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Abstract: Atriplex halimus L., also known as Mediterranean saltbush, and locally as “Lgtef”, an
halophytic shrub, is used extensively to treat a wide variety of ailments in Morocco. The present
study was undertaken to determine the antioxidant activity and cytotoxicity of the ethanolic extract
of A. halimus leaves (AHEE). We first determined the phytochemical composition of AHEE using
a liquid chromatography (LC)–tandem mass spectrometry (MS/MS) technique. The antioxidant
activity was evaluated using different methods including DPPH scavenging capacity, β-carotene
bleaching assay, ABTS scavenging, iron chelation, and the total antioxidant capacity assays. Cyto-
toxicity was investigated against human cancer breast cells lines MCF-7 and MDA-MB-231. The
results showed that the components of the extract are composed of phenolic acids and flavonoids.
The DPPH test showed strong scavenging capacity for the leaf extract (IC50 of 0.36 ± 0.05 mg/mL)
in comparison to ascorbic acid (IC50 of 0.19± 0.02 mg/mL). The β-carotene test determined an IC50 of
2.91 ± 0.14 mg/mL. The IC50 values of ABTS, iron chelation, and TAC tests were
44.10 ± 2.92 TE µmol/mL, 27.40 ± 1.46 mg/mL, and 124 ± 1.27 µg AAE/mg, respectively. In vitro,
the AHE extract showed significant inhibitory activity in all tested tumor cell lines, and the inhibition
activity was found in a dose-dependent manner. Furthermore, computational techniques such as
molecular docking and ADMET analysis were used in this work. Moreover, the physicochemical pa-
rameters related to the compounds’ pharmacokinetic indicators were evaluated, including absorption,
distribution, metabolism, excretion, and toxicity prediction (Pro-Tox II).

Keywords: Atriplex halimus L.; antioxidant activity; cytotoxicity; breast cancer; computational study;
ADMET analysis; toxicity prediction

1. Introduction

Cancer is a complex disease of immortal cells. Abnormal cell division and cell death
are two predominant processes in the development of tumor cell invasion and tissue
metastasis [1]. Additionally, cancer also occurs due to alterations in the genetic, epigenetic,
and transcription factors [2]. In Africa, cancer represents between 10 and 20% of the
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conditions treated, and a nearly 100% increase is expected by 2030 [3]. It has been suggested
that socioeconomic environment is biologically incorporated and associated with different
epigenetic markers that promote the development and progression of many chronic health
conditions including cancer [4]. To date, various types of cancer have been identified,
among them, breast cancer (BC), the third leading cause of death in women [5].

Breast cancer is one of the most frequent malignancies and leading causes of mortality
in women [6]. There were 2,261,419 new cases and 684,996 fatalities worldwide in 2020
alone [7]. Moreover, it has been reported that mortality due to cancer is about 3500/million
population annually around the world [8]. Breast cancer is a very diverse disease with
distinct patient tumors (intra-tumoral heterogeneity and inter-tumoral heterogeneity) [9].
Despite significant advancements in breast cancer diagnosis and therapeutic targets, breast
cancer is slowly moving into the main type of chronic illnesses. Furthermore, treatment op-
tions and outcomes for breast cancer are dependent on the subtypes and involve hormonal,
radiotherapy, molecular, and chemotherapy interventions [10]. However, increasing tumor
heterogeneity, resistance to anti-cancer therapies (radiation therapy (RT), chemotherapy
(CT), and endocrine therapy (ET)), and the high expense of existing therapeutic options are
some of the current issues associated with effective management of breast cancer [11].

Cisplatin (cis-diamminedichloroplatinum II), known as CP, is an anti-cancer drug [12]
that has been used for the treatment of different types of cancer (breast, testicular, ovarian,
cervical, head, neck, and lung cancers) with excellent clinical outcomes [13,14]. It is gener-
ally known that CP promotes DNA damage, which causes a number of signal transduction
pathways to be activated [15–17]. Nevertheless, it is still unclear as to exactly how cisplatin
works and how particular it is. A larger section of the world’s population still uses herbal
remedies and traditional doctors as their main sources of medical care. By helping cancer
cells adapt and survive, which primarily results in chemoresistance, stress granules, also
known as SGs (condensed non-membrane cytoplasmic granules), are formed as a response
to stress exposure. This makes them a potential target for overcoming chemotherapy
resistance and delaying the development of breast cancer as well [18–20]. Several factors
can elicit SGs formation such as hypoxia, nutrient deficiency, and the important triggering
factor of oxidative stress [21,22]. ROS (reactive oxygen species) perspective can be used as
a novel strategy for breast cancer therapy and may be helpful as they are highly correlated
to tumorigenesis [23]. It is well recognized that oxidative stress has a significant link with
tumor regulation, particularly during the initiation and progression phases, allowing us to
assess the relevance of this property [24]. Therefore, antioxidants may act as an efficient
alternative in decreasing tumor cells in order to face drug-induced resistance. Furthermore,
it has been well established that medicinal plants are believed to possess potent antioxidant
capacity that subsequently contributes to the anti-cancer and anti-inflammatory abilities,
especially toward breast cancers [25–27].

In this sense, the phytochemicals as flavonoids, polyphenols, alkaloids, saponins,
terpenes, and other metabolites present in plant extracts are known to demonstrate anti-
cancer properties [28,29]. In addition, the secondary metabolites from medicinal plants
have been discussed in detail to possess a remarkable capacity to scavenge free radicals
and inhibit lipid peroxidation, which protects the body system from oxidative damage and
subsequently reduces the risk of unwanted cell mutations [30,31].

Atriplex halimus L. is an aromatic plant belonging to the Amaranthaceae family. It is
commonly known as “Rghel” and “Lgtef” [32]. A. halimus is a halophytic shrub that is
widely distributed in arid and semi-arid Mediterranean areas, known for its tolerance to
high salinity soils, as well as for exerting an allelopathic effects on other plants [33,34]. It is
up to 3 m in height branched from the base, with the bark being grey-white in color and
the leaves being 10–30 mm long and 5–20 mm wide. The leaves are highly variable in form,
ranging between deltoid-orbicular and lanceolate; these are attenuated at the base with
a short petiole. This plant represents a potential source for economical utilization; it can
provide forage sources with a good nutritive value during the dry seasons [35,36].
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In traditional medicine, A. halimus is used to treat a large number of diseases such as
inflammation, cracked hands, regulates hormones, heart diseases, diabetes, and rheuma-
tism [37,38]. However, there is yet few works regarding the cytotoxic activities of A. halimus
specifically against breast cancer cell lines and their antioxidant properties. The crude
extract and fractions of A. halimus growing in Egypt have cytotoxic activity against MCF-7
and PC3 carcinoma cells and human hepatocellular carcinoma [39]. Moreover, Atriplex
confertifolia have a cytotoxicity effect on human cervical cancer cells [40].

