
Hindawi Publishing Corporation
Mediators of Inflammation
Volume 2013, Article ID 953841, 19 pages
http://dx.doi.org/10.1155/2013/953841

Research Article
Ubiquitous Transgenic Overexpression of C-C Chemokine
Ligand 2: A Model to Assess the Combined Effect of High Energy
Intake and Continuous Low-Grade Inflammation

Esther Rodríguez-Gallego,1,2 Marta Riera-Borrull,1,2 Anna Hernández-Aguilera,1,2

Roger Mariné-Casadó,1,2 Anna Rull,1,2 Raúl Beltrán-Debón,1,2 Fedra Luciano-Mateo,1,2

Javier A. Menendez,3 Alejandro Vazquez-Martin,3 Juan J. Sirvent,4

Vicente Martín-Paredero,5 Angel L. Corbí,6 Elena Sierra-Filardi,6 Gerard Aragonès,1,2

Anabel García-Heredia,1,2 Jordi Camps,1,2 Carlos Alonso-Villaverde,7 and Jorge Joven1,2
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Excessive energymanagement leads to low-grade, chronic inflammation, which is a significant factor predicting noncommunicable
diseases. In turn, inflammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial
dysfunction seems to be at the crossroads of mutual relationships.Themigration of immune cells during inflammation is governed
by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a
variety of additional functions that are involved in themaintenance of normalmetabolism. It is our hypothesis that a ubiquitous and
continuous secretion of CCL2may represent an animal model of low-grade chronic inflammation that, in the presence of an energy
surplus, could help to ascertain the afore-mentioned relationships and/or to search for specific therapeutic approaches. Here, we
present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of
the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-
term dietary manipulations were assessed and the findings include metabolic disturbances, premature death, and the manipulation
of macrophage plasticity and autophagy. These results raise a number of mechanistic questions for future study.

1. Introduction

Excessive energy intake is a part of the current human
lifestyle that leads to a state of chronic systemic low-grade
inflammation, which is thought to play a role in the develop-
ment of atherosclerosis, cancer, and other noncommunicable

diseases. At the same time, it is also plausible that the long-
term consequences of prolonged inflammation exacerbate
the deleterious effects of continuous nutrient surplus [1–3].

The immune system and metabolism are closely inter-
connected [4, 5]. During inflammation, the whole body is
undermetabolic stress, and energy excess management could
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compromise the relationships among metabolism, oxidation,
and inflammation. We reasoned that searching for an ade-
quate animal model [6] might allow us to better understand
disease pathogenesis.

Chemokines are promising candidates for the design
of such a model. Some of the functions of chemokines
are associated with the migration of immune cells, and
chemokines are important for the correct functioning of
metabolism. In humans, C-C chemokine ligand 2 (CCL2;
formerly referred as MCP-1 or monocyte chemoattractant
protein-1) could be a marker of inflammation; it is overex-
pressed in noncommunicable diseases and is involved in a
variety of metabolic functions [7]. Actually, CCL2 modifies
lipid and glucose metabolism and contributes to insulin
resistance and hepatic steatosis [8–11]. Of note, circulating
chemokines cause and maintain metabolic disturbances that
may be reversed by anti-inflammatory drugs, and the role of
chemokines is likely a causal and predisposing factor [12, 13].
Rather than local overexpression [14–17], it is now recognised
that CCL2 protein and mRNA are expressed in the vast
majority of tissues, suggesting both a systemic production
and the ability to respond in situ to inflammatory stimuli
[18, 19].

Therefore, we hypothesised that challenging an animal
model that systemically overexpresses CCL2 with diets rich
in fat and cholesterol could help to assess the role of chronic
inflammation in response to excessive energy intake. We
then proceeded to integrate a copy of the Ccl2 gene in the
Gt(ROSA)26Sor (commonly referred to as ROSA26) locus of
themouse genome via homologous recombination in embry-
onic stem cells (ES) to generate targeted transgenic mice [20–
22] that overexpress CCL2 in all tissues. Preliminary data are
promising and suggest a number ofmechanistic questions for
future study.

