on the assumption of a fixed microplot boundary
size, the polygon boundary may overlap part of the adja-
cent microplots. This method is easy to implement and
fast, but it did not account for gaps between microplots
and gaps between each range of microplots.

The semiautomatic approach partially automates plot
localization but still requires some manual intervention.
Hearst and Cherkauer proposed a framework to extract
microplots based on their map coordinates [8]. This
approach used Ground Control Points (GCP) and depends
on geolocation accuracy of imagery. Their results might also
be affected if there is little spacing between microplots or
when spaces between crops are obscured by plants in the later
stages of growth. Haghighattalab et al. extracted microplots
from wheat breeding nursery images [7]. Their semiauto-
matic algorithm localizes microplots by classifying pixels of

images into “vegetation” and “soil” areas. Similarly, Recio
et al. proposed a microplot-based image processing method
for automated extraction of trees [9]. They used the
K-means classification algorithm to classify image pixels into
“tree” and “nontree” groups. The limitations of both
approaches are that they assume ideal separation between
plots and sometimes merge multiple microplots into a single
microplot. Khan and Miklavic proposed a semiautomated
approach to extract microplots from wheat field orthomosaic
images [10]. They used particle swarm optimization to find
the optimal alignment of a bounding box grid. This method
requires a software tool to manually create a cellular grid
based on the number of rows and columns laid over the
image. Moreover, the method has been tested with only one
type of crop and 60 very clearly separated microplots. For
many crops and field trial layouts, monitoring the complete
growing season requires a robust method to capture images
with little to no visible ground between microplots. Tresch
et al. developed a semiautomatic approach to obtain micro-
plot information for drone imagery of whole fields using
the microplot extraction method known as EasyMPE (micro-
plot extraction) [11]. They were able to identify crop rows
and columns in soybean and sugarbeet crops on six different
field datasets. However, their method was designed for
midseason images in which there is a visible gap between
microplots. Their technique might not work for later-
season images when plants are larger and such gaps may
not exist. Matias et al. developed an R package called FIELDi-
mageR software to analyze many microplots in orthomosaic
images [12]. The software was able to crop microplot area,
count the number of plants per microplot, and measure can-
opy cover percentage, vegetation indices, and plant height.
Although the software was user-friendly and able to analyze
orthomosaic images, the first stage of the software to extract
the microplots was semiautomatic. Robb et al. proposed an
image processing method to segment crop microplots from
aerial imagery [13]. The proposed method was based on
identifying the division between microplots to demarcate
them. This paper provided a consistently high-performing
approach for delineating crop microplots and used minimal
input from the user. In general, existing semiautomatic
methods have several drawbacks: they require a tool to create
a cellular grid based on the number of rows and columns laid
over the image, the grid’s position and attributes are only
obtained using external software, and it is only used with
one kind of plant and a limited number of clearly delineated
microplots. Furthermore, the semiautomatic methods often
assume a rectangular grid and are not easily generalizable
to nonrectangular arrangements of microplots.

The third approach is automatic methods, which are
fully automatic without any manual intervention required.
Parraga et al. proposed a segmentation methodology based
on image processing techniques using UAV imagery. The
proposed segmentation method had four steps: preprocess-
ing, filtering, ROI map, and validation. This method can
automatically segment the wheat microplots during the
whole growth stage. However, it needs to tune several vari-
ables to work for all images during the whole wheat cycle,
which results in a long time run. Ahmed et al. proposed an
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algorithm to detect and segment lentil microplots from
multispectral aerial images [14]. One of the advantages of
this approach is that the proposed method is fully automatic.
However, this method does not correctly work in late-season
images because neighbouring microplots grow into each
other. Also, it is unable to distinguish lentil microplots from
the guard microplots. Chen and Zhang developed a Python
package, GRID (GReenfield Image Decoder), to overcome
the limitation of identifying pixel of interest (POI) and
microplot segmentation [15]. GRID was able to detect differ-
ent field layouts such as microplots arranged in rhombus or
grid and obtained better performance compared to other
software programs with higher computing time. This tool
had some limitations. First, the proposed tool is unable to
distinguish POI regions if weeds are nearly identical to the
vegetation of interest. Second, GRID uses visible channels
RGB to control noise and shade and is invalidated for other
multispectral images. Despite advances over previous auto-
matic approaches, these methods have some drawbacks.
Multiple microplots may be seen as a single microplot, and
ideal separation is assumed between microplots. The
proposed methods used midseason images that have well-
spaced microplots and needed tuning several variables to
work for all images.

To the best of our knowledge, all of the published works
on microplot extraction have been developed using learning-
based and image-based analysis approaches. Although some
models are automatic, all models have been designed and
tested with orthomosaics having a relatively small number
of microplots and used midseason orthomosaic images
where there are no canopy closure and relatively uniform
appearance of vegetation within microplots and clear gaps
in between microplots. Some methods require a tool to man-
ually create a cellular grid [10]. Among the aforementioned
approaches, developing an automated method to test with
a wider range of crops and growth stages and combine a
priori knowledge of the trial layout (initial shapefile) with
an optimization approach to adjust the microplot bound-
aries based on image analysis of the vegetation and soil is
needed. Therefore, developing an automatic method where
a map of the known microplot layout is overlaid and posi-
tioned using learning-based or image-based methods is nec-
essary. An approach to automatically identify microplots
from orthomosaic images in a broader range of growth
stages is needed. Overlaying a map of the known microplot
layout is a good starting point, but the precise boundaries
of each microplot need to be refined due to the aforemen-
tioned problems of warping and geolocation errors. Clicking
four corner points of a rectangular area to initialize an algo-
rithm assumes a rectangular grid layout, even though some
trials may have more unequal number of plots in rows or
columns due to irregular field shapes. Our main objective
is to develop a robust method for the accurate extraction
of microplots that can be used in high-throughput image-
based plant phenotyping pipelines from aerial drone-
acquired images of fields with a greater diversity of plot
layouts.