The aim of the present study was to determine the chemical composition of ethanolic
extract from A. halimus using LC–MS/MS. The antioxidant and anti-cancer activities were
predicted through in silico receptor–ligand docking studies to provide an insight into
AHEE’s bioactive compounds’ mechanisms of action. Additionally, the antioxidant activity
of A. halimus leaf ethanolic extract (AHEE) was performed by five methods, namely, DPPH
scavenging capacity, β-carotene bleaching assay, ABTS scavenging, iron chelation, and the
total antioxidant capacity assays. Finally, the anti-cancer activity of AHEE was evaluated
in human cancer breast cells MCF-7 and MDA-MB-231.

2. Results and Discussion
2.1. LC–MS/MS Phytochemical Profiling Results

An LC–MS/MS phytochemical investigation was conducted to reveal A. halimus
ethanolic extract (AHEE) bioactive compounds (Table 1 and Figure 1). The results of this
investigation showed an abundance of phenolic acids in the extract, which was mainly
presented by the abundance of gallic acid, syringic acid, trans-ferulic acid, caffeic acid,
and chlorogenic acid. As for flavonoid compounds, we found the presence of myricetin,
catechin gallate (a flavan-3-ol), and trimethoxyflavone in lower abundance. Arbutin,
which is a glycosylated hydroquinone, was also found in AHEE but in a low amount. In
AHEE, gallic acid was the most abundant phytoconstituent, followed by syringic acid and
trans-ferulic acid.

Table 1. Phenolic composition of A. halimus ethanolic extract with LC–MS/MS.

N◦ Molecule Molecular
Formula

Selected
[M−H]−

Literature
[M−H]− RT (min) Abundance

1 Gallic acid C7H6O5 168.90 169.00 [41] 1.586 +++

2 Syringic acid C9H10O5 198.90 197.05 [42] 1.478 ++

3 trans-Ferulic acid C10H10O4 193.00 193.05 [42] 1.191 ++

4 Myricetin C15H10O8 317.00 317.01 [43] 0.330 +

5 Catechin gallate C22H18O10 441.00 441.08 [44] 1.208 +

6 Caffeic acid C9H8O4 179.00 179.03 [42] 1.378 +

7 Chlorogenic acid C16H18O9 353.00 353.09 [42] 1.117 +

8 Arbutin C12H16O7 271.20 271.20 [45] 1.304 +

9 Trimethoxyflavone C18H16O5 312.00 315.00 [46] 1.380 +
+++: high abundance, ++: abundant, +: low abundance.
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Figure 1. Chemical structures of the identified compounds in A. halimus ethanolic extract using
LC–MS/MS.

2.2. Pharmacokinetic Properties (ADME) of AHEE

As drug development research has recently known a significant increase in terms of
methods, failure of novel molecules as drug candidates remains a substantial issue due
to poor pharmacokinetics or bioavailability [47,48]. CADD (computer-aided drug design)
represents a time and effort optimizer contributing an alternative in pharmacology, namely,
in silico ADME (absorption, distribution, metabolism, and excretion) analysis, which was
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conducted in this study in furtherance of investigating the bioactive compounds of A.
halimus leaf ethanolic extract by predicting a broad range of parameters.

Drug likeness of the 10 compounds was evaluated under four filters (Lipinski [49],
Ghose [50], Veber [51], Egan [52]) (Table 2). Lipinski and Egan criteria were satisfied for all
the molecules except myricetin and catechin gallate, displaying a violation of Lipinski’s
rules (NH/OH > 5); hence, a violation displayed for Egan rules regarding myricetin,
catechin gallate, and chlorogenic acid was a result of their high polarity (Topological
Polar Surface Area (TPSA) exceeding 132 Å2). Bioavailability scores were set following an
evaluation of six parameters for each molecule counting lipophilicity, molecular weight,
insolubility, instauration, and flexibility (Table 2.). trans-Ferulic acid was found to have
the highest bioavailability score (0.85), due to the fact that the later compound had a
TPSA < 75 Å2, according to Martin et al. (2005) [53].

Table 2. Drug likeness and bioavailability score in in silico prediction of AHEE.

Lipinski Ghose Veber Egan Bioavailability
Score

Gallic acid Yes No (2 violations) Yes Yes 0.56

Syringic acid Yes Yes Yes Yes 0.56

trans-Ferulic acid Yes Yes Yes Yes 0.85

Myricetin Yes (1 violation) Yes No (1 violation) No (1 violation) 0.55

Catechin gallate Yes (1 violation) Yes No (1 violation) No (1 violation) 0.55

Caffeic acid Yes Yes Yes Yes 0.56

Chlorogenic acid Yes No (1 violation) No (1 violation) No (1 violation) 0.11

Arbutin Yes No (1 violation) Yes Yes 0.55

Trimethoxyflavone Yes Yes Yes Yes 0.55

In terms of absorption, the molecules were revealed to have a good solubility, which is
an essential determinant for drugs’ bioavailability and effectiveness. Caco-2 permeability
(given as log Papp in 10−6 cm/s) was used for predicting the absorption of a molecule by
the intestinal barrier [54]. According to the results above (Table 3), the phytoconstituents
did not show a high Caco-2 permeability. Overall, the molecule tended to have good
intestinal absorption and a moderate skin permeability.

Table 3. Absorption prediction of A. halimus leaf ethanolic extract.

Water
Solubility

Caco-2
Permeability

Intestinal
Absorption

Skin
Permeability

P-gp
Substrate

P-gp I
Inhibitor

P-gp II
Inhibitor

Units Log mol/L Log Papp in
10−6 cm/s % cm/s Categorical (Yes/No)

Gallic acid −1.64 −0.08 43.37 −2.73 No No No

Syringic acid −1.84 0.49 73.07 −2.73 No No No

Trans-ferulic acid −2.11 0.17 93.68 −2.72 No No No

Myricetin −3.01 0.09 65.93 −2.73 No No No

Catechin gallate −3.70 −1.26 62.09 −2.73 No No Yes

Caffeic acid −1.89 0.63 69.40 −2.72 No No No

Chlorogenic acid −1.62 −0.84 36.37 −2.73 No No No

Arbutin −0.71 0.00 38.02 −2.80 No No No

Trimethoxyflavone −4.11 1.40 98.07 −2.57 No Yes Yes



Pharmaceuticals 2022, 15, 1156 6 of 25

As part of absorption prediction, it is mandatory to evaluate whether the molecules are
substrate or inhibitors to the most eminent of ABC transporters, P-glycoprotein. Reportedly,
no molecule is a substrate to P-glycoprotein, and whereas trimethoxyflavone is an inhibitor
of P-glycoprotein I and II, catechin gallate and trimethoxyflavone are inhibitors only for
P-glycoprotein II.

Acknowledging drugs’ distribution involves partially considering certain parameters
adducing VDss (volume of distribution at steady state), blood–brain barrier permeability,
and central nervous system permeability (Table 4 and Figure 2). Overall, the compounds are
considered to have a low-to-moderate VDss that can be translated into a good distribution
in the plasma. Eventually, the phytocompounds did not show the ability to penetrate the
central nervous system.

Table 4. Distribution characteristics prediction of A. halimus leaf ethanolic extract. (1) Gallic acid,
(2) syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic
acid, (8) arbutin, (9) trimethoxyflavone.