2. Material and Methods

2.1. Animal Handling. All procedures and experimental pro-
tocols were examined and approved by the Ethics Review
Committee for Animal Experimentation of the Universitat
Rovira i Virgili. Basic protocols for tissue collection, diets,
allocation concealment andmetabolic assessment of themice
have been already described in detail [6, 18, 23]. Strains
were backcrossed >10 generations to C57BL/6J mice and
maintained homozygously. Littermates without mutations
were used as controls (WT). We also provide data from
knockouts (KO) of CCL2 (conveniently backcrossed), which
were purchased from the Jackson Laboratory (Sacramento,
CA). Dietary experiments began at 10 weeks of age, when all
strains display similar phenotypes. To avoid possible effects of
immature adipocyte modelling, most results were obtained
in different groups after 6 or 14 weeks of treatment (16 and
24 weeksold, resp.). To explore dietary effects, mice from
each group were fed either chow (Teklad rodent diet; Harlan,
Barcelona, Spain) or a high-fat diet (FuttermittelfürMaüse;
SSniff spezial diäten, Soest, Deutschland) and caged indef-
initely under supervision. The breeding of all experimental
populations was performed in our own facilities, and the

progenies were maintained under close surveillance. The
animals were not kept under germ-free conditions.

2.2. Targeted Transgenic (TG) Mice. The transgenic model
was generated via a gene targeted inducible knock-in
(KI), that is, a line with a duplicated gene, approach
using standard methods and proprietary technology from
Ozgene (Bentley, WA, Australia). The mRNA sequence
corresponding to the mouse Ccl2 gene (NM 011333 and
ENSMUSG00000035385) is located on chromosome 11. The
gene has 3 exons spread over approximately 3 Kb. The
gene fragment was obtained from C57BL/6 genomic DNA
(PCR primers AGCAAGATGATCCCAATGAGTAGGC and
GAGGTGGTTGTGGAAAAGGTAGTGG) to be inserted by
gene targeting into the ROSA26 locus. Upstream regulatory
elements are important in the transcriptional regulation of
Ccl2 gene. Human ubiquitin promoter (Ubic) was chosen
for the transgene to produce a high-level of expression.
A loxP-flanked STOP cassette prevents the transcription
of the gene following the UbiC promoter (See Figure 1
and Supplementary Materials S1 and S2 available online
at http://dx.doi.org/10.1155/2013/953841). The STOP cassette
can be removed using Crerecombinase. PGK-Neo-SD-IS, a
selection cassette, is inserted downstream of the Ccl2 gene
to enrich homologous recombination events. The ROSA26
locus is conserved between mice and humans. The location
is autosomal (chromosome 6) and is actively transcribed in
most tissues (Figure 1). Moreover, epigenetic inactivation is
unlikely [21, 24–26].

The combination of gene targeting and ES cell technology
exploiting homologous recombination provides advantages
over other techniques [27–31] (Supplementary Material S3).
Mice are available upon request.

2.3. Immunopathology Studies and Assessment of Liver Steato-
sis. Portions of organs and tissues were either frozen in
nitrogen or fixed in 4% phosphate-buffered formalin for 24 h
at room temperature, washed twice with water, stored in 70%
ethanol at 4∘C, and embedded in paraffin for histological
analyses. Primary and secondary antibodies were obtained
from Santa Cruz Biotechnology (Heidelberg, Germany) and
Serotec (Oxford, UK) [18, 32]. Detection was performed with
the ABC peroxidase system (Vector, Burlingame, CA) using
DAB (Dako, Glostrup, Denmark) as the substrate. To assess
specificity, primary antibodies were omitted in the controls.
Liver steatosis was assessed as previously described [6].

2.4. Laboratory Measurements. We measured murine CCL2
in plasma, serum, and tissues by ELISA (Peprotech, London,
UK), according to the instructions of the manufacturer.
Recombinant humanCCL2 antigenwas used as the calibrator
for assay standardisation, and we found weak cross-reactivity
with other chemokines, especially CCL7. The intraassay
coefficients of variation were <3.2%, and the interassay
of variation was <9.1%. Other biochemical measurements
were performed in automated analysers using commercially
available reagents as described [6, 33]. Selected tissues were
homogenised using the Precellys 24 system (Izasa, Barcelona,
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Figure 1: A STOP sequence flanked by loxP sites was inserted between the Ubiquitin promoter and themouseCcl2 gene (a).The sequences of
both the STOP cassette (bold) and the loxP sites (underlined) are shown later (b). The wild-type allele for Ccl2 gene is located in the region 11
C-E1 of chromosome 11 and the transgenic vector (bottom) is inserted in the ROSA26 locus of chromosome 6 (c). The procedure is designed
to avoid chromosomal instabilities.
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Spain) with prefilled bead tubes in the buffer of choice.
Fractions of the homogenised liver were immunoblotted as
described [34], using antibodies and reagents from Santa
Cruz Biotechnology (Heidelberg, Germany).