In this paper, we propose a three-step image-based
optimization approach where a map of the known microplot

layout is overlaid and positioned as optimally as possible. In
the next step, the position of individual microplots is opti-
mized within the constraints of the overall layout. Compared
to existing methods, ours adds robustness to challenging sit-
uations where there are a lack of visible microplot spacing
and a lack of no canopy closure. Our approach also only
requires a to-scale microplot layout map as input. The
three-stage optimization procedure proceeds in a course-
to-fine manner from overall field blocks to groups of micro-
plot columns and finally to individual microplots to mitigate
the effects of orthomosaic warping.

The rest of the paper is organized as follows. In Section
2, we describe the datasets for wheat and canola, present
the microplot localization algorithm, and evaluate algorithm
performance. Section 4 discusses the detection and segmen-
tation results of the proposed algorithm. Finally, Section 5
ends the paper with a short summary and conclusion.

2. Material and Methods

2.1. Dataset Description and Image Acquisition. The datasets
used in this paper were obtained from two wheat and canola
breeding trials. To capture canola images, a Draganfly X4P
quad-copter (Draganfly Innovations Inc., Saskatoon, SK,
Canada) carrying a MicaSense RedEdge camera (Micasense
Inc., Seattle, WA, USA) was used to take images in the
summer of 2017. This camera captures images with five
spectral channels: red, blue, green, near-infrared, and red-
edge. Images were taken at a height of 15 meters or 20
meters depending on the day for canola datasets. The canola
orthomosaic images are about 8100 × 9000 pixels in size.
The canola trial has 39 rows and 6 columns of microplots
in three aligned blocks of two columns. The microplot
dimensions were 5 × 20 ft with an intermicroplot gap of 1 ft
between microplots in the same block. A Sentera double
4K NDVI camera was used to take images of wheat at a
height of about 19 meters in the spring of 2018. This camera
captures NDVI images. The wheat orthomosaic images are
about 12000 × 14000 pixels and contain 47 rows and 12
columns of microplots in three aligned blocks of 15, 15,
and 17 rows. The wheat microplot dimensions are 3:5 ×
13:5 ft with an intermicroplot gap of 2 ft between microplots
in the same block. A high-resolution orthomosaic image of
each field was produced by stitching images with Agisoft
Metashape (Agisoft LLC, St. Petersburg, Russia). Figure 1
shows the RGB orthomosaic from canola and the NDVI
image from wheat breeding trial fields in the summer of
2017 and spring of 2018, respectively.

2.2. Ground Truth. Microplot ground truth bounding boxes
were manually annotated in the orthomosaic images by a lab
technician. A grid of equal-size rectangles corresponding to
the known microplot layout was overlaid on the orthomo-
saic image so that each microplot is near its correct position.
A lab technician used LabelImg to create the rectangles
around the microplots. The bounding boxes were created
by clicking two opposite corner points. Once done, the
annotations were saved as xml in pascal voc format.

3Plant Phenomics



2.3. Microplot Localization Algorithm

2.3.1. Algorithm Inputs. Our method requires the following
inputs:

(i) The orthomosaic image in which microplots are to
be localized

(ii) The horizontal and vertical scale of the orthomosaic
image in pixels per meter

(iii) A to-scale microplot map of the microplot layout in
the field in the form of a list of lists of coordinates of
corner points of the microplot bounding boxes in
units of meters relative to an arbitrary origin

The scale of the orthomosaic image is determined by the
commercial software used to stitch the orthomosaics. The
microplot map is easy to produce from the known field
layout. It is usually convenient to use the top-left-most
microplot corner as ð0, 0Þ. The list of lists of microplot coor-
dinates is ordered so that microplots can be easily associated
with their microplot IDs in the field trial design. In the case
of our regular-grid field layouts, the microplots are ordered
in a column-major fashion.

2.3.2. Preprocessing and Map Scaling. RGB orthomosaic
image inputs are converted to a grayscale vegetation index
image using an index that produces larger values for veg-
etation than soil. There are a few vegetation indices that
satisfy this requirement such as NDVI, Excess Green
(ExG), or Excess Green minus Excess Red (ExG-ExR) used
by [16, 17]. Indeed, any vegetation index that behaves simi-
larly could be used. We used ExG for our canola orthomosaic
images. Grayscale orthomosaic image inputs are assumed to
already be a suitable vegetation index image. In the case of
our wheat images, the camera used captured NDVI images
directly, which we used as input. It is assumed that the ortho-
mosaic is oriented such that the long edges of microplots are
parallel to the horizontal image coordinate axes.

The input scales of the orthomosaic image are used to
scale the microplot map so that it is the correct size within
the orthomosaic image’s coordinate system by multiplying
map’s horizontal and vertical coordinates by the image’s
horizontal and vertical scale in pixels per meter, respectively.

2.3.3. Per-Block Optimization. The next step of the algorithm
is to find a translation of the scaled microplot map that max-
imizes the amount of vegetation within the microplot areas.
Since the convex hulls of our microplot maps are rectangu-
lar, we searched for a translation that maximizes the sum
of the vegetation index within the entire microplot map’s
bounding rectangle. For more irregularly shaped microplot
maps or orthomosaics where stitching-induced warping
would make successful alignment of the entire microplot
map difficult, one could divide the microplot map into a
small number of blocks and find a translation for the initial
alignment of each block independently. In general, let B be
a set of minimum bounding boxes around blocks of micro-
plots, b + t be the translation of some b ∈ B by t = ðΔx, ΔyÞ,
and vegðbÞ be the sum of the vegetation index image within
a rectangle b. The objective function to be maximized is

ϕveg B, tð Þ = ∑b∈B veg b + tð Þ
area Bð Þ , ð1Þ

where b + t is the rectangle b translated by t and areaðBÞ is
the number of pixels enclosed by all rectangles in B. As long
as the vegetation index ranges between 0.0 and 1.0, ϕvegðB, tÞ
will has a value in the same range.

The t that optimizes this objective function is found
using differential evolution (DE) [18]. It is an evolutionary
algorithm, which is able to find the minimum of a function
f ðxÞ: IRn ⟶ IR without requiring its derivative. Since this
objective function and objective functions in subsequent
algorithm steps are composed of nondifferentiable functions,
DE was an ideal optimization algorithm for our task.
Figure 2 shows the “optimal” translation of the microplot
maps.

