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Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-
seq) is a powerful genomic technology that is used for the global mapping and analysis
of open chromatin regions. However, for users to process and analyze such data they
either have to use a number of complicated bioinformatic tools or attempt to use the
currently available ATAC-seq analysis software, which are not very user friendly and
lack visualization of the ATAC-seq results. Because of these issues, biologists with
minimal bioinformatics background who wish to process and analyze their own ATAC-
seq data by themselves will find these tasks difficult and ultimately will need to seek
help from bioinformatics experts. Moreover, none of the available tools provide complete
solution for ATAC-seq data analysis. Therefore, to enable non-programming researchers
to analyze ATAC-seq data on their own, we developed a tool called Graphical User
interface for the Analysis and Visualization of ATAC-seq data (GUAVA). GUAVA is a
standalone software that provides users with a seamless solution from beginning to
end including adapter trimming, read mapping, the identification and differential analysis
of ATAC-seq peaks, functional annotation, and the visualization of ATAC-seq results.
We believe GUAVA will be a highly useful and time-saving tool for analyzing ATAC-seq
data for biologists with minimal or no bioinformatics background. Since GUAVA can also
operate through command-line, it can easily be integrated into existing pipelines, thus
providing flexibility to users with computational experience.

Keywords: ATAC-seq data analysis, GUI, bioinformatic tool, ATAC-seq, NGS data analysis

INTRODUCTION

Eukaryotic DNA is packaged together with histones to form nucleosomes, the basic unit
of chromatin, which is important in determining the structure of the genome and the
regulation of biological processes such as transcription. The regulatory information within
chromatin can be uncovered through high-throughput sequencing methods for assaying
chromatin accessibility, nucleosome positioning, histone modifications, and transcription factor
(TF) occupancy. Assay for Transposase Accessible Chromatin with high-throughput sequencing
(ATAC-seq) is a simple, yet highly robust and sensitive genome-wide technique that was
recently developed for identifying nucleosome-bound and nucleosome-free regions of chromatin
as well as TF occupancy (Buenrostro et al., 2013). Briefly, ATAC-seq accomplishes this
by simultaneously fragmenting and tagging genomic DNA with sequencing adaptors using
the hyperactive Tn5 transposase enzyme (Buenrostro et al., 2013). In contrast to similar
technologies such as DNase I hypersensitive sites sequencing (DNase-seq) (Song and Crawford,
2010), ATAC-seq requires less cells (Buenrostro et al., 2013), meaning that ATAC-seq can
be applied in many more experimental situations. In comparison to formaldehyde-assisted
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isolation of regulatory elements with sequencing (FAIRE-seq)
(Giresi and Lieb, 2009), another global chromatin accessibility
technology, ATAC-seq data has a lower background and therefore
better signal-to-noise ratio (Buenrostro et al., 2013). Finally,
ATAC-seq, unlike DNase-seq and FAIRE-seq, is much simpler
and does not involve loss-prone steps like adapter ligation, gel
purification, and crosslink reversal (Buenrostro et al., 2013).
Therefore, due to its ease of use, speed, low starting material
requirement, reliability and multiplexing potential, ATAC-seq
has been widely adopted and will most likely be the preferred
method of choice in comparison to FAIRE-seq and DNase-seq
for global chromatin accessibility analysis.

Currently, several bioinformatic tools are available for
processing or analyzing ATAC-seq data including, NucleoATAC
(Schep et al., 2015), ATACseqQC (Ou et al., 2018), ATAC-
Seq/DNase-Seq Pipeline1, and I-ATAC (Ahmed and Ucar,
2017). However, these tools are either command-line based
or provide only partial solutions, but more importantly, most
of them are complicated to use especially for biologists with
little bioinformatics training, command line, and scripting
experience. Moreover, these tools lack differential analysis,
functional annotation, and visualization of ATAC-seq results
(Table 1). Thus, we developed Graphical User interface for
the Analysis and Visualization of ATAC-seq data (GUAVA),
a simple user-friendly GUI-based application for processing,
analyzing and visualizing ATAC-seq data. GUAVA accomplishes
this by performing the following main tasks: (i) pre-process
raw sequencing reads, (ii) map sequencing reads to a reference
genome, (iii) filter and shift the mapped reads, (iv) identify
and annotate the ATAC-seq peaks, (v) normalize and visualize
the ATAC-seq data tracks, (vi) identify differentially enriched
peaks, and (vii) identify over-represented gene ontology
terms and pathways. GUAVA operates as a standalone
program on computers with either Linux or Mac OS. To
aid users, GUAVA package contains a complete reference
manual.