1 2 3 4 5 6 7 8 9

VDss (human) −1.85 −1.44 −1.36 1.31 0.66 −1.09 0.58 0.02 −0.29

BBB permeability (Log BB) −1.10 −0.19 −0.23 −1.49 −1.84 −0.64 −1.40 −0.96 −0.20

CNS permeability (Log PS) −3.74 −2.70 −2.61 −3.70 −3.74 −2.60 −3.85 −3.55 −2.14
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Figure 2. BOILED-Egg method for evaluating blood–brain barrier permeability, gastrointestinal
absorption, substrates, and inhibitors of P-glycoprotein for A. halimus leaf chemical composition.
(1) Gallic acid, (2) syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid,
(7) chlorogenic acid, (8) arbutin, (9) trimethoxyflavone.
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It is generally relevant to highlight the predicted activity of a molecule and its inter-
actions along with CYP isozymes to anticipate drug metabolism or toxicity [55]. In this
study, trimethoxyflavone came out to be a substrate to CYP3A4, while other molecules
are non-substrates to CYP2D6 nor CYP3A4. In contrast, inhibition of both CYP2D6 and
CYP3A4 was predicted for trimethoxyflavone, whereas myricetin only inhibits CYP3A4
and therefore enhances the risk for adverse effects to occur, including DDI (drug–drug
interactions) (Table 5).

Table 5. Metabolism parameter prediction of A. halimus leaf ethanolic extract. (1) Gallic acid,
(2) syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic
acid, (8) arbutin, (9) trimethoxyflavone.

1 2 3 4 5 6 7 8 9

CYP2D6 substrate No No No No No No No No No

CYP3A4 substrate No No No No No No No No Yes

CYP2D6 inhibitor No No No No No No No No Yes

CYP3A4 inhibitor No No No Yes No No No No Yes

Renal clearance liable to excretion is crucial for drug disposition via major organic
cation transporters featuring the Renal OCT2, for instance, which has in this case
trimethoxyflavone as a substrate [56]. The total clearance investigated for the compounds
was measured by reassembling hepatic and renal clearance [57] (Table 6).

Table 6. Excretion parameter prediction of AHEE. (1) Gallic acid, (2) syringic acid, (3) trans-
ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic acid, (8) arbutin,
(9) trimethoxyflavone.

1 2 3 4 5 6 7 8 9

Total clearence (Log mL/min/Kg) 0.51 0.64 0.62 0.42 −0.16 0.50 0.30 0.52 0.28

Renal OCT2 substrate No No No No No No No No Yes

2.3. In Silico Toxicity Prediction (Using Pro-Tox II)

One of the major drug discovery challenges is the determination of molecule toxic end-
points. In silico predictions represent an efficient alternative that has received considerable
interest among drug developers, relying on assessing toxicity profiles on drug candidate
molecules [58]. Table 7 displays seven estimated parameters for each molecule, namely,
LD50; toxicity class; and their probability to cause hepatotoxic, carcinogenic, immunotoxic,
mutagenic, and cytotoxic effects.

Table 7. Toxicity characteristic prediction for A. halimus leaf ethanolic extract phytoconstituents.
(1) Gallic acid, (2) syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid,
(7) chlorogenic acid, (8) arbutin, (9) trimethoxyflavone.

Molecules 1 2 3 4 5 6 7 8 9

LD50 (mg/Kg) 2000 1700 1772 159 1000 2980 5000 2500 5000

Class 4 4 4 3 4 5 5 5 5

Hepatotoxicity Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive

Carcinogenicity Active Inactive Inactive Active Inactive Active Inactive Inactive Inactive

Immunotoxicity Inactive Inactive Active Inactive Inactive Inactive Active Inactive Inactive

Mutagenicity Inactive Inactive Inactive Active Inactive Inactive Inactive Inactive Inactive

Cytotoxicity Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive Inactive
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As shown in Table 7, the toxicity class was deduced from the median lethal dose,
as reported in the GHS (Globally Harmonized System of Classification and Labeling of
Chemicals). Myricetin showed the highest value of toxicity among them with 159 mg/kg
as a median lethal dose, labelled as class 3 (“toxic if swallowed”). On the other hand,
the phytomolecules 1, 2, 3, 5, and 6 were considered “harmful if swallowed” (class 4),
representing a LD50 ranging from 300 to 2000 mg/kg, whereas caffeic acid, chlorogenic
acid, arbutin, and trimethoxyflavone were “may be harmful if swallowed” in class 5.
Additionally, the molecules reflected certain safety by indicating no cytotoxic effect (in
HepG2 cell lines) nor a drug-induced liver injury (DILI). However, certain compounds
can have limitations in terms of carcinogenicity, immunotoxicity, and mutagenicity; gallic
acid, myricetin, and caffeic acid are more likely to be carcinogens; chlorogenic acid and
trans-ferulic exhibit immunotoxicity; and Myricetin is detected as a mutagenic.

Certain studies suggest that A. halimus extracts may exhibit an hepatoprotective
effect [59]; thus, other studies have been reporting anticancer properties in many of the
compounds cited in AHEE such as caffeic acid, gallic acid, myricetin, and arbutin, among
others [60–64]. Flavonoids have been mentioned to be involved in diverse beneficial
activities for organisms but tend to reveal some risk, such as different or adverse properties
under certain sets of conditions such as mutagenicity or carcinogenicity [65,66].

2.4. In Silico Prediction of a Protein-Target-Based Antioxidant and Cytotoxic Mechanisms by
Molecular Docking Analysis
2.4.1. In Silico Prediction of the Antioxidant Activity of AHEE

As it can predict the conformation of small-molecule ligands within the right target
binding site with a high degree of accuracy, molecular docking is one of the most widely
employed techniques in structure-based drug design (SBDD) [67]. Molecular docking (MD)
became a crucial method in drug discovery since the creation of the initial algorithms in the
1980s [68]. For instance, it is simple to carry out experiments involving critical molecular
events, such as ligand-binding modalities and the associated intermolecular interactions
that stabilize the ligand–receptor complex [69]. MD was used in this study to uncover
the possible mechanism of action of AHEE components. Assuming that binding energy
decreases as compound affinity increases, the obtained results, in the form of binding
affinity values, may indicate an increased or decreased affinity of the researched molecule
toward the specified target in comparison to a native ligand (a known inhibitor).

Their molecular docking interactions have been explored with particular enzymatic
proteins, such as lipoxygenase-3 (PDB ID: 1N8Q) [70], cytochrome P450 (PDB ID: 1OG5) [71],
NADPH oxidase (PDB ID: 2CDU) [72], and bovine serum albumin (PDB ID: 4JK4) [73], all of
which have been identified as target receptors for antioxidant chemicals and are acknowledged.

The docking scores were presented in a heat-map-style table with a red, white, and
green color scheme, ranging from the lowest energy values, highlighted in red (most often
corresponding to the native ligand’s docking score), to the highest, highlighted in green
(Figure 3). This made it simple to identify a group of chemicals that frequently act as
potential inhibitors by comparing their lowest values to the native ligand for a particular
target. Ligands with a docking score lower or equal to the native ligand’s score were
highlighted with a star (*).