2.3.4. Per-Column Optimization. As can be seen in the
magnified areas of the orthomosaics in Figure 2, the initial
placement of the blocks does not always align every micro-
plot rectangle perfectly with microplots in the orthomosaic.
Such misalignment is caused by warping of the orthomosaic
which occurs during the stitching process. Some misalign-
ment caused by warping can be reduced by dividing the
microplots into more than one block and performing the
previously described initialization step independently on
each block. In any case, the second phase of our proposed

(a) (b)

Figure 1: Image samples and scaled microplot maps: (a) an RGB orthomosaic and scaled microplot map for the canola trial in the summer
of 2017; (b) an NDVI image and scaled plot micromap for the wheat trial in the spring of 2018.
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algorithm repositions each column independently within
constraints of the expected microplot map to mitigate these
effects. This is done across all blocks rather than for each
block independently to take advantage of the overall grid-
like layout of microplots.

For each column, we let B be the bounding box for the
entire column and optimize equation (1) using DE to find
a translation vector t so that B encloses a greater sum of
excess green. Then, each individual rectangle in the column
is translated by t. This works for most orthomosaics, but we
observed that this can reposition columns such that they are
overlapping. This occurs in some late-season images where
there is canopy closure between neighbouring columns with
no visible ground. This is corrected in a second pass through
the columns where for each column c (except for the right-
most column), if the bounding box of c overlaps that of
the column to its right, c′, then c is translated to the left so
that it is positioned s pixels to the left of c′ where s is the
number of pixels between c and c′ in the initial scaled micro-
plot map. The per-column optimization process is described
in Algorithm 1.

For microplot maps which are not organized into equal
length columns, this step could be generalized and be
applied to any set of subsets of microplots B1, B2,⋯, Bn
and their bounding boxes or convex hulls with varying
degrees of ease depending on the complexity of the spatial
relationships between the subsets of microplots. For subsets
with rectangular bounding boxes in a grid-like arrangement,
the generalization is fairly easy. Moreover, this step could
equivalently be performed as a per-row optimization.

2.3.5. Per-Microplot Optimization. While the per-column
optimization step somewhat mitigates the orthomosaic
warping problem, individual microplots in a column can still
be positioned poorly especially if the warping causes vertical
displacement.

The per-microplot optimization method requires three
steps. The complete steps are summarized in Algorithm 2.

(1) Update Initial Points. Individual microplot positions are
optimized in a column-major order, starting from the top-
left microplot, then working down the column, and starting

at the top of the next column to the right when the current
column has been completed. The differential evolution
(DE) method is a population-based stochastic method that
needs two important parameters for optimization, initial
points and bounding research. In our project, the initial
points are the upper-left corner and the lower-right corner
of each bounding box. To update the initial points, the loca-
tion of the optimized microplots from the previous column
and the location of the previous microplot in the same
column are needed. Let ðr′1, c′1Þ and ðr′2, c′2Þ be the
upper-left corner and the lower-right corner of all microplot
rectangles, respectively.

gd =microplotA:2 r2′
� �

−microplotA:1 r2′
� �

: ð2Þ

Let ghm be the height of microplot and the gd shows
the difference between two microplots in the same row
but in a different column that can show the amount of
warping from the previous column. By observing the
warping between two neighbouring microplots in the same
row, the amount of displacement due to warping is equal
to or less than ghm/2. Then, initial points are updated when
gd < = ðghmÞ/2. As can be shown in Figure 3, updated initial
points formicroplotB:2 are ððmicroplotB:1ðr′1Þ + gdÞ, c′1Þ and
ððmicroplotB:1ðr′2Þ + gdÞ, c′2Þ. If gd > ðghmÞ/2, it is more
likely that the optimized microplot from the previous column
was aligned more closely or exactly to its neighbouring
microplot. Therefore, the initial points are not updated. In
addition, the initial points of microplots in the first column
and the first row of microplots in the microplot map are
not updated because there is no information from their pre-
vious microplots.

(2) Optimize the Location of Microplot. In this stage of our
algorithm, the position of individual microplots in the
microplot map is adjusted by optimizing equation (1) to
achieve the best possible overlap with the corresponding
microplot in the orthomosaic. For this phase, we formulated
an objective function consisting of five components using
the underlying microplot layout and image characteristics

(a) (b)

Figure 2: Example of microplot map overlay after a per-block optimization method. The zoomed-up areas show that not all plot boxes may
be well-aligned due to the orthomosaic warping.
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while retaining the general principle of maximizing overlap
with plant areas:

ϕ tð Þ =w0 · 1 − ϕveg t, Bð Þ
� �

+w1 · ϕEC gkð Þ +w2 · ϕAC r1, r2ð Þ
+w3 · ϕTC tð Þ + ϕEdC cmin, rminð Þ,

ð3Þ

where t = ðΔx, ΔyÞ is a translation vector, B is the bounding
box of the microplot whose position is to be optimized,
w0,w1,⋯,w5 are weighting terms (w4 and w5 are embed-
ded in ϕEdC, equation (9)), and the remaining parameters
to the individual components are functions of t and are
described in the following paragraphs.

Individual microplot positions are optimized in a
column-major order, starting from the top-left microplot,
then working down the column, and starting at the top of
the next column to the right when the current column has
been completed. The microplot position is optimized using
DE to find the t that minimizes this function. The search

space of the optimization is bounded such that Δx is between
Δxmin and Δxmax, and Δy is between Δymin and Δymax. In our
implementations, we use bounds dependent on g, the
known gap size in pixels between adjacent microplots in
the initial scaled mircoplot map.

The first term in the cost function is 1 − ϕvegðt, BÞ (equa-
tion (1)) which is minimized when the sum of the vegetation
index within the microplot is maximized (for our datasets,
the index is ExG for canola and NDVI for wheat).