MATERIALS AND METHODS

Design and Implementation
Graphical User interface for the Analysis and Visualization of
ATAC-seq data is an open-source software that was implemented
using Java programming language. GUAVA has been designed to
be a fully automated software for analyzing and visualizing of
ATAC-seq data. GUAVA depends on several different tools and
methods such as Bowtie (Langmead et al., 2009) for mapping
sequencing reads, MACS2 (Feng et al., 2012) for calling peaks,
and DESeq2 (Love et al., 2014) for differential analysis. GUAVA
contains two programs: (1) ATAC-seq data analysis (to process
individual ATAC-seq samples or replicates) and (2) ATAC-
seq differential analysis (to compare ATAC-seq samples from
two different conditions). In addition, GUAVA has a genome
index builder for non-programming researchers to create a
genome index (Supplementary Figure S1). A detailed workflow

1https://github.com/kundajelab/atac_dnase_pipelines

for GUAVA is shown in Figure 1. The GUI to select the desired
GUAVA program and upload the input files is shown in Figure 2.

Part 1: ATAC-seq Data Analysis
To use the ATAC-seq data analysis program, the user simply
needs to (1) upload the ATAC-seq paired-end fastq reads and
(2) provide the Bowtie or Bowtie2 (Langmead and Salzberg,
2012) index reference genome using the input interface of
the ATAC-seq data analysis program (Figure 2B). If the
data has not been adapter trimmed, the user can select the
trimming option. The user has the option to change several
parameters such as the maximum insert size, the minimum
mapping quality and the p/q value cut-off. Finally, after
setting the output folder for storing the result files, the user
can select “Start Analysis.” GUAVA will then automatically
process and analyze the data as described below. Once
GUAVA has finished the analysis, results such as alignment
statistics, fragment size distribution, ATAC-seq peaks, and
their functional annotations are shown in the output interface
(Figure 3). The user can also find an excel file containing
the same results in the output folder (Supplementary Data
Sheet S1).

Pre-processing of the Raw Reads
In many instances, the raw sequenced reads used for ATAC-
seq analysis will contain adapter sequences. Therefore, before
mapping the raw reads to the genome, the adapter sequences
should be trimmed off, otherwise any reads with adapter
sequences will fail to map. For adapter trimming, GUAVA uses
cutadapt (Martin, 2011). If adapter sequences have already been
trimmed, this step can be omitted. After adapter trimming, the
reads will be saved in fastq format. GUAVA will then generate a
fastq quality report using the FastQC tool2. The FastQC report
is stored inside the folder with the suffix FastQC_OUTPUT
within the GUAVA output folder. In the FastQC report, “per base
sequence quality” should be more than 20 for each nucleotide
in the sequencing read and “per base N content” should not
exceed 5%. If these minimum parameters are not met, this is an
indication the sequencing reads are of poor quality. It should be
noted that poor quality or sequencing errors often leads to low
mapping rate and therefore, it is important to check the quality
of the sequencing reads before mapping them to the genome.

Read Mapping
For mapping ATAC-seq reads to the genome, the user can
choose between Bowtie (for ungapped alignment) or Bowtie2 (for
gapped alignment). In general, Bowtie2 is faster, more sensitive,
and memory efficient for reads longer than 50 bp, whereas Bowtie
sometimes performs better for relatively short reads (less than
50 bp) (Langmead and Salzberg, 2012). The default parameters
for these programs produce satisfactory alignment results, but the
user can change them if they wish to achieve a higher alignment
rate. The output alignment file is initially saved as a sequence
alignment/map (SAM) format and then converted into a sorted
BAM (binary version of SAM) format to save storage space and
to speed up subsequent data processing.

2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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TABLE 1 | Comparison between GUAVA and available tools for ATAC-seq data analysis.

Features GUAVA NucleoATAC I-ATAC ATACseqQC ATAC-Seq/
DNase-Seq Pipeline

Graphical user interface Yes No Yes No No

Adapter trimming Yes No Yes No Yes

Alignment Yes No Yes No Yes

Alignment filtering Yes No Yes No Yes

Alignment shifting Yes Yes Yes Yes Yes

Fragment size
distribution plot

Yes Yes Yes Yes No

Peak calling Yes No Yes No Yes

ATAC-seq differential
analysis

Yes No No No No

Visualization of
ATAC-seq data tracks

Yes No No Yes No

Annotation and function
analysis

Yes No No No No

Nucleosome positing No Yes No Yes No

Transcription factor foot
printing

No Yes No Yes No

A comparison between GUAVA and currently available tools for ATAC-seq data analysis based on features such read mapping, peak calling, and differential analysis, etc.