Using a redox mechanism, the family of enzymes known as lipoxygenases catalyzes
the lipid peroxidation of poly-unsaturated free fatty acids. This process results in the
production of an oxygen-centered fatty acid hydroperoxide radical, which can cause a
number of harmful illnesses [74]. With respect to this, we selected the two lipoxygenases,
lipoxygenase (1N8Q) and cytochrome P450 (1OG5). For the first target, all the ligands
were found to be potent inhibitors, except syringic acid with −5.7 kcal/mol, compared
with the native ligand (protocatechuic acid) with −6.0 kcal/mol (Table 2). The potent
inhibitor found in AHEE was catechin gallate with −8.8 kcal/mol, found to establish five
hydrogen bonds (HB) with the active site amino acid residues (ASN A:375, ARG A:378,
ASP A:597, and two HB with GLN A:598) (Figure S2). For the second target, in comparison
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to warfarin, which had −6.6 kcal/mol (a natural ligand for CYP2C9), two compounds were
identified to be potent inhibitors: myricetin and catechin gallate (with −8.4 kcal/mol for
both molecules). The binding research showed that both substances created a hydrogen
bond with the amino acids GLN A:214 and ASN A:217 from the active site pocket [75]
(Figure S3).
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extract phytoconstituents. 1N8Q, lipoxygenase; 1OG5, CYP2C9; 2CDU, NADPH oxidase; 4JK4,
bovine serum albumin. Ligands with a docking score lower or equal to the native ligand’s score were
highlighted with a star (*).

It is possible that AHEE compounds have little ability to inhibit NADPH oxidase
protein since none of the docked molecules exhibited free binding energies greater or equal
to 8.6 kcal/mol (of the native ligand adenosine-5′-diphosphate).

All the identified compounds in AHEE were found to operate as natural bovine
serum albumin (BSA, PDB ID: 4JK4) protein inhibitors, as shown by their interaction
scores. Furthermore, myricetin, catechin gallate, and chlorogenic acid were the three most
effective ligands, in comparison with the natural ligand of BSA, 3.5-diiodosalicylic acid
(−5.3 kcal/mol), at −8.5, −8.4, and −8.3 kcal/mol, respectively. Binding interactions with
both NADPH oxidase protein and BSA are found in Figures S4 and S5.

The natural ligands’ ability to bind to amino acid residues may be related to their
antioxidant activity. Thus, it can be said that the examined compounds have strong
antioxidant activity according to an examination of common residues and free binding
affinity values near the docked ligands and natural inhibitors, as well as being stated in
the literature [75,76].

2.4.2. In Silico Prediction of the Cytotoxic Potential of AHEE

Each of the nine identified compounds’ possible targets were predicted using the
SwissTarget Prediction tool [77]. The SMILES strings of the compounds were inputted to
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the database, and prediction results were reported in Section 3.4.2. Molecular docking was
utilized after choosing three targets (that had the best likelihood of being a particular target
according to interaction occurrence probability) for each molecule.

Carbonic anhydrases enzymes (CA, EC 4.2.1.1) catalyze reversible carbon dioxide
hydration to bicarbonate and protons, which is a very straightforward yet crucial physio-
logical event. In mammals, at least 16 different α-CA isoforms have been discovered. These
isozymes have highly distinct catalytic characteristics as well as a very different distribution
in various tissues and organs [78]. Recent studies show that these CAs have been linked to
chemoresistance, tumor cell motility and invasion, and the maintenance of cancer cell stem-
ness [79,80]. Our prediction results showed that the majority of the identified components
are possible inhibitors for three cytosolic isoforms CA I, II, and VII. Our docking analysis
for the first isoform of CA I (PDB ID: 1AZM) revealed three possible inhibitors with a
docking score higher than the native ligand (furosemide, −6.8 kcal/mol), namely, myrcetin,
catechin gallate, and chlorogenic acid with −8.6, −8.4, and −7.4 kcal/mol, respectively
(Figure 4). For the second isozyme CA II (PDB ID: 12CA), all the tested molecules were
found to be strong inhibitors (in comparison with the native ligand, herein, tetrazole, which
has a docking score of −4.2 kcal/mol), with the highest affinity found with chlorogenic
acid (−7.2 kcal/mol), followed by caffeic acid, gallic acid, trans-ferulic acid, and syringic
acid with binding free energy values of −6.4, −5.6, −5.5, and −5.4 kcal/mol, respectively.
The third isozyme, which was CA VII (PDB ID: 3MDZ), found abundantly in the central
nervous system, characterized by its high CO2 hydration activity and linked to various
illnesses such as epilepsy, oxidative stress, and cancer [81,82], was used as a target for six
molecules from AHEE. The results showed that three molecules out of six (chlorogenic acid,
arbutin, and caffeic acid, with −8.4, −6.5, and −6.4, respectively) had an affinity greater
than that of the native ligand (acetazolamide, −6.3 kcal/mol) (Figure 4).

Human milk xanthine oxidoreductase (XOR) is a form of xanthine oxidoreductase,
a homodimer of ≈300 kDa, that ensures the catabolism of hypoxanthine and xanthine to
uric acid [83]. In low-XOR-expressing cancer cells, the amount of XOR expression may be
linked to a worse prognosis due to the inflammatory response brought on by the tissue
damage caused by tumor growth. Because it can catalyze the metabolic activation of
chemicals that cause cancer, xanthine oxidoreductase (XOR) has been linked to oncogenesis
either directly or indirectly by reactive oxygen and nitrogen species that are produced by
XOR [84]. The 3D crystal structure of XOR (PDB ID: 2CKJ) was used a as target of myricetin,
and the docking score of this molecule (−8.6 kcal/mol) was found to be lower than that
of oxypurinol (−6.2 kcal/mol) (Figure 4). These results are demonstrated by a previous
study by Zhang et al. (2016) [85], providing experimental data on the role of myricetin in
inhibiting the activity of XOR.

Myricetin was found to be a potent inhibitor (with −9.6 kcal/mol in comparison
with the another inhibitor at −5.2 kcal/mol) for human DNA topoisomerases IIa, crucial
DNA topoisomerases that have crucial roles in chromosome segregation and chromatine
condensation, having been proven to be therapeutic targets of anticancer drugs [86,87].