The next term is the even spacing cost (EC). It is min-
imized when the vertical gap between a microplot and its
previously optimized neighbour equals the expected gap g
based on the initial field map. For microplots at the top of
the column that have no previously processed neighbour
above them, the EC term is not used. Let gk = gi + Δy be
the current gap between the current microplot p and the
previously optimized microplot p′ above it, where gi is
the initial gap after the optimization of p′’s position, but
before the commencement of the optimization of p’s posi-
tion. Let �g be the normalized vertical gap between the
microplot being optimized and microplot above it in the
column:

�g = ∣gk − g ∣
max Δyminj j, Δymaxj jð Þ : ð4Þ

The even spacing cost (EC) is then defined as

ϕEC gkð Þ = 1 − exp −4�gð Þ: ð5Þ

The search space for Δy is bounded by the expected
vertical gap between microplots g so that the optimizer
can move the bounding box at most g pixels up or down.
Therefore, we normalized ∣gk − g ∣ based on the difference

1: for each column cdo.
2: B⟵Convex hull of column c:
3: Find translation t that optimizes ϕvegðB, tÞ eq. (1)
4: each for
5: for each column c, left to right (except for the right-most column) do
6: ifc overlaps the column to its right, c′, then
7: translate c so it is s pixels to the left of c′
8: end if
9: end for

Algorithm 1: Per-column optimization algorithm.

1: ðr′1, c′1Þ and ðr′2, c′2ÞUpper-left corner and the lower-right corner of microplot rectangle
2: for each microplot do
3: Update initial points eq. (2)
4: Optimize the location of microplot
5: Find overlapped microplot and omit it
6: end for

Algorithm 2: Per-microplot optimization algorithm.

Column 1 Column 2

Plot A. 1

Plot B. 1

Plot C. 1

Plot B. 2

Plot A. 2 
gd

ghm

r1′ r1′

r1′ r1′

r2′ r2′

r2′ r2′

Figure 3: The blue bounding boxes show the optimized microplots.
The red bounding box shows the current microplot that we want to
update its initial points.
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between the maximum possible gaps between the positions
of two estimated bounding boxes. We apply an exponen-
tial function to this to get ϕECðgkÞ. An exponential cost
was selected instead of a linear cost to obtain a higher cost
value for small normalized gaps (errors) in spacing.

The third term is the alignment cost (AC). It is mini-
mized when the centers of the microplots in a column are
horizontally aligned. Let the starting center of the current
microplot rectangle be ðr1, c1Þ and (r2, c2) be the center of
the previously processed microplot rectangle above it. Then,
the alignment cost (AC) is

ϕAC r1, r2ð Þ = r1 + Δx − r2j j
max Δxminj j, Δxmaxj jð Þ + r1 − r2j j : ð6Þ

A linear cost here yielded a better result than a nonlinear
cost because gaps between columns, especially in the canola
images, are larger than the gap between microplots within a
column. Thus, the penalty for smaller deviations needed to
be lessened in comparison to the evenness cost.

The fourth term is the translation cost (TC) which
encourages translation vectors with shorter length. It is
minimized when t = ðΔx , ΔyÞ = ð0, 0Þ. This is desirable since
we can be reasonably certain at this phase of the algorithm
that microplots in the microplot map are already quite close
to their correct position. Translation cost is defined as the
sum of the normalized Manhattan distance of the shift.

ϕTC tð Þ = Δxj j + Δy

�� ��
max Δxminj j, Δxmaxj jð Þ +max Δyminj j, Δymaxj jð Þ :

ð7Þ

The last term in the objective function is the edge cost
(EdC). This term encourages microplots to be nudged
away from positions where the very edge of the microplot
area overlaps nonmicroplot areas in the orthomosaic. It is
illustrated in Figure 4. Let M be the subimage of the veg-
etation index orthomosaic enclosed by the microplot’s
bounding box with width w pixels and height h pixels.
The edge cost is minimized when the sum of the smallest
row sum and smallest column sum of M is maximized.
Let Mij be the vegetation index of the pixel at the i-th
row and j-th column of the subimage M. The smallest
row and column sums are

cmin = min
j

1
h
〠
i=h

i=1
Mij,

rmin = min
i

1
w
〠
j=w

j=1
Mij,

ð8Þ

where 1/h and 1/w are normalizing factors. In the example
in Figure 4, the bottom-most row and right-most column
have the smallest vegetation index because the microplot
is misaligned so the bottom row and right column overlap
the ground rather than vegetation. Thus, c5 and r2 are the

minimum column and row sums, respectively. The edge
cost to be minimized is

ϕEdC cmin, rminð Þ =w4 · 1 − cminð Þ +w5 · 1 − rminð Þ: ð9Þ

where w4 and w5 are the remaining weighting terms omit-
ted from equation (3).

(3) Find Overlapped Microplot and Omit It -1.2 cm. In this
stage of per-microplot optimization algorithm, the over-
lapped microplot in the field is found by using information
from the previous optimized microplot. The reason for add-
ing this stage to the algorithm is that initial points for the
first column and first row of individual microplots in the
microplot map are not updated. Since the initial points and
research areas play a vital role in optimizing the location of
microplots, there is a high possibility of overlapping between
microplots in the first column. Two kinds of overlapping
may occur after optimizing the location of microplot. First,
the current optimized microplot’s location is overlapped
with the previous microplot; second, the previously opti-
mized microplot is overlapped with the currently optimized
microplot. Figure 5 shows two examples of overlapped
microplots in the field.

ΔO =microplotB r2′
� �

−microplotC r1′
� �

: ð10Þ

ΔO is defined as the height of the overlapped area
between two microplots. Microplot A and microplot B are
two previously optimized neighbours. If the distance d is
equal or less than expected gap g based on the initial map,
it means that the current microplot overlapped with its pre-
vious neighbour. Then, to omit the overlapping problem,
microplotCðr′1Þ + ΔO and microplotCðr′2Þ + ΔO. When the
distance d is more than the expected gap g, it means that
the previously optimized microplot overlapped with the

C = C0

r2r1r0

C1 C2 C3 C4 C5
( )

𝛴 𝛴 𝛴 𝛴 𝛴

𝛴

𝛴

𝛴

𝛴

r = ( )

Figure 4: Pixels of a microplot are illustrated with solid lines
whereas the estimated bounding box is depicted using dashed
lines. Green and brown colors are used to demonstrate where the
bounding box overlaps with the microplot (vegetation) or soil. ci
and ri are the row and column sums of M, with c5 and r2 being
the minimum row and column sums, respectively.
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current microplot. Then, to omit the overlapping problem,
microplotCðr′1Þ − ΔO and microplotCðr′2Þ − ΔO.