Alignment Filtering
In the ATAC-seq assay, many of the aligned reads cannot be
used for downstream data analysis due to mitochondrial DNA
contamination, duplicates, and alignment in the blacklist regions
of the genome (locations in the genome that tends to show
artificially high read signals) (Consortium, 2012). In GUAVA,
duplicate reads are removed by Picard MarkDuplicates3, while
reads aligning to the mitochondria and/or other chromosomes
(if required) and blacklist regions are filtered using SAMtools (Li
et al., 2009). Finally, only reads which are aligned in proper pair
and passed alignment filtering are retained for further processing.

Alignment Shifting
When the Tn5 transposase cuts open chromatin regions it
introduces two cuts that are separated by 9 bp (Buenrostro
et al., 2013). Therefore, ATAC-seq reads aligning to the positive
and negative strand need to be adjusted by +4 bp and −5 bp,
respectively, to represent the center of the transposase binding
site (Buenrostro et al., 2013). In GUAVA, we have included an
in-house program to perform the alignment shifting. The output
file (a sorted BAM file) from this step is saved with the suffix
“ATACseq.bam.” Users can use the alignment shifted bam file as
an input bam file for differential analysis.

Fragment Size Distribution Graph
Tn5 transposase cuts open chromatin regions and also linker
DNA. Therefore, the fragment size distribution graph of a good
quality ATAC-seq library has two sharp peaks at <100 bp (open
chromatin) and ∼200 bp (mono-nucleosome) and smaller peaks
representing di-nucleosomes and tri-nucleosomes. GUAVA uses
Picard CollectInsertSizeMetrics3 to compute the fragment sizes
on alignment shifted bam files and R to plot fragment size
distribution graphs.

3http://broadinstitute.github.io/picard

Peak Calling
To identify enriched chromatin regions in ATAC-seq libraries,
MACS2 is used for peak calling with the parameters nomodel and
nolambda. For differential analysis, users can use the narrowPeak
file from MACS2 output.

Annotation and Functional Analysis
Graphical User interface for the Analysis and Visualization
of ATAC-seq data uses the ChIPpeakAnno (Zhu et al., 2010)
bioconductor package for annotation and functional analysis.
First, ATAC-seq peaks are categorized into different groups
based on their genomic location (i.e., promoter, untranslated
regions (UTRs), intron, and exon). Second, peaks that are within
5 kb upstream and 3 kb downstream of the TSS are associated
to the nearest genes. Finally, these genes are then analyzed
for over-represented gene ontology terms and KEGG pathways
(Kanehisa et al., 2017) using ChIPpeakAnno’s getEnrichedGO
and getEnrichedPATH functions, respectively.

Part 2: ATAC-seq Differential Analysis
To use the ATAC-seq differential analysis program in GUAVA,
users need to load the processed (filtered and shifted) ATAC-
seq alignment bam file and narrowPeak file (hereafter called
peak file) for each sample (Figure 2C). These files can be found
in the output folder of the “ATAC-seq data analysis” program.
Next, the user selects the “Next” button to set the fold change
and p-value cut-off as well as select the output folder to store
the results (Figure 2D). Finally, the user selects the “start”
button to compare ATAC-seq signal from the two conditions.
GUAVA will perform the tasks as described below to identify and
annotate differentially enriched ATAC-seq peaks. Results such as
the differentially enriched peaks, a volcano plot showing gained-
open and gained-closed regions between two conditions, over-
represented gene ontology and pathways are displayed in the
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FIGURE 1 | ATAC-seq data and differential analysis workflow for GUAVA. A diagram showing the GUAVA workflow for analyzing ATAC-seq data. The workflow has
two parts (1) ATAC-seq data analysis: to process a ATAC-seq sample and (2) ATAC-seq differential analysis: to identify differentially enriched ATAC-seq signals
between two conditions.
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FIGURE 2 | Design of the GUAVA input interface. (A) The main GUAVA window where users select the program they wish to use (ATAC-seq data analysis or
ATAC-seq differential analysis). (B) Window for using ATAC-seq data analysis. To perform ATAC-seq data analysis, users load the sequencing data using the R1
fastq and R2 fastq buttons. Next, they choose between Bowtie and Bowtie2 from the drop-down menu in the “Alignment Parameters” section. If required, users can
change the other parameters from the default value to another value. For example, the default RAM used for GUAVA is 1 GB but it can be changed if desired. Finally,
to run the analysis users simply click the “Start Analysis” button. (C) Window for using ATAC-seq differential analysis. To perform ATAC-seq differential analysis, users
set the project name, load the bam and bed files and then set the differential analysis parameters in (D) before selecting the “Start” button.

output interface of the “ATAC-seq differential analysis” program
(Supplementary Figure S2).