2.5. Transmission Electron Microscopy. Small pieces of the
liver were immediately fixed in a 2% glutaraldehyde solution
in 0.1M cacodylate buffer, pH 7.4. Samples were then post-
fixed in 1% osmium tetroxide (OsO

4
) for 2 h and dehydrated

in sequential steps of acetone prior to impregnation in
increasing concentrations of the resin in acetone over a 24 h
period. Semithin sections (500 nm) were stained with 1%
toluidine blue. Ultrathin sections (70 nm) were subsequently
cut using a diamond knife, double-stainedwith uranyl acetate
and lead citrate, and examined using a transmission electron
microscope (Hitachi, Tokyo, Japan).

2.6. Characterisation of Mouse Bone Marrow-Derived
Macrophages. The methods were performed as previously
described [35]. Bone marrow cells were isolated by removing
leg bones from WT and TG mice (aged 10 weeks) and were
cultured for 24 hours. Floating cells were removed, and the
remaining attached cells were analysed. Cells were further
cultured inDMEM supplemented with 10% inactivated foetal
calf serum, 50 𝜇M beta-mercaptoethanol, and 1000U/mL
murine granulocyte-macrophage colony-stimulating factor
(GM-CSF) or 25 ng/mL human macrophage colony-
stimulating factor (M-CSF) (ImmunoTools, Friesoythe,
Germany) to provide polarised activation of cells into
M1 and M2 as a simplified descriptor of their functional
plasticity. To assess the effect of activation, macrophages were
treated with 100 ng/mL E. coli 055:B5 lipopolysaccharide
(LPS) for 24 hours and were compared with the respective
untreated controls. After this treatment, supernatants from
M1 (GM-CSF) andM2 (M-CSF)macrophages were tested for
the presence of CCL2, tumour necrosis factor-𝛼 (TNF𝛼), and
interleukin 10 (IL-10) using ELISA (BioLegend, Inc., Madrid,
Spain). Total RNA was extracted using the RNeasy kit
(Qiagen, Barcelona, Spain) and was retrotranscribed using
the Reverse Transcription System kit (Applied Biosystems;
Invitrogen, Barcelona, Spain). Oligonucleotides for selected
genes were designed according to the Roche software for
quantitative real-time PCR (Universal Probe Roche library),
which was performed using a LightCycler 480 (Roche
Diagnostics, Barcelona, Spain). The assays were performed
in triplicate, and the results normalised according to the
expression level of TATA-binding protein mRNA. C-C
chemokine receptor type 2 (CCR2 or CD192), TNF𝛼, inhibin
beta A (INHBA), inducible nitric oxide synthase (iNOS),
C-C chemokine receptor type 7 (CCR7), and Egl nine
homolog 3 (EGLN3) were chosen as M1 markers. Arginase
(ARG), EMR1/F4/80, insulin growth factor-1 (IGF1), IL-10,
the mannose receptor CD206, and growth arrest-specific 6
(GAS6) were chosen as M2 markers.

2.7. Statistical Analyses. The normality of the distribu-
tions was assessed using the Kolmogorov-Smirnov method.
Variables were compared using Mann-Whitney tests or

Kruskal-Wallis one-way analysis adjusted for multiple test-
ing. Unless otherwise indicated, the values in the fig-
ures represent the mean and SEM obtained in groups
of 8 mice. The 𝜒2 test was used to compare categori-
cal variables. For all measurements, we used either SPSS
(SPSS Inc., Chicago, IL) or GraphPad Prism software
(http://www.graphpad.com/scientific-software/prism/).

3. Results

3.1. Targeted Transgenic Mice Do Not Display Physical Abnor-
malities. The resulting mice for the targeted mutation are
viable, fertile, and normal in size and weight. The animals do
not display apparent behavioural or reproductive defects.The
transgene insertion of a single copy occurs at a defined site,
which allows for easy genotyping (Figure 2) and eliminates
possible instabilities, independent segregation during breed-
ing, and unpredictable positions in the chromosomes.

An additional advantage of this strategy is the Cre/lox
recombination system that facilitates tissue-specific overex-
pression. The Ubic is conditioned by an Lox-Stop-Lox (LSL)
element that is activated by Cre-mediated excision using the
appropriate, tissue-specific Cre strain.