The complete algorithm is summarized in Algorithm 3.

2.4. Hyperparameter Tuning. We performed a hyperpara-
meter tuning step that optimizes w0,w1,⋯,w5 to accommo-
date seasonal variations in the microplot orthomosaic. We
used DE for the hyperparameter search. For each dataset,
we randomly selected one early-, one mid-, and one late-
season image on which to perform the hyperparameter
search. The objective function for this DE optimization
was the mean DSC of the three images after segmentation
with our algorithm, and w0,w1,⋯,w5 are the variables
being optimized. For the DE algorithm, the minimum and
maximum bounds on the variables were set to 0.0 and 1.0.

The values of the hyperparameters used for evaluation
are reported in Section 2.5.3.

2.5. Algorithm Performance Evaluation. We assessed the
algorithm’s ability to detect microplots and its ability to
segment microplots accurately.

2.5.1. Detection Metrics. A microplot is considered detected if
the overlap between the microplot and its ground truth is
acceptably high. We quantified this overlap using the Dice
Similarity Coefficient (DSC) [19]. If A is the set of pixels in
a ground truth microplot and B is the set of pixels in the
corresponding automatically segmented microplot, then
the DSC is

DSC = 2 A ∩ Bj j
Aj j + Bj j : ð11Þ

Thus, a microplot can be considered detected if its DSC
exceeds some threshold TDSC. DSC ranges between 0.0 (no
overlap at all) and 1.0 (perfect overlap).

2.5.2. Segmentation Metrics. To evaluate the accuracy of the
segmentation, we determined the DSC for each microplot
(including microplots not deemed to be detected). We also
determined the displacement error for each microplot,
defined as the Euclidean distance between the center point

of the segmented rectangle and its corresponding ground
truth bounding box. This metric is used by [10].

In order to facilitate comparison with future studies, we
also quantified the segmentation accuracy in terms of
sensitivity-specificity and precision-recall. Sensitivity, speci-
ficity, precision, and recall are quantities that are computed
from the following counts:

(i) True Positive Pixels (TP): number of pixels correctly
labeled as belonging to the correct microplot

(ii) True Negative Pixels (TN): number of pixels incor-
rectly labeled as belonging to the correct microplot

(iii) False Positive Pixels (FP): number of pixels correctly
labeled as background (not belonging to the correct
microplot)

(iv) False Negative Pixels (FN): number of pixels incor-
rectly labeled as background

Sensitivity and specificity are complementary measures.
Sensitivity is the proportion of pixels that are part of a
microplot that are correctly labeled as such:

Sensitivity Recallð Þ = TP
TP + FN

: ð12Þ

Specificity is the proportion of pixels that are not part of
a microplot that are correctly labeled as such:

Specificity =
TN

TN + FP
: ð13Þ

The segmentation accuracy is higher when both sensitiv-
ity and specificity are close to 1.0. When sensitivity is higher,
it means that more of the foreground pixels are being
included in the segmentation. When specificity is higher, it
means fewer background pixels are being included in the
foreground. Both conditions are required for excellent
segmentation.

Precision and recall are similar complementary measures
in that better segmentations are characterized by both mea-
sures being closer to 1.0. Recall is defined in the same way as
sensitivity (see above). Precision is the proportion of pixels
labeled as microplot that actually do belong to microplots:

Precision = TP
TP + FP

: ð14Þ

The main difference between sensitivity-specificity and
precision-recall is that the latter does not take into
account TN pixels in the segmentation. Precision-recall
therefore does not account for correctly labeled nonmicro-
plot pixels. However, precision-recall is a good alternative
to sensitivity-specificity when the number of background
(nonmicroplot) pixels is large relative to the number of fore-
ground (microplot) pixels in an image, which can inflate the
specificity score because TN pixels vastly outnumber FP
pixels. Thus, we report both pairs of measures.

Plot A

Plot C

(a) (b)

Plot B

d

ΔO

r1′

r1′

r2′

r2′ Plot C
Plot B

Plot A

d

ΔO

r1′

r1′

r2′
r2′

Figure 5: The blue bounding boxes show the optimized microplots.
The red bounding box shows the currently optimized microplot.
(a) The current microplot is overlapped with the previously
optimized microplot. (b) The previously optimized microplot is
overlapped with the currently optimized microplot.
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2.5.3. Evaluation Procedure. Our algorithm was evaluated on
the ten canola and seven wheat orthomosaic images
described in Section 2.1. The algorithm was implemented
in Python on a MacBook Pro (15-inch, 2017) equipped with
2.8GHz Quad-Core Intel Core i7 CPU (16G memory).

For the canola dataset, the per-block optimization step
was performed using a single block for the entire field. For
wheat, the warping was severe enough to require dividing
the microplots into three blocks for this step. The blocks
were formed from the three obvious subregions in the field
with the larger spaces between them as seen in Figure 1(b).
Results of the per-block optimization step on the wheat
dataset in a single block and three blocks are shown in
Figures 6(a) and 6(b), respectively. To assess the benefits of
using multiple blocks, we also computed results for the algo-
rithm where all microplots in the wheat orthomosaics are
processed as a single block.

The search bounds on t for the DE optimizer in the
per-block optimization step were set to Δxmin = Δymin = 0,
Δxmax = gw, and Δymax = gh, where gh is the height of ortho-
mosaic image minus the height of all microplots and the
expected distance between them and gw is the width of the
orthomosaic image minus the width of all microplots and
the expected distance between columns taken from the initial
microplot map for both canola and wheat orthomosaics.

The search bounds on t for the DE optimizer in the per-
column optimization step were set to Δxmin = −gi, Δymin =
−g and Δxmax = gi, Δymax = g, where g is the expected dis-
tance between immediately adjacent microplots and gi is
the expected distance between immediately adjacent col-

umns taken from the initial microplot map for both canola
and wheat orthomosaics.