Catechin gallate was found to be a specific ligand for two cancer-implicated targets,
human phosphogluconate dehydrogenase (PGD, PDB ID: 2JKV) and human antiapoptotic
protein BCL-2 (PDB ID: 1G5M), with docking scores of−9.2 and−7.5 kcal/mol, respectively,
in comparison with their respective native ligands (−6.6 and −5.3 kcal/mol) (Figure 4).
The first target PGD catalyzes the conversion of 6-phosphogluconate (6-PG) into ribulose
5-phosphate (R-5-P) in the third phase of the pentose phosphate pathway (PPP), resulting
in the production of nicotinamide adenine dinucleotide phosphate (NADPH) [88]. There
have been numerous reports of 6PGD upregulation in human malignancies [89]. Therefore,
focusing on PGD may be an alluring way to fight a fatal illness such as cancer. For the
second target (BCL-2), it has been shown that many different kinds of cancer exhibit
considerably increased BCL-2 protein expression [90]. Instead of encouraging proliferation,
BCL-2 promotes the survival of cancer cells. This concept has helped in realizing that a
damaged or disturbed apoptotic pathway might be extremely important in the genesis of
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tumors. Since BCL-2’s oncogenic potential has been established and is well known, it is
thought to be a viable target in the therapy of cancer [91].
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Figure 4. Heat map of the binding free energy values (expressed in kcal/mol) of A. halimus ethanolic
extract phytoconstituents. Left axis shows the predicted targets (see Section 3.4.2). (1) Gallic acid,
(2) syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic
acid, (8) arbutin, (9) trimethoxyflavone. NL refers to the native ligands (Section 3.4.2). Ligands with a
docking score lower or equal to the native ligand’s score were highlighted with a star (*).

Adenosine deaminase (ADA, E.C 3.5.4.4) catalyzes the irreversible deamination of both
adenosine and 2′deoxyadenosine. Given that ADA activity controls the pool of intracellular
and extracellular adenosine, a crucial regulator of cellular function via adenosine-receptor-
dependent and -independent processes, its role in the development of breast cancer appears
to be particularly significant. It has been demonstrated that the levels of ADA1 and ADA2
isoenzymes in breast cancer tumor tissues were raised and correlated with the tumor’s
grade, size, and lymph node involvement [92,93]. Since ADA plays a major role in DNA
turnover and nucleotide metabolism, ADA inhibitors have been extensively used for
chemotherapeutic purposes in some types of cancers including breast cancer [94,95]. For
this regard, arbutin was discovered to be a powerful inhibitor with a docking score of
−7.4 kcal/mol compared to the native ligand (2′-deoxyadenosine) with −6.2 kcal/mol
(Figure 4). Purine nucleoside phosphorylase (PNP, PDB ID: 1M73) was also identified
as a target of arbutin, but its activity as a potential inhibitor was insignificant, which
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suggests that the cytotoxic activity of AHEE is not mediated via PNP inhibition and
immune activation [96].

A1, A2A, A2B, and A3 are four G-protein-coupled receptor subtypes that interact with
adenosine to mediate its physiological effects. Adenosine appears to be associated with
the development of tumors; nevertheless, it has been noted that cancer tissues have sig-
nificant amounts of the substance [97]. A1 receptor (PDB ID: 5N2S) was found as a target
for trimethoxyflavone. The latter was found to be a strong inhibitor. Docking score of
trimethoxyflavone was −7.9 kcal/mol, while that of PSB36 (1-butyl-3-(3-hydroxypropyl)-
8-(3-noradamantyl) xanthine, a potent antagonist of A1 receptor, was −6.0 kcal/mol
(Figure 4). The A2A and A3 subtypes of adenosine receptors appear to be the most promis-
ing in terms of drug development, despite the fact that all adenosine receptors now have an
increasing number of biological roles in cancers that are recognized. A2A receptor activation
in particular has immunosuppressive effects that lower anti-tumor immunity and promote
tumor development. This tendency has led to the suggestion that A2A antagonists be
added to cancer immunotherapeutic procedures in order to improve tumor immunother-
apy. In this regard, trimethoxyflavone was regarded as an inhibitor due to its high affinity
(−9.0 kcal/mol) with A2 receptor (PDB ID: 2YDO), in comparison with a known ligand
(istradefylline, −8.4 kcal/mol) (Figure 4).

The inherent or acquired resistance of tumor cells to chemotherapeutic drugs with
different chemical structures and modes of action is one of the major reasons why treatment
for many malignancies fails [97]. One of these processes entails the activation or overexpres-
sion of drug-export proteins called ATP-binding cassette (ABC) protein transporters, which
lowers the levels of drug accumulation in the cell [98,99]. ABC transporter (PDB ID: 5NJ3)
was found to be a specific target of trimethoxyflavone, but the latter substance had lower
affinity (−8.0 kcal/mol) when compared to gefitinib (−8.9 kcal/mol) (Figure 4), suggesting
that AHEE’s mechanism of action is not mediated by ABC transporter inhibition.

At different stages of cancer development, phenols were found to exhibit various
anticancer mechanisms. These processes include inhibition of DNA-related enzymes
including topoisomerase, blockage of the estrogen receptor, obstruction of cell cycle, and
cell death [100,101]. These findings suggest that AHEE’s bioactive compounds may exhibit
a potent anticancer activity.

2.5. Experimental Validation of the Antioxidant and the Cytotoxic Activity of AHEE
2.5.1. Antioxidant Activity

The determination of the antioxidant properties of A. halimus ethanolic extract (AHEE)
was performed using five methods: DPPH, β-carotene, ABTS, iron chelation, and total
antioxidant assays, and the results are summarized in Table 8. The results obtained showed
significant antioxidant activities of AHEE.

Table 8. Free radical scavenging and antioxidant capacity of AHEE. Values are expressed as
mean ± SEM (n = 3).

Extract/Reference
DPPH Scavenging

Capacity IC50
(mg/mL)

β-Carotene
Bleaching Assay

(mg/mL)

ABTS
Scavenging (TE

µmol/mL)
Iron Chelation

Total
Antioxidant
Capacity *

AHEE 0.36 ± 0.05 2.91 ± 0.14 44.10 ± 2.92 27.40 ± 1.46 124 ± 1.27

Ascorbic acid (AA) 0.19 ± 0.02 - 5.04 ± 0.78 0.94 ± 0.02 -

Butylated
hydroxyanisole (BHA) - 0.095 ± 0.00 - - -

* Total antioxidant capacity expressed as µg ascorbic acid equivalents/mg extract. TE: Trolox equivalent.

The AHEE exhibited the highest capacity to reduce the purple-colored solution of
DPPH radical to yellow-colored non-radical form DPPH-H with an IC50 value equal to
0.36± 0.05 mg/mL when compared with the antioxidant ascorbic acid (0.19± 0.02 mg/mL).
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In this sense, it was reported that butanolic and ethyl acetate fractions of A. halimus showed
stronger DPPH scavenging activity with EC50 values of 1.73 (R2 = 0.98) and 2.04 (R2 = 0.99)
mg/mL, respectively [36].

A promising β-carotene-bleaching activity was observed also with the AHEE
(2.91 ± 0.14 mg/mL) compared to the reference BHA (0.095 ± 0.00 mg/mL). Further-
more, the results obtained by the ABTS method were found to scavenge ABTS with an IC50
value of 44.10 ± 2.92 TE µmol/mL. However, this value was less than that of the standard
BHA (IC50= 5.04 ± 0.78 mg/mL). On the other hand, metals ions are important for the
functioning of physiological cellular processes but, at the same time, the iron overload
induced the formation of lipid peroxidation products, which have been demonstrated
in a number of tissues, such as the brain, liver, and kidneys [102,103]. Nevertheless, the
ethanolic extract showed a remarkable antioxidant in the iron chelation assay, with an IC50
value equal to 27.40 ± 1.46 mg/mL. This value was also higher than that of the ascorbic
acid (0.94 ± 0.02 mg/mL). Moreover, the iron chelators, on interacting with DPPH, might
have transferred an electron to it, thus neutralizing its free radical nature, as observed
by Oyaizu [104].