Generation of Unique Peak List and Read Count
Matrix
To prepare the input data for differential analysis, overlapping
peaks from biological replicates are first merged to create a peak
list for each condition (e.g., control and treatment). Next, the list
of peaks from each condition are then combined to create a final
list of unique peaks in which differential analysis is performed.
GUAVA then creates a read count matrix by counting the reads in
each unique peak for each input sample. To achieve this, GUAVA
uses the Rsubread bioconductor package (Liao et al., 2013).

Differential ATAC-seq Analysis
To identify differentially enriched ATAC-seq regions, GUAVA
uses the DESeq2 bioconductor package. Users can set the
fold change and p-value cut-off for defining the chromatin
accessibility gained (gained-open) and reduced (gained-closed)
peaks. Results are displayed in a tabular format in the GUAVA

GUI as list of differentially enriched peaks and a volcano plot
summarizing the significantly differentially enriched regions.

Functional Analysis of Differentially Enriched Peaks
To perform functional analysis on the differentially enriched
peaks, they are first categorized into different groups based on
their genomic location (i.e., promoter, UTRs, intron, and exon).
Next, differentially enriched peaks are annotated and associated
to the nearest genes if they occur within the user defined distance
from the TSS. Finally, to identify over-represented gene ontology
terms and KEGG pathways, GUAVA uses the ChIPpeakAnno
bioconductor package.

Normalization of ATAC-seq Signals for Visualization
on the Integrated Genome Viewer
It is important to normalize ATAC-seq data before visualizing
them on the IGV (Thorvaldsdottir et al., 2013) because most
likely each sample was sequenced at different depths. Hence,
the raw signals are not comparable. GUAVA uses the following
method to produce normalized ATAC-seq data tracks. ATAC-seq
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FIGURE 3 | Output interface for GUAVA ATAC-seq data analysis. (A) Input summary and alignment statistics. (B) Read filtering and peak calling summary. (C) Peak
annotation table with sorting and filtering functionality. Easy access to IGV for visualizing peaks and automatically generated normalized ATAC-seq signal by GUAVA.
(D) Visualization of ATAC-seq peaks with IGV. (E) Graph showing the fragment size distribution. (F) Bar chart showing the percentage of peaks in various genomic
locations such as the promoter, intron, exon, and UTR, etc. (G) Plot showing the percentage of the peaks upstream and downstream of the TSS of the nearest
genes. Different colors indicate different ranges of distances from the TSS. (H) Over-represented KEGG pathways obtained using the ChIPpeakAnno bioconductor
package.

Frontiers in Genetics | www.frontiersin.org 6 July 2018 | Volume 9 | Article 250

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00250 July 14, 2018 Time: 13:50 # 7

Divate and Cheung GUAVA

signals are normalized as reads per million (RPM) so that they
can be compared with other biological samples. Normalized data
tracks are saved in bigwig format. Output interface of GUAVA
allows users to easily view these normalized ATAC-seq signals
on the IGV. With one click, the ATAC-seq data track, peaks and
genome will be loaded onto the IGV. Multi-threading is used to
open multiple instances on the IGV.

RESULTS AND DISCUSSION

In this work, we have developed GUAVA, a fully automated
GUI tool, to help researchers, in particular biologists with no
computational knowledge, the ability to process and analyze
ATAC-seq data on their own. To illustrate the use of GUAVA,
we processed and analyzed an ATAC-seq dataset (accession
number GSE84515) that was derived from a study examining
chromatin accessibility changes in breast cancer cells in response
to PI3K inhibitors (Toska et al., 2017). Specifically, ATAC-seq was
performed on T47D cells that were treated with either DMSO
(vehicle) or the PI3K inhibitor, BYL719. Overall, this dataset
consists of four samples with two replicates for each condition
(Supplementary Table S1).