The search bounds on t for the DE optimizer in the per-
microplot optimization step were set to Δxmin = Δymin = −g
and Δxmax = Δymax = g for canola orthomosaics. Due to
severe warping in the wheat dataset, two search bounds were
set. Δxmin = Δymin = −g and Δxmax = Δymax = g for micro-
plots in the first row and the first column of microplots in
the microplot map in the orthomosaics and Δxmin = −g,
Δymin = −g/2 and Δxmax = g, Δymax = g/2 for the rest of
microplots in the microplot map in the orthomosaics
where g is the expected distance between immediately
adjacent microplots taken from the initial microplot map.

Hyperparameters used for both wheat and canola datasets
were w0 = 0:976,w1 = 0:873,w2 = 0:975,w3 = 0:0918,w4 =
0:421,w5 = 0:822 and w0 = 0:639,w1 = 0:627,w2 = 0:520,
w3 = 0:0118,w4 = 0:0138,w5 = 0:624, respectively (rounded
to three significant digits).

Because the differential evolution (DE) method is a
population-based stochastic method that uses random ini-
tializations, we ran our algorithm 5 times for each orthomo-
saic image and retained the result with the smallest sum of
ϕðtÞ over all microplots.

3. Results and Discussion

3.1. Detection Results. We considered a microplot to be
detected with an acceptable overlap if its DSC is 0.5 or
greater. It must be understood that this DSC threshold is
not used to measure whether a plot is segmented acceptably

1: B⟵Convex hull of all microplots
2: Find translation t that optimizes ϕvegðB, TÞ (Eq. 2)
3: Divide the microplots into logical blocks (could be only one block)
4: for each block do
5: B⟵A minimum-area bounding polygon of all microplots in each block
6: Find translation t in y-direction that optimizes ϕvegðB, tÞ (Eq. 2)
7: end for
8: Do per-column optimization
9: Do per-microplot optimization

Algorithm 3: Summary of the microplot segmentation algorithm.

(a) (b)

Figure 6: Example result of per-block optimization on the wheat dataset. (a) Result for a single block. The alignment with the middle block
is poorly aligned due to orthomosaic warping. (b) Result for three blocks. Greater overlap between the individual position of microplots and
the scaled microplot map will result in better microplot segmentation in a per-microplot optimization step.
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well, but rather as a measure of the detection rate, that is, the
proportion of microplots for which we are able to establish a
correspondence with one of the bounding boxes and associ-
ate it with a microplot ID. The position of such rectangles
is adjusted in a later phase of the algorithm before assessing
the quality of the segmentation of the microplot. A large pro-
portion of microplots was detected using this criterion in
both the wheat and canola datasets for early-, mid-, and
late-season images. Table 1(b) presents the number of
unidentified microplots for each canola orthomosaic image.
On average, 99.74% of microplots in an orthomosaic images
were detected, an average of 0.6 undetected microplots per
orthomosaic.

Table 2(b) reports the same data for the wheat orthomo-
saics using one block and three blocks for the per-block opti-
mization step. Because of the aforementioned warping, the
algorithm detected only 88.55% of microplots in an ortho-
mosaic on average or an average of 64.57 unidentified
microplots per image (using the DSC ≥ 0:5 criterion). How-

ever, the use of three blocks, which processes the initial
microplot map in smaller sections, achieves much improved
performance. Table 2(b) shows the results of using three
blocks where the average percentage of identified microplots
in an orthomosaic improves to 98.99% or an average of 5.7
unidentified microplots per orthomosaic.

3.2. Segmentation Results. Tables 1(a) and 2(a) show the
mean microplot DSC and median of displacement error
after per-block, per-column, and per-microplot optimization
steps for our ten canola and seven wheat orthomosaic
images. The algorithm achieved an average DSC of 86.58%,
88.34%, and 91.15% across all microplots and orthomosaics
tested for the canola dataset after per-block, per-column,
and per-microplot optimization steps, respectively. Further-
more, the algorithm achieved an average DSC of 59.04%,
67.67%, and 89.56% across all microplots and orthomosaics
tested for the wheat dataset after per-block, per-column, and
per-microplot optimization steps, respectively. We present

Table 1: The results of DSC, median of displacement error, and correctly identified microplots for the canola dataset.

(a) The results of DSC and median of displacement error after using per-block, per-column, and per-microplot optimization steps for the
canola dataset

Images
Mean microplot DSC Median of displacement error

After per-block
optimization step

After per-column
optimization step

After per-microplot
optimization step

After per-block
optimization step

After per-column
optimization step

After per-microplot
optimization step

2017-06-28 87.97 91.61 90.89 1.13 0.62 0.65

2017-07-03 84.30 86.43 93.04 1.18 0.56 0.29

2017-07-07 78.43 78.70 88.46 1.71 1.64 0.51

2017-07-19 85.40 90.22 95.11 0.76 0.56 0.40

2017-07-26 92.32 90.59 94.72 0.39 0.46 0.40

2017-08-01 89.15 91.85 92.06 0.79 0.41 0.46

2017-08-09 89.91 90.07 92.58 0.56 0.57 0.47

2017-08-12 90.18 88.30 89.93 0.67 0.74 0.66

2017-08-16 81.62 85.68 82.84 1.03 0.91 1.09

2017-08-22 86.47 89.90 91.43 1.33 0.68 0.60

Mean 86.58 88.34 91.15 0.86 0.72 0.51

(b) The results of DSC and correctly identified microplots for the canola dataset

Images
Mean microplot DSC Number of undetected microplots (DSC < 0:5) Percentage of detected microplots (DSC ≥ 0:5)

Single block Single block Single block

2017-06-28 90.89 0 100%

2017-07-03 93.04 1 99.57%

2017-07-07 88.46 1 99.57%

2017-07-19 95.11 0 100%

2017-07-26 94.72 0 100%

2017-08-01 92.06 0 100%

2017-08-09 92.58 0 100%

2017-08-12 89.93 0 100%

2017-08-16 82.84 4 98.29%

2017-08-22 91.43 0 100%

Mean 91.15 0.6 99.74%
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the displacement errors for each of the ten different canola
trials in Table 1(a), and the median errors are 0.86, 0.72,
and 0.51 ft across all microplots and orthomosaics tested for
the canola dataset after per-block, per-column, and per-
microplot optimization steps, respectively. In addition, the
median errors are 3.76, 2.72, and 0.42 ft across all microplots
and orthomosaics tested for the wheat dataset after per-block,
per-column, and per-microplot optimization steps, respec-
tively. The mean microplot DSC is significantly increased
when three optimization steps are performed for the wheat
and canola datasets. In addition, the median of displacement
error is reduced compared to performing only one or two
optimization steps. The results show the potential advantages
of performing a three-level hierarchical optimization method
in the presence of low to high severe orthomosaic warping.