3.2. Transgenic Mice Overexpress CCL2 in Selected Tissues,
and Circulating Protein Is Increased with respect to Controls.
Consistently, transgenic mice displayed more CCL2 protein
in all tissues examined with respect to WT animals. The
differences increased with age, and there were minor rela-
tive differences among tissues (Figure 3). We confirm that
CCL2 was immunologically detected in all selected tissues
of the transgenic mice. The CCL2 mRNA expression in the
transgenic mice was also higher in different types of cells
with respect to WT mice. The amount of CCL2 expression
was higher after the designed period of exposure to a diet
with a high fat content. Of note, the serum and plasma
CCL2 were also higher in transgenic mice than in WT mice,
which is most likely caused by CCL2 secretion by multiple
tissues. In accordance with previous observations, the plasma
concentrations differed from the serum concentration. The
differences are likely caused by coagulation and handling, but
the differences were not statistically significant in transgenic
mice. Notably, CCL2 was also detected in KO mice, but with
less intensity. This is most likely due to quantitatively minor
cross reactivity, as described in the methods.

3.3. Dietary Factors Influence Body Weight and Adipocyte
Size. When mice were fed a regular chow diet, we did
not observe significant differences in body weight increase
among groups. The cumulative food intake was identical for
the three strains examined. In contrast, when fed a high fat
diet, both transgenic animals and WT animals developed
obesity. Of note, the C57BL/6J male mouse is a commonly
used model of diet-induced obesity [36]. The effect of CCL2
overexpression was apparent immediately after the ingestion
of the high calorie diet, and the weight increased more
rapidly than in WT mice. The absence of CCL2, however,
protected theKOmice from excessiveweight gain.The lack of
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Figure 2: Simplified strategy for genotyping that includes the sequence of each primer (a), the reaction proposed for each primer (b), and the
expected PCR products for each strain (c). The method is designed for the concomitant use of all primers and a representative gel is shown
in (d).

significant differences in the food intake excluded any effect
of CCL2 on appetite (Figure 4).

Overexpression of CCL2 also increased the size of the
adipocytes. Data are presented for epididymal adipose tissue
(Figure 5), but the effect was similar in other adipose tissues.
The adipocyte size was significantly higher in CCL2 trans-
genic animals compared with WT and KO animals fed with
both diets, but the difference was higher when mice were
fed a diet with a high caloric content. When different types
of adipose tissue were weighed, we found that the mice fed
a chow diet showed no significant differences between the
strains, with the possible exception of inguinal tissue. Con-
versely, the addition of fat to the diet resulted in a significant
increase in the weight of white adipose tissue from other
depots in mice with CCL2 overexpression. Notably, there was
no effect on the weight of brown adipose tissue (Figure 6
and Supplementary Material S4). However, these differences
among groups in adipose tissues weight disappeared when
mice were fed with a high fat diet for 14 weeks. These results
are probably indicating an already reported effect of adipose
tissue remodelling on the consequences of high-fat dietary
intake [37] (Supplementary Material S5).

3.4. Diet-Induced Disturbances in Glucose and Lipid Metabo-
lism. Glucose tolerance tests (a proxy for insulin resistance)
were unaffected in strains fed the chow diet during the
experimental period of 6 weeks. However, WT littermates,
KO, and transgenic mice displayed abnormal values when

fed a high-fat diet, confirming the effect of diet in the patho-
genesis of insulin resistance and suggesting that this short-
term intervention is not adequate to investigate a possible
role, if any, of CCL2 in the generation of glucose and lipid
disturbances. Moreover, there were no differences among the
strains in the plasma glucose levels after 6 hours of fasting,
and after 3 hours in the fasting state, we found that the plasma
glucose baseline concentrations were significantly higher in
CCL2 overexpressing mice with respect to CCL2 deficient
animals. This effect was more evident in the transgenic
mice (Supplementary Material S6) but differences in plasma
glucose disappeared after 14 weeks of dietary treatment
suggesting immature adipose tissue remodelling [38].

When these tests were performed in animals fed a high-
fat diet for a longer experimental period of 14 weeks in which
adipose tissue is already well modelled, the lack of differences
in insulin tolerance was maintained, probably indicating that
the effect of CCL2 overexpression in the pathogenesis of
insulin resistance is negligible.