The total antioxidant capacity (TAC) IC50 value for AHEE was 124 ± 1.27 µg AA/mg
extract. The value of the total antioxidant capacity of AHEE found in this study may
point to the fact that AHEE is very rich in natural antioxidant compounds. Our results
are consistent with the results obtained by Bouaziz et al. (2021) [105]. In the same way,
Benhammou et al., (2009) showed that the methanolic extract of A. halimus exhibited a
potent antioxidant activity [36].

A study conducted by Slama et al., (2020) showed that this plant possesses an im-
portant scavenging activity [35]. Previous findings report this antioxidant capacity to the
presence of polyphenols, flavonoids, and tannins [35,36]. It is well known that flavonoids
are known to have numerous several biological properties, including anticancer and anti-
carcinogenic activities. These pharmacological effects that they exhibit could be attributed
to their ability to effectively scavenge or chelate reactive oxygen species [106]. Dorman
reported that plant flavonoids that induce an antioxidant capacity in vitro correspondingly
function as antioxidants in vivo [107].

Previous reports showed several phenolic acids such as gallic acid, chlorogenic acid,
cinnamic acid, p-coumaric acid, hydroxybenzoic acid, ferulic acid, and salicylic acid [108].
Likewise, previous findings reported different flavonoid compounds present in A. halimus
extract such as quercetin, rutin, and myricetin [108,109]. These results have indicated that
A. halimus is a potential candidate of antioxidant activities.

2.5.2. Cytotoxicity of AHEE against Breast Cancer Cell Lines (MCF-7 and MDA-MB-231)

Numerous ethnobotanical studies reported the use of A. halimus in the treatment of
cancer [110–112]. In addition, in vitro studies showed that water extracts of A. halimus
had a very interesting activity against different cancer cell lines [112,113]. In the present
study, we investigated the antiproliferative activity of A. halimus ethanolic extract toward
MCF-7 and MDA-MB-231 human breast cancer cell lines, using the MTT assay. Figure 5
shows the effect of increasing concentrations of AHEE and cisplatin on the tumor cells. As
can be seen, AHEE showed a dose-dependent effect toward both tumor cell lines, where
MCF-7 cancer cell line had the highest sensitivity. Table 1 shows the IC50 values and the
selectivity indexes. It is depicted in this table that AHEE exhibited a potent antitumor
activity on MCF-7 and MDA-MB-231 with IC50 values equal to 27.85 ± 3.14 µg/mL and
51.95 ± 7.03 µg/mL, respectively. Cisplatin was used as a positive control and rendered
IC50 values of 3.66 ± 1.05 µg/mL and 1.60 ± 1.19 µg/mL, respectively. Our results
were expected to be better compared to various research works such as those of Hosny
et al. (2021) [113] and Al-Senoy et al. (2018) [39], who examined the efficacy of A. hal-
imus extract on MCF-7 and reported moderate efficacy with IC50 of 47.03 µg/mL and
153.6 µg/mL, respectively.
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Figure 5. Cell viability of MCF-7, MDA-MB-231, and PBMC cells after 72 h of treatment with A.
halimus ethanolic extract and cisplatin using MTT test.

A minimum level of cytotoxicity is required from anticancer drug candidates since
blood cells are the first normal cells to be exposed to chemotherapeutic agents. Therefore,
we evaluated the effect of AHEE on PBMC viability using the MTT assay. Interestingly,
AHEE showed very low suppressive activity against human PBMCs, with an IC50 value
above 600 µg/mL. AHEE showed the highest selectivity for MCF-7 cells with a safety ratio
of 26.7, followed by MDA-MB-231 cells with a safety ratio of 14 (Table 9). However, cisplatin
showed a very low safety ratio towards MCF-7 cells (8.15) compared to MDA-MB-231 cells
(18.64). In effect, these results revealed that AHEE is more selective to cancer cell lines
and might not affect normal cells. Indeed, these results are in agreement with the work of
Al-Senoy et al. (2018) [39], who revealed that AHEE is more selective towards cancer cell
lines and might not affect normal cells.
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Table 9. IC50 values and selectivity indexes of A. halimus ethanolic extract on MCF-7 and MDA-MB-
231 human breast cancer cell lines.

Treatments
IC50 Value ± SD (µg/mL) * Selectivity Index **

MCF-7 MDA-MB-231 PBMC MCF-7 MDA-MB-231

AHEE 27.85 ± 3.14 51.95 ± 7.03 743.6 ± 9.55 26.7 14.31

Cisplatin 3.66 ± 1.05 1.60 ± 1.19 29.83 ± 1.19 8.15 18.64

* Values are obtained from three independent experiments and expressed as means ± SD. ** Selectivity index =
(IC50 of PBMC/IC50 of tumor cells).

3. Materials and Methods
3.1. Plant Material and Extraction

Atriplex halimus (L.) was collected and then identified in the Department of Biology,
University Mohammed First Oujda, Morocco. A voucher specimen was deposited at
the herbarium of the same faculty under the number HUMPOM543. Leaves were shade
dried, grounded, powdered (using a grinding mill, model SM-450, MRC., Ltd., Changzhou,
China), and extracted with ethanol (70%). Extracts were dried under vacuum in a rotary
evaporator (Model RE501, Yuan Huai Chemical Technology Co., Ltd., Shanghai, China) to
produce the crude extract.

3.2. LC–MS/MS Profiling of AHEE

Aliquots of the samples (80 mg) were extracted using the procedure described
in [114,115]; below is the procedure in detail: 1 mL of ethanol was added to the aliquot.
The Eppendorf tube was vortexed and submerged for 60 min in a 45 ◦C sonicator bath.
A Shimadzu Ultra-High-Performance Liquid Chromatograph (UHPLC, Nexera XR LC
40, Kyoto, Japan) with an MS/MS detector was used for the qualitative analysis (LCMS
8060, Shimadzu Italy, Milan, Italy). The Lab Solution software (ver. 5.6, Kyoto, Japan) was
used to manage the MS/MS, which used electrospray ionization. This program allowed
for a quick transition from a low energy scan of 4 V (full scan MS) to a high energy scan
(10–60 V ramping) during a single LC cycle. A total of 2.9 L/min nebulizing gas flow, 10 L/min
heating gas flow, 300 ◦C interface temperature, 250 ◦C DL temperature, 400 ◦C heat-block
temperature, and 10 L/min drying gas flow were the settings chosen for the source. The
analysis used a mobile phase of acetonitrile and water + 0.01 percent formic acid in a 5:95
(v/v) ratio, with no chromatographic separation. Mass spectral data acquisition was achieved
under negative electrospray ionization (ESI-). A molecule was considered positive if its area
under the curve was greater than that of the blank (information on the molecules’ retention
times and typical fragments in m/z are available in Figures S1 and S2; typical fragments of
the used standards are found in Supplementary File S2). The molecules were identified by
comparing the typical fragment identified with those in our in-house-developed library
of molecules.