Table 1(b) shows the mean microplot DSC (including
undetected microplots) for our ten canola orthomosaic
images. The algorithm achieved an average DSC of 91.15%
across all microplots and orthomosaics tested for the canola
dataset. The August 16 image is a late-season image where
the gaps between microplots were obscured by vegetation.
Although the median of displacement errors and mean of
DSC are higher than those of other images, the number of
unidentified microplots remained low (Table 1(a)). It is the

only canola image where the number of unidentified micro-
plots was greater than 1.

Table 2(b) shows mean DSC and the displacement errors
for the seven different wheat orthomosaics when a single
block and three blocks are used. The algorithm achieved
an average DSC of 88.55% and 98.99% across all microplots
and orthomosaics tested for the wheat dataset using single
block and three blocks, respectively. The median of displace-
ment error when a single block used is 0.52 ft overall. The
warping results in microplot map rectangles being closer to
a neighbouring microplot in the orthomosaic than the cor-
rect microplot in the orthomosaic. Then, the per-microplot
optimization step aligns them more closely to the neigh-
bouring microplot. The spacing between microplots is 2 ft
and the width of each microplot is 3.5 ft; thus, a microplot
aligning to its neighbouring microplot would cause a dis-
placement error of around 5.5 ft. Table 2(b) shows the
median of displacement error when three blocks used are
0.42 ft overall. The number of the undetected microplot is
reduced compared to a single block, showing the potential
advantages of processing the microplot map in blocks in
the presence of orthomosaic warping.

Figure 7 shows a plot of precision-recall and ROC
curves for both canola and wheat datasets, respectively.

Table 2: The results of DSC, median of displacement error, and correctly identified microplots for the wheat dataset.

(a) The results of DSC and median of displacement error after using per-block, per-column, and per-microplot optimization steps for the
wheat dataset using a single block and three blocks in the per-block optimization step

Images
Mean microplot DSC Median of displacement error

After per-block
optimization step

After per-column
optimization step

After per-microplot
optimization step

After per-block
optimization step

After per-column
optimization step

After per-microplot
optimization step

2018-03-07 62.62 72.81 91.79 1.79 0.79 0.34

2018-03-14 60.66 78.62 92.46 1.68 0.72 0.33

2018-04-04 58.59 60.99 90.39 2.10 1.50 0.34

2018-04-17 58.52 63.11 90.33 1.85 1.38 0.37

2018-04-25 59.77 70.38 92.06 2.17 1.10 0.35

2018-05-02 55.87 62.72 85.68 8.97 7.87 0.56

2018-05-08 57.26 65.07 84.46 7.74 5.68 0.62

Mean 59.04 67.67 89.56 3.76 2.72 0.42

(b) The results of DSC and correctly identified microplots for the wheat dataset using a single block and three blocks in the per-block
optimization step

Images
Mean microplot DSC

Median of displacement
error

Number of undetected
microplots (DSC < 0:5)

Percentage of detected
microplots (DSC ≥ 0:5)

Single block Three blocks Single block Three blocks Single block Three blocks Single block Three blocks

2018-03-07 89.29 91.79 0.37 0.34 39 0 93.09% 100%

2018-03-14 92.36 92.46 0.33 0.33 0 0 100% 100%

2018-04-04 86.12 90.39 0.87 0.34 270 11 52.13% 98.05%

2018-04-17 89.50 90.33 0.4 0.37 8 3 98.58% 99.47%

2018-04-25 91.37 92.06 0.36 0.35 7 0 98.76% 100%

2018-05-02 82.17 85.68 0.6 0.56 56 7 90.08% 98.76%

2018-05-08 80.33 84.46 0.7 0.64 72 19 87.23% 96.63%

Mean 87.30 89.56 0.52 0.42 64.57 5.7 88.55% 98.99%
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Figure 7: Plot of precision-recall and ROC curves for the canola and wheat datasets. (a) Precision-recall curve for the canola dataset. (b)
ROC curve for the canola dataset. (c) Precision-recall curve for the wheat dataset. (d) ROC curve for the wheat dataset. Plot of mean
number of unidentified microplots for both (e) canola and (f) wheat datasets.
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In Figure 7(a), at recall 0.8, most images have a precision
of 0.9 or higher except one image. The August 16 image
is a late-season image that the gaps between microplots
were covered by vegetation, and the estimated bounding
boxes were more likely to be out of position as a result.
Figure 7(b) shows that at a specificity of 0.93, the sensitiv-
ity of the segmentation is at least 0.8. Again the exception
is the August 16 image.

In Figure 7(c), for the wheat images (using 3 blocks), at
recall 0.8, most images have a precision of 0.88 or higher
except one image. The May 8 image is a late-season image
that the gaps between microplots were covered by vegeta-
tion. Although the image had a lower precision at recall
0.8, the percentage of the identified microplots for the image
was 96.63% from Table 2(b) and 545 microplots were
detected (DSC ≥ 0:5) out of 564 microplots. Also, in
Figure 7(d), we see that at specificity 0.8, all but one image
has a sensitivity of 0.72 or higher. Again the exception is
the May 8 late-season images.

Figures 7(e) and 7(f) illustrate how selection of the DSC
threshold for microplot detection affects the number of
unidentified microplots. In Figure 7(e), at DSC = 0:5, the
number of unidentified microplots for the canola dataset is
almost zero and does not begin to increase rapidly until
the DSC threshold is 0.7 or more. Similar behaviour is
observed for the wheat dataset.

Figure 8 shows sample segmentations for both crops
used in this study including examples of early-, mid-, and
late-season orthomosaics. Red rectangles illustrate the final
positions of the microplot map rectangles after completion
of the algorithm.