However, results in the absence of CCL2 indicate that this
chemokinemaymodify glucosemetabolism and therefore we
cannot discard the effects under a more intense metabolic
stress [9]. Variations in plasma cholesterol and triglycerides
concentrations were minimal among the strains at 16 weeks
old. A high-fat diet significantly increased the amount of
circulating cholesterol, an effect that was higher in CCL2
overexpressing mice. Conversely, there were unexpected,
and most likely not representative, changes in the plasma
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Figure 3: Overexpression of CCL2 with respect to wild type and knockout was observed in all selected tissues (extracts) in the transgenic
mice as measured by ELISA. Differences were also observed in plasma and serum and there was cross-reactivity with similar chemokines that
could explain the detection of CCL2 in KOmice (a). CCL2 was also detected by immunochemistry in different types of cells (b). ∗𝑃 < 0.005;
Micrographs in the left column are representative for liver, pancreas, and kidney. Those in the right column were for brain, intestine, and
stomach.

triglycerides concentration of these mice as a consequence of
dietary manipulations (data not shown).

3.5. The Influence of CCL2 and Dietary Manipulations in
the Liver. When fed the chow diet, mice did not display
significant differences among strains in the appearance of
their liver tissue.The steatosis scores did not detect significant
differences among strains, although some minor variations
were detected (Figure 7) that did not correlate with the
hepatic lipid content (data not shown). When mice were
fed a high-fat diet, we found a certain amount of lipid
accumulation in WT mice, but this lipid accumulation was
significantly more evident in transgenic mice. Conversely,
there was no accumulation of lipids in KO mice (Figure 7).
Therefore, the effect of CCL2 under these conditions is
directly related to the amount of tissue CCL2 disposal; the
absence of CCL2 prevents liver steatosis, and overexpression
of CCL2 predisposes the liver to steatosis. We also found that
the expression of fatty acid synthase in the liver increased
significantly in all strains when fed a high-fat diet, but there
were no significant differences in the comparisons between
transgenic and KO mice. We also explored the activating

phosphorylation of AMP-activated protein kinase (AMPK),
and values did not change as a result of high-fat diet in
transgenic mice and were significantly higher in KO mice
comparedwith transgenicmice (SupplementaryMaterial S7).

When the livers were examined for the presence of F4/80
antigen, a widely accepted marker of macrophages, we found
that both dietary fat and overexpression of CCL2 modify the
size, number andmorphology of liver macrophages (Figure 8
and Supplementary Material S8). Of note, F4/80 stained
cells were more frequent in KO mice, a finding that merits
further study because these results could represent a change
in function and could be responsible for the differential
effects of CCL2 in liver steatosis. We then explored the
influence of both CCL2 and diet inmitochondrial biogenesis.
Based on the appearance of the matrix, the mitochondria
are healthier in mice fed a chow diet than in those fed a
high-fat diet. The matrix was also consistently less electron-
dense in transgenic mice. We also found altered fusion
dynamics. In transgenicmice fed a chow diet, the process was
unbalanced towards mitochondrial fusion, but the dietary
manipulation significantly elicited a shift towards fission.The
changes were similar in WT mice, but the effect of diet was
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quantitatively less evident than in transgenic mice. In KO
mice, however, there were more mitochondria per cell, and
fusion and fission were correctly balanced and apparently not
altered by differences in diet. These findings strongly support
further mechanistic studies, which may link the expression
of CCL2 with mitochondrial biogenesis, inflammation, and
energy management. According to our results, these putative
mechanisms are related to the autophagic response, which

was clearly enhanced in transgenic mice. Conversely, most
liver cells inWT and KO displayed no evidence of autophagy
(Figure 9).

3.6. Transgenic Mice That Overexpress CCL2 Die Prematurely
When Fed High-Fat Diet. The transgenic mice fed a high-
fat diet died prematurely between 10 and 14 months. The
mice progressively decreased activity, reduced food intake
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micrographs are shown for transgenic, wild-type, and knockout animals ((b), (c) and (d), resp.)when fed a chowdiet and for the corresponding
animals fed a high-fat diet ((e), (f), (g)) at 16 and 24 weeks’ old.

and the appearance of frailty became evident. There was also
a casualty in the transgenic mice fed chow diet, but it was
sudden, unexpected, and without a prior decrease in weight
or activity. Among the casualties, one was also observed in
the WT group fed a high-fat diet (Supplementary Material
S9). A full autopsy was performed, and the cause of death
was uncertain. There was neither cancer nor arteriosclerosis
in these animals, but there were some cutaneous, superficial,
and localised lesions in the skin accompanied with local
loss of hair. There was also no evidence of sepsis. The only
remarkable findings were limited to the spleen and the liver.
The size and weight of the spleen was consistently higher
in the transgenic mice fed high-fat diet. The presence of
splenomegaly in these transgenic mice was consistent with

the presence of giant cells that were identified as megakary-
ocytes (Factor VIII positive staining) and other proliferative
signs.Theweight of the liver was also higher in the transgenic
mice, which is most likely due to the higher presence of
steatosis. In the liver, there were signs of regenerative cells
and increased apoptosis. Ongoing studies with higher sample
sizes and the inclusion of females have been designed to
further ascertain this point.