3.3. Prediction of the Pharmacokinetic Properties and Toxicity of AHEE’s Bioactive Compounds

ADME (absorption, distribution, metabolism) profiles were assessed in silico via
computational tools using the SwissADME online server (http://www.swissadme.ch/,
accessed on 25 July 2022) [116] and pkCSM web-server (http://biosig.unimelb.edu.au/
pkcsm/, accessed on 25 July 2022) [57,117]. The estimation of LD50 values, toxicity class,
hepatotoxicity, carcinogenecity, immunotoxicity, mutagenicity, and cytotoxicity was carried
out by the Protox II online tool (https://tox-new.charite.de/protox_II/, accessed on 28 July
2022) [118].

3.4. Molecular Docking Prediction of the Antioxidant and Cytotoxic Activity of AHEE
3.4.1. Molecular Docking General Procedure

Using the target proteins’ PDB IDs, the crystallographic three-dimensional structures
of the target proteins were obtained from the protein data bank (https://www.rcsb.org/)

http://www.swissadme.ch/
http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
https://tox-new.charite.de/protox_II/
https://www.rcsb.org/
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(accessed on July 25 July 2022) and displayed using the Discovery Studio 4.1 (Dassault
Systems Biovia, San Diego, CA, USA) program. With the same tool, typical inhibitors,
water molecules, and ions were also eliminated. Automated docking investigations were
conducted using AutoDock Vina v1.5.6 software [119]. The protein also acquired polar
hydrogen bonds and Kollmann charges [120]. The identified compounds in AHEE were
retrieved from https://pubchem.ncbi.nlm.nih.gov/ (accessed on 25 July 2022) as “3D sdf”
format and then converted using PyMol to pdb file format.

Using MGL tools, three-dimensional PDBQT files of the protein and ligands were
created. In order to generate the grid maps with the interaction energies on the basis of the
macromolecule target of the docking investigation, AutoGrid grid, a part of Auto Dock,
was employed.

The grid box used to represent the docking search space was expanded to accommo-
date the current binding site more accurately. Kcal/mol values for the ∆G binding energies
were used to express the findings for the docked ligand complexes. Using Discovery Studio
4.1, 2D molecular interaction schemes were created and protein–ligand binding interactions
were examined. On the basis of the literature, we selected four antioxidant proteins for
the prediction of antioxidant activity: lipoxygenase (PDB: 1N8Q), CYP2C9 (PDB: 1OG5),
NADPH oxidase (PDB: 2CDU), and bovine serum albumin (PDB: 4JK4).

3.4.2. Ligand-Based Target Prediction with SwissTarget Prediction

In the area of drug development, ligand-based target prediction has been proven to be
extremely effective and quick at predicting the proper protein targets of compounds [121].
The “molecular similarity hypothesis”, which postulates that similar chemicals target com-
mon proteins, was validated by measuring the similarity of compounds using a variety of
techniques [122]. In this study, SwissTarget Prediction (https://www.swisstargetprediction.
ch) (accessed on the 24 July 2022), a web application that performs ligand-based target
prediction for any bioactive small molecule and has been available since 2014 [77], was
used to predict breast-cancer-related protein targets, and three of the targets found for each
compound with the highest probability were chosen. Table 10 summarizes the results of
our analysis.

Table 10. Target proteins of the identified compounds using SwissTarget Prediction. (1) Gallic acid, (2)
syringic acid, (3) trans-ferulic acid, (4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic
acid, (8) arbutin, (9) methoxyflavone.

PDB
IDs

Protein Target Name Resolution Native Ligands
Ligands

1 2 3 4 5 6 7 8 9

12CA Human carbonic anhydrase II 2.40 Å Tetrazole [123] X X X X X

3MDZ Human carbonic anhydrase VII 2.32 Å Acetazolamide [124] X X X X X X

1AZM Human carbonic anhydrase I 2.00 Å Furosemide [125] X X X X X X X

2CKJ Human milk xanthine
oxidoreductase 3.59 Å Oxypurinol [126] X

1ZXM Human Topo IIa
ATPase/AMP-PNP 1.87 Å

1,2-Benzenedicarboxylic acid,
mono(2-ethylhexyl) ester [127] X

2JKV Human phosphogluconate
dehydrogenase 2.53 Å NADPH [128] X

1G5M Human antiapoptotic protein BCL-2 1.80 Å ABT-737 [129] X

3IAR Human adenosine deaminase 1.52 Å 2′-Deoxyadenosine [130] X

1M73 Human purine nucleoside
phosphorylase (PNP) 2.30 Å Forodesine [131] X

5N2S Human A1 adenosine receptor 3.30 Å PSB36 [132] X

2YDO Human A2A adenosine receptor 3.00 Å Istradefylline [132] X

5NJ3 ABC transporter 3.78 Å Gefitinib [133] X

https://pubchem.ncbi.nlm.nih.gov/
https://www.swisstargetprediction.ch
https://www.swisstargetprediction.ch
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3.5. Anticancer Activity
3.5.1. Cell Culture

MCF-7 ER-positive and MDA-MB-231 ER-negative breast cancer cells were used.
Dulbecco’s minimum essential medium (DMEM) with 10% fetal bovine serum (FBS) and
50 µg/mL gentamicin was used to cultivate the cells. The cells were incubated in a
humidified atmosphere at 37 ◦C and 5% CO2. The cells were kept alive by subculturing
them in 25 cm2 tissue culture flasks. For the cell viability experiment, cells in the exponential
phase were employed.

3.5.2. Cell Viability by MTT Assay

The MTT assay was performed to determine whether AHEE inhibited cancer cell
proliferation according to the method described in [134]. MCF-7 and MDA-MB231 cells
that were exponentially proliferating were plated onto 96-well plates (104 cells per well
in 100 µL of medium) and left to attach for 24 h. To attain acceptable concentrations, the
AHEE were solubilized in 0.1% DMSO and serially diluted with medium. Cells were
treated with AHEE at various doses and incubated for 72 h. Cells in the control group
received only 0.1% DMSO-containing medium. The test compound media was replaced
with 200 µL of culture medium before adding 20 µL of MTT reagent (5 mg/mL MTT in PBS)
and incubating for 4 h at 37 ◦C. The medium was withdrawn, and 100 µL of DMSO was
added before absorbance was measured at 540 nm with a microplate reader (Synergy HT
Multi-Detection microplate reader, Bio-Tek, Winooski, VT, USA) and percentage viability
was calculated [135].

Cell viability (%) = 100−
[(

A0 −At

A0

)
× 100

]
where A0 = absorbance of cells treated with 0.1% DMSO medium, At = absorbance of cells
treated with AHEE at different concentrations. A total of 0.1% (v/v) DMSO in medium was
used as the negative control. Each treatment was performed in triplicate. Cisplatin was
used as standard. IC50 values were calculated using dose–response inhibition curves in
Graph pad prism 8.01.