4. Discussion

We have developed a fully automatic method to extract
microplots in orthomosaic images. Our proposed method
can be applied to rectangular-shapedmicroplot layouts. These
layouts include rows and columns arranged perpendicularly.

(b) (c)(a)

(e) (f)(d)

Figure 8: The results of our proposed algorithm on the canola and the wheat datasets. The results on the canola dataset (a) in early-season,
(b) midseason, (c) late-season images. The orthomosaic image channels produced by Agisoft PhotoScan contained absolute reflectance
values for each of the color band of the RedEdge camera. These reflectance values were not optimized for viewing, so they were
brightened by multiplying RGB channel values by a constant factor for reproduction here. The results on the wheat dataset (d) in early-
season, (e) midseason, and (f) late-season images.
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Our method works for NDVI and ExG images and allows
users to derive the different vegetation indices as input.
The most important advantage of this method can be gener-
alized to other crop types as long as the field layout map is
provided and plants have a consistent size within a trial.
The main difference of our approach with previous methods
is combining prior knowledge (shapefile) with image analy-
sis within a multiobjective optimization and evaluating the
approach with a wide range of crop type and growth stage.
We obtained a better result for the canola dataset compared
to the wheat dataset. As shown in Figure 1, there is more
misalignment in the wheat dataset caused by the warping
of the orthomosaic, which occurs during the stitching pro-
cess. Furthermore, the wheat dataset has some missing
microplots that caused an error while extracting the exact
location of microplots.

As shown in Tables 1(a) and 2(a), the mean microplot
DSC is significantly increased, and the median of displace-
ment error is reduced after performing each optimization
step. It means that each step of optimization is necessary
for the presence of low to high severe orthomosaic warping
for the wheat and canola datasets.

In this project, initial points and research bounds are
essential parameters for the optimization to get the best
results. Due to severe warping in the microplot map, some
initial points are closer to a neighbouring microplot in the
orthomosaic than to the correct microplot in the orthomo-
saic. Then, the per-microplot optimization step aligns them
more closely to the neighbouring microplot. Updating initial
points could help to solve an overlap problem and decrease
the number of unidentified microplots. To update initial
points, the algorithm requires the information of previously
optimized microplots. Because of this, the initial points in
the first row and column of microplots in the microplot
map in the orthomosaic could not be updated. Then, the
stage of finding an overlapped microplot was added to the
per-microplot optimization step.

The method for extracting and localizing microplots in
the field described in this study would benefit any applica-
tions that use a remotely sensed field trial, whether for lodg-
ing prediction, herbicide tolerance estimation, detecting
crop rows, detecting plants, estimating height, or estimating
yield [20–22]. For any of these tasks, we must begin by
establishing the precise location and area and perimeter of
the field’s microplots. Although image-based phenotyping
performs better than previous manual techniques, there is
still substantial labour involved in identifying and segment-
ing microplots using manual, semiautomatic, and automatic
methods. The automatic registration of microplot locations
provided by the optimization algorithm proposed here can
simplify the tedious preanalysis task of identifying field
microplots in an orthomosaic image of a plant research field
trial. Our research, by obtaining precise location from
microplots, provides a useful and scalable method for high-
throughput plant phenotyping scenarios. The outcome of
this research will help to increase the throughput of aerial
image-based phenotyping.

One limitation of per-microplot optimization used for
microplot identification is that our algorithm used NDVI

images or ExG indices that provided higher intensity value
of vegetation than that of soil. A limitation of finding hyper-
parameters is that hyperparameter tuning on the whole data-
set is quite time-consuming. As such, the hyperparameter
tuning method used in this study has used only three images
from the dataset to obtain an efficient weight vector. Using a
technique such as k-fold cross validation on the whole dataset
may result in hyperparameter values that better generalize
unseen datasets. This could take the form of random splits
of a dataset into “training” (for optimizing hyperparameters)
and “testing” (for performance evaluation) sets.

In future work, we aim to develop an algorithm that
accounts for the different physical properties of various crop
types and different microplot sizes. This will be achieved by
finding general optimization techniques and making modifi-
cations to the objective function that are well suited to
manipulate images and vegetation properties. In addition,
since the search bounds are important when optimizing
the position of blocks, columns, and individual microplots,
we suggest including the search bounds in the hyperpara-
meter tuning model. Furthermore, since height information
might be helpful for late-season imagery, we could add the
height information as another channel to our algorithm.
Also, EasyMPE is a semiautomatic approach to obtain
microplot information for drone imagery of whole fields
[11]. The main part of EasyMPE is the microplot extraction
part that is related to our work. This method was designed
for midseason images in which there is a visible gap between
microplots. In this method, the field is partitioned based on
the sum of white pixels in the columns in a segmented
binary image. Given the knowledge that we have on late-
season and early-season images, it is more likely that this
method will not work on these kinds of images. In future
work, we could compare our algorithm with the EasyMPE
method and apply EasyMPE in late-season and early-
season images to ensure our claim.

In some cases, plant senescence or disease may cause
microplots to no longer be green, in which case it will be dif-
ficult for our algorithm to detect it. Indeed, some examples
of this can be seen in the lower block of microplots in
Figure 8. We might be able to detect and repair such errors
by comparing overlapping microplot rectangles to all four
of their expected neighbours in the grid layout. This addi-
tional context could be either added as a postprocessing step
or incorporated into the objective function of the per-
microplot optimization step.

5. Conclusion

We have developed an algorithm based on a novel applica-
tion of image-based optimization techniques to extract and
segment microplots within a field. Our proposed method
for segmenting wheat and canola trials performs automatic
initialization of the known field layout over the orthomosaic
images in roughly the right position. The algorithm not only
relieves the processing time bottleneck of identifying and
segmenting microplots in high-throughput image-based
phenotyping pipeline but also can simplify the tedious prea-
nalysis task of identifying microplots in an orthomosaic
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image. Being able to segment and extract the exact location
of microplots for high-throughput plant phenotyping sce-
narios, such pipelines will be critical in the future search
for the higher quality of harvested crop needed to feed a
growing population. As the three-stage optimization proce-
dure proceeds in a course-to-fine manner from overall field
blocks, it has the potential to be adapted for more specific
purposes, such as extracting the different physical properties
of various crop types and different microplot sizes.
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