3.7. Bone Marrow Macrophages of Transgenic Mice: Expres-
sion of Selected Cytokines and mRNA. The CCL2 mRNA
expression in the bone marrow macrophages was higher
in transgenic than in WT mice, irrespective of stimulation
with either GM-CSF (M1, pro-inflammatory) or M-CSF
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Figure 6: The effect of CCL2 expression in the weight of adipose tissue ((a)–(d)) of animals fed either chow (left column) or high-fat diet
(right column). Of note, differences among strains were more evident during energy surplus and no change was observed in brown adipose
tissue.
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Chow diet
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Figure 7:We found no significant differences among strains in the appearance of liver tissue whenmice were fed a chow diet (left column (a),
(c), (e); transgenic, wild-type, and knockout mice resp.). Representative micrographs show in the right column that a high fat diet produces
steatosis in transgenic mice (b), dispersed lipid droplets in the liver of wild type mice (d), and no change in knockout mice (f).

(M2, phagocytic). The mRNA expression of the selected
M2 markers was similar, with either low or undetectable
expression in the GM-CSF macrophages without differences
between transgenic and WT mice. The expression of the
selected M1 markers was practically identical in the GM-CSF
macrophages fromTG andWTmice, with the notable excep-
tion of CCR7. Surprisingly, the expression of this chemokine
receptor was significantly lower in TGmice, indicating lower
pro-inflammatory activity. The expression of the M1 markers
in M-CSF macrophages showed a unique and significant

decrease in CCR2 mRNA expression; however, some M2
markers, including CD 206, GAS6, and IGF1, were also
underexpressed. IL-10 expression also decreased, but the dif-
ferences were not statistically significant. The results suggest
that CCL2 overexpression may alter macrophage polarisa-
tion. Consequently, the secretion of selected cytokines was
examined in macrophages that were treated with LPS and
were compared with the relevant controls. The CCL2 secre-
tion was higher in TG mice with both treatments compared
with theWTmice and was 2–4 fold higher (2–4-fold change)
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Figure 8: Dietary fat (right column) and CCL2 expression modify the size, number, and morphology of liver macrophages with respect to
those fed a chow diet (left column) as assessed with F4/80 staining. Values for stained area and length of macrophages ((a)–(d)) are illustrated
with representative microphotographs from transgenic ((e), (f)), WT ((g), (h)) and KO mice ((i), (j)).
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Figure 9: The appearance of mitochondria was affected by the dietary manipulation and the expression of CCL2 as shown in
representative microphotographs (a) and these changes were accompanied by a significant effect in fusion-fission balance (b). The number
of autophagosomes per cell was counted and was significantly higher in transgenic mice. Further, these were rare in both WT and KO and
independent of diet (c). The heterogeneous nature of autophagic elements is illustrated in (d) (photographs obtained in transgenic mice).

in M-CSF macrophages. The IL-10 secretion was clearly
detectable only in LPS-treated animals. The concentration
in the supernatant was higher in TG than in WT mice,
and the differences were statistically significant in GM-CSF
macrophages. Finally, TNF𝛼 secretion was ostensibly higher
in LPS-treated animals and significantly higher in TG mice
with respect to the relevant controls (Figures 10 and 11).

4. Discussion

The transgenic mice developed in this study systemically
overexpress CCL2. These animals were created to assess the
combined effect of the recruitment of circulating monocytes
in all tissues and the response to the stimuli of high dietary fat

and energy ingestion.The hypothesis was that the continuous
overexpression of this chemokine could promote or worsen
common pathological conditions, and as animal model could
be useful for assessing the pathogenic mechanisms and
therapeutic approaches [39].