Following approval by the Research Ethics Committee (03/21-LAPABE-10 and
4 March 2021), PBMCs were isolated from human blood samples by Ficollhypaque density
centrifugation according to the manufacturer’s instructions (Capricorn Scientific). The
cytotoxic effect was evaluated under the same conditions and concentrations as previously
described for tumor cells.

3.6. Antioxidant Activity
3.6.1. 2,2-Diphenyl-1-Picrylhydrazil Free Radical Scavenging Assay

The determination of the free radical scavenging capacity of AHEE was determined
according to the methods described in [75,136], with modifications. DPPH solution was
prepared by solubilizing 2 mg of DPPH in 100 mL of methanol. Different concentrations
ranging from 5 to 500 µg/mL were prepared. Afterwards, each concentration was added
to 2.5 mL of the prepared DPPH methanol solution to the final volume of 3 mL. After
30 min of incubation at room temperature, the absorbance was measured at 515 nm against
a blank. DPPH free radical scavenging activity as a percentage (%) was calculated using
the following formula:

Radical Scavenging Activity (%) =

[(A blank −A sample

A blank

)]
× 100

where A blank is the absorbance of the control reaction (all reagents except the extract are
present) and A sample is the absorbance of the extract at different concentrations. The IC50
was obtained by plotting the inhibition percentage versus extract concentrations on a graph.
Ascorbic acid was employed as a positive control.
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3.6.2. β-Carotene Bleaching Assay

The antioxidant activity was performed using bleaching of a β-carotene assay [75,137].
Briefly, 2 mg of β-carotene was solubilized in 10 mL of chloroform before being added to
20 mg of linoleic acid and 200 mg of Tween-80. Following the removal of the chloroform
mixture by rotavapor at 40 ◦C, 100 mL of distilled water was added to the flask with vigorous
agitation. Afterward, all samples were placed in triplicate in a 96-well plate and kept in the
dark at 25 ◦C for 30 min. Thereafter, absorbance was measured spectrophotometrically at
470 nm immediately after AHEE solution addition (t0) and after two hours of incubation (t1),
both against a white reading containing all of the previous AHEE solution components but
no-carotene. BHA was used as a standard reference.

Residual color (%) =

[(
Initial OD − Sample OD

Initial OD

)]
× 100

3.6.3. ABTS Scavenging Activity Assay

The scavenging capacity to the 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) radical of AHEE was investigated, as described by Nakyai et al. [138], with some
modifications. To create ABTS•+, the ABTS solution was combined with 2.45 mM potassium
persulfate and incubated at room temperature for 16–18 h in the dark. The solution was then
diluted with ethanol to achieve an absorbance of 0.70± 0.02 at 750 nm. In ethanol, an extract
stock solution was produced. As a positive control, L-ascorbic acid was employed. The
ABTS assay was carried out by combining 200 µL of diluted ABTS•+ solution with 20 µL
of test sample. This reaction mixture was incubated in the dark at room temperature for
10 min before being measured with a microplate reader at 734 nm. In a manner comparable
to the DPPH assay, a percentage of ABTS radical cation decolorizing activity was calculated.

3.6.4. Iron Chelation

According to the protocol described by Chaudhary et al. (2015) [134], in 100 mL of
distilled water, 0.198 g of 1,l0-phenanthroline monohydrate, 2 mL of 1 M hydrochloric acid,
and 0.16 g of ferric ammonium sulfate were mixed to make the 1,l0-phenanthroline-iron
(III) reagent. Concisely, 0.2 mL of standard/extracts were combined with 0.2 mL of 1,l0-
phenanthroline-iron (III) reagent, 0.6 mL of methanol, and 4 mL of water. After 30 min of
incubation at 50 ◦C, the absorbance was measured at 510 nm. Positive control was ascorbic
acid. Higher absorbance meant more iron chelating activity. The following formula was
used to compute percentage scavenging:

Scavenging Activity (%) =

[(
A sample−A control

A control

)]
× 100

where A control = absorbance of control (without extract) and A sample = absorbance of sample.

3.6.5. Total Antioxidant Capacity

The total antioxidant activity was determined using the phosphor-molybdenum
method as described in [134]. Incubated at 95 ◦C for 90 min, 0.1 mL of standard/extract
solution was combined with 0.3 mL of reagent solution (0.6 M sulfuric acid, 28 mM sodium
phosphate, and 4 mM ammonium molybdate). The mixture was cooled to room tempera-
ture, and the absorbance at 695 nm was measured. Except for the test sample, the blank
solution contained all of the reagents. The standard curve was created using ascorbic acid.
The findings were reported in terms of ascorbic acid equivalents [139]. All experiments
were carried out in triplicate.

4. Conclusions

The results obtained in the present study showed a richness of the phytochemical
profile of AHEE in terms of phenolic compounds such as gallic acid, syringic acid, and
trans-ferulic acid, among others. The results of the antioxidant activity have indicated that
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AHEE may be considered as a potent antioxidant candidate. For the cytotoxicity assays,
two human breast cancer cell lines (MCF-7 and MDA-MB-231) were studied throughout
this work to better understand the cytotoxicity impact of AHEE on cancer cells. AHEE was
found to have substantial cytotoxic effects against breast cancer cell lines, particularly the
estrogen receptor (ER)-positive cell line MCF-7. The cytotoxic activity analysis revealed
substantial cytotoxic effects in a dose-dependent manner against both breast carcinoma cell
lines (MCF-7 and MDA-MB-231). However, AHEE did not appear to be cytotoxic to normal
cells (PBMCs). According to the findings, AHEE may provide a healthy and natural source
of bioactive substances that may be utilized both preventively and in the clinic without
causing toxicity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph15091156/s1, Figure S1. Selected fragments derived from
the molecular weight of the polyphenol minus one (due to ESI-ionization) and their subsequent
fragmentation in the MS/MS experiment. Figure S2. Screening of polyphenols from A. halimus
ethanolic extract (AHEE) using LC–MS/MS. (1) Gallic acid, (2) syringic acid, (3) trans-ferulic acid,
(4) myricetin, (5) catechin gallate, (6) caffeic acid, (7) chlorogenic acid, (8) arbutin, (9) trimethoxyflavone.
Figure S3. Two-dimensional binding interactions of the potent inhibitor from AHEE, catechin gallate
(A), and the native ligand protocatechuic acid (B), against lipoxygenase protein (PDB ID: 1N8Q).
Figure S4. Two-dimensional binding interactions of the potent inhibitors from AHEE, catechin gallate
(A), myricetin (B), and the native ligand warfarin (C), against CYP450 protein (PDB ID: 1OG5).
Figure S5. Two-dimensional binding interactions of adenosine-5′-diphosphate (native ligand) against
NADPH oxidase protein (PDB ID: 2CDU). * Our analysis revealed that none of the identified com-
pounds in AHEE can inhibit the activity of NADPH oxidase. Figure S6. Two-dimensional binding
interactions of the potent inhibitor from AHEE, catechin gallate (A), and 3,5-diiodosalicylic acid
(native ligand) (B), against bovine serum albumin (BSA) protein (PDB ID: 4JK4). * All the identified
components were found to be potent inhibitors of BSA protein. Supplementary File S2. LC–MS/MS
standards used.
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