Fertility, growth, and physical appearance were identical
to the controls. CCL2 overexpression did not result in
abnormalities in the mice that were fed a regular chow diet.
However, adding fat to the diet during a short period of
time caused differences in body weight, adipocyte size, dis-
turbances in glucose and lipid metabolism, premature death,
and liver alterations that included a higher predisposition to
fatty liver disease and significant changes in mitochondrial
biogenesis and autophagy. Additionally, we explored bone
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Figure 10: Relative mRNA expression in transgenic mice with respect to WT mice of selected markers for M1 and M2 macrophages in
cells treated in vitro with either GC-MSF or M-CSF. Acronyms used were C-C chemokine receptor type 2 (CCR2), TNF𝛼, Inhibin, beta A
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marrow macrophages under different in vitro conditions,
and we found that CCL2 overexpression affects functional
plasticity.

In previous studies, CCL2 has been considered a
chemokine secreted by adipose tissue (adipokine), but sys-
temic CCL2 overexpression regulates white adipose tissue
(WAT) mass and size without apparent effects in brown adi-
pose tissue (BAT). WAT serves primarily as lipid storage, and
BAT is used for heat generation.The balance between the two
adipose tissues affects the whole-body energy homeostasis,
and the development and severity of obesity [40]. A higher
production of CCL2 is not only a consequence of obesity
but is most likely an exacerbating factor of diet-induced
alterations. The roles of CCL2 in the aetiology of obesity
and diabetes, the regulatory mechanisms, and the effect of
therapies that inhibit CCL2 production have been recently
reviewed [4, 41]. We have also found differences between fat
cells in different adipose tissue depots and the heterogeneity
of adipocytes within the same depots. Further examination
of this issue is necessary because a different pattern of gene
expression could explain the differential development of
various types of adipose tissue [42, 43]. Moreover, this is
closely associated with the pattern of fat distribution, the
extent of obesity, and consequently the impact of different fat
depots on the severity of metabolic complications [44, 45].

The size and number of hepaticmacrophages significantly
differs between transgenic and KO mice when detected
with antibodies directed against F4/80. Curiously, this is an
extracellular antigen of unknown function that belongs to
a subgroup of the G-protein-coupled receptors [46]. The
changes in macrophages morphology could represent con-
comitant changes in function and whether the macrophages
are resident or recruited. This is further substantiated by the
fact that these transgenic mice were prone to develop fatty
liver disease and the KO mice were protected. The role of
increased CCL2 is not yet understood, but the recruitment
of macrophages seems to be important in different animal
models. In KO mice there is an increased expression of
peroxisome proliferator-activated receptors accompanied by
the induction of fatty acid metabolism-related genes and the
inhibition of pro-inflammatory cytokine production [47–49].
We confirmed that the effect of fat in the pathogenesis of fatty
liver disease [49, 50] is influenced by the amount of available
CCL2 and that the linkage between chemokines and hepatic
lipid metabolism is plausible.

The characterisation of bone marrow-derived cells in the
transgenic mice indicates that CCL2 overexpression affects
the transition in the secretory function of macrophages
(or the M1-M2 paradigm as a simplified descriptor of the
functional plasticity). This is illustrated by differences in
GM-CSF and M-CSF, which are cytokines that differentiate
macrophages in vitro with distinct morphology and inflam-
matory function [51, 52]. The modulation of the phenotypic
and functional differences in macrophage polarisation by
CCL2 overexpression denotes a shift towards lower pro-
inflammatory activity [53]. CCL2 decreased the expression
of CCR7 in M1 and decreased the expression of CCR2, IGF1,
CD206, IL-10, andGAS6 inM2. In cells under LPS treatment,
however, CCL2 overexpression increased the secretion of

IL-10 and TNF𝛼 with respect to WT controls. These changes
could represent a quantitatively determinant factor in the
development of macrophage-induced metabolic alterations.
It should be highlighted that a high percentage of total
body resident macrophages are present in the liver and that
adipose tissue is amajor site for the accumulation of recruited
macrophages [54, 55].

Notably, CCL2 is involved, directly and/or through the
induced metabolic alterations, in mitochondrial biogenesis
and autophagy.We addCCL2 to the growing list of nonessen-
tial regulators of mechanisms that divide and fuse mitochon-
dria [56]. The balance between rejuvenation and elimination
of damaged mitochondria via autophagy is affected by both
the presence of CCL2 overexpression and the increased
availability of energy.The antagonistic and balanced activities
of the fusion and fissionmachineries are constantly providing
responses to inflammation to tightly regulate homeostasis of
the organism [57, 58].This is expected becausemitochondrial
diseases are associated with metabolic alterations. Appar-
ently, there is a shift towards fusion in CCL2 overexpres-
sion to maximise ATP synthesis. Contrarily, morphological
findings in CCL2 deficient mice, which are independent of
high-fat diet, suggest a perfect balance [59, 60]. A certain
unbalance is expected in inflammatory conditions and other
energy-dependent disturbances via mitochondrial dysfunc-
tion [61, 62]. This is important because mitochondria and
the access to energy (calorie restriction or increased dietary
fat) play a pivotal role mediated by the mechanistic target of
Rapamycin (MTOR) in decidingwhether liver cells live or die
[63].

In transgenic mice, autophagy was increased with respect
to WT and KO mice, which is particularly important
because autophagy affects immune responses as a result of
degradative, biogenetic, and secretory activities that respond
to various inputs via MTOR [64, 65]. Autophagy might
control the infection of certain pathogens but also prevents
excessive inflammatory reactions in the host [66]. As shown
in autophagy-deficient macrophages, autophagy removes
a number of proinflammatory stimuli [67–69]. Therefore,
increased liver autophagy during CCL2 overexpression could
be interpreted as an effort from the host to avoid the
deleterious action of continuous inflammation.

Links between autophagy and inflammation have also
been found in immune functions affecting several diseases,
opening a new dimension in the understanding of the mul-
tifactorial basis of noncommunicable diseases. For example,
increasing macrophage autophagy protects patients with
advanced atherosclerosis [70]. It has also been reported that
CCL2 controls the extent of autophagy in human prostate
cancer [71], and autophagy is pivotal for the survival and
differentiation of monocytes [72].

Finally, CCL2 overexpression resulted in premature death
when combined with a high-energy intake. These findings
require more extensive examination, and the cause of death
remains obscure. Mice progressively lost interest in the envi-
ronment, reduced activity, and their intake of food decreased.
No chronic disease was evident, and there were no signs
of sepsis or major infection. It is tempting to consider the
possibility of premature aging, and future investigations will
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include the characterisation of a senescence-associated secre-
tory phenotype, particularly in pro-inflammatory cytokine
enrichment [73] and the pro-inflammatory phenotype that
accompanies aging [74, 75].

5. Conclusions, Perspectives, and Limitations

This animal model raises a number of questions about the
prevalent diseases responsible for limiting the quality of
modern life. Additionally, this model provides a link between
inflammation and metabolism and suggests targets for the
management of diseases in which there is a clear CCL2 over-
expression. Specifically, this model can help to uncover the
role of CCL2 in mitochondrial dysfunction, autophagy, and
functionality of macrophages and aging in combination with
excessive energy intake. Information gained could be useful
for designing new mechanism-based therapeutic strategies.

None of the described effects appear in mice that are
fed a regular diet, and this fact highlights the importance of
calorie restriction for health. Therefore, the nutrient-sensing
MTOR pathway seems to be crucial for the management
of noncommunicable diseases. Consequently, drugs mod-
ulating MTOR are obvious candidates for assessment. For
example, experiments on cancer, aging, and viral infections
strongly suggest that this is the case for metformin [76–
78]. This antidiabetic drug activates AMPK and inhibits
MTORwith potent antiinflammatory actions.The usefulness
of rapamycin, an MTOR inhibitor, and similar drugs in
cancer prevention has been assayed [79]. Aspirin decreases
inflammation, inhibits the MTOR pathway, decreases cancer
incidence, and may reduce the burden of atherosclerosis
[13, 80]. Lastly, although studies are scarce, angiotensin-
II-blockers and beta-blockers, widely used in hypertensive
patients, can also prevent the activation of the MTOR
pathway and the incidence of chronic diseases [81].

The potential indications for these drugs are mostly
related to chronic diseases in which inflammation plays a
crucial role.This animalmodel could be used to further select
candidates and suggests a number of mechanistic questions
for future study. Particularly, we consider this model as a
valuable contribution to our evolving comprehension of the
interphase between autophagy and inflammation. However,
we acknowledge that care must be taken in analysing the
results of studies performed in animal models and that
further research effort is necessary to fully characterize our
observations. To name a few, possible effects of sex should
be studied and metabolic alterations should be confirmed
with the use of metabolic cages and more specific methods
to detect significant differences. Particularly, CCL2 may have
a higher influence if there is a relative contribution from
different type of cells, particularly from immune cells [72].
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