Case Study Demonstrating GUAVA
We first processed the four ATAC-seq samples individually
using the ATAC-seq data analysis program. We selected the
adapter trimming option with default parameters to remove the
sequencing adapters from the raw reads. For read mapping,
we used Bowtie2 and the hg19 genome a 2,000 bp insert size
and a minimum mapping quality of 30. Since the test dataset
is from breast cancer cells, we filtered reads aligning to the Y
chromosome as well as the mitochondria by using the “show
chromosome” button. For peak calling, a 0.001 q-value cut-off
was used.

In general, the average mapping rate of the four samples
that we processed was >75%. Moreover, over half of the
mapped reads passed alignment filtering. The detailed alignment
and alignment filtering results for the four samples can
be found in Supplementary Table S2. We also observed a
fragment size distribution interval of approximately 200 bp
for the ATAC-seq peaks representing mono-, di-, and tri-
nucleosomes (Supplementary Figure S3). This result indicates
the ATAC-seq libraries were of good quality. The ATAC-
seq peaks for all the samples were mainly located in the
promoter, intergenic, and intronic regions (Supplementary
Figure S4). Gene ontology analysis of the individual ATAC-
seq samples showed over-represented terms for cell cycle, DNA
repair, and the apoptotic signaling pathway (Supplementary
Table S3). In pathway analysis of the individual ATAC-seq
samples, control samples showed over-represented terms for
DNA replication, RNA transport, cell cycle, pathways in cancer,
and signaling pathways, while BYL719 treated samples were
over-represented in terms for ErbB signaling pathways, p53
signaling pathway, and phosphatidylinositol signaling system
(Supplementary Table S4).

Next, we performed differential analysis on the above
processed samples with GUAVA’s ATAC-seq differential analysis
program using a twofold change and a 0.001 p-value cut-
off. For annotation and functional analysis, we used a 5 kb
upstream and a 3 kb downstream region for associating
peaks with genes. Overall, we identified 11,067 chromatin
accessibility locations that were reduced (gained closed) and
18,683 locations with increased chromatin accessibility (gained
open) signals upon BYL719 treatment (Figure 4A). However,
the reproducibility between the replicates in the control
samples was less as compared with the replicates of the
BYL719 treated samples (Figure 4B). Consistent with the
known biological effects of BYL719, gene ontology analysis
of the differential peaks showed over-represented terms for
regulation of cell proliferation, inositol phosphate metabolic
process, negative regulation of extrinsic apoptotic signaling
pathway, and regulation of extrinsic apoptotic signaling pathway
via death domain receptors (Figure 5A and Supplementary
Data Sheet S2). Similarly, in pathway enrichment analysis,
the changes in chromatin accessibility induced by BYL719
associated with processes such as inositol phosphate metabolism,
phosphatidylinositol signaling system, p53 signaling pathway,
and pathways in cancer (Figure 5B and Supplementary Data
Sheet S2).

Here, we have presented GUAVA, a simple fully automated
GUI software for ATAC-seq analysis. Our main objective behind
developing GUAVA was to enable non-programming scientist
to analyze ATAC-seq data immediately with no learning curve.
The graphs and tables generated by GUAVA will help users to
interpret and understand their data. We have created GUAVA
with an easy-to-use interface that not only enables users to
analyze their ATAC-seq data but also help them to visualize
their results. Therefore, GUAVA is a useful user-friendly time
saving tool for ATAC-seq analysis. The current version of
GUAVA does not perform nucleosome positioning or TF foot-
printing analyses and thus, one of our future goals for improving
GUAVA will be to include both types of analyses. In addition,
future versions of GUAVA will also incorporate modules for
assessment of reproducibility of the ATAC-seq signals between
the replicates.

Availability and Future Directions
Graphical User interface for the Analysis and Visualization of
ATAC-seq data, together with a complete reference manual, is
available at GitHub4 and the source code of GUAVA5. The sample
data and documentation6 is available for the demonstration of
GUAVA. Furthermore, a video guide7 is available.

Besides incorporating the additional features as mentioned
above, we will also continue to make GUAVA as user-friendly
as possible by improving the GUI as well as including

4https://github.com/MayurDivate/GUAVA
5https://github.com/MayurDivate/GUAVASourceCode
6http://ec2-52-201-246-161.compute-1.amazonaws.com/guava/
7https://www.youtube.com/watch?v=C-9URYWSquI&list=PLBamWP04PQWLG
KDdby54LprzSW7jHULSH
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FIGURE 4 | BYL719 induces differentially enriched ATAC-seq peaks in T47D cells. (A) A volcano plot showing the differentially enriched peaks between BLY719 and
DMSO-treated T47D cells. In total, 29,750 regions were found with differentially enriched ATAC-seq signals. Out of which 18,683 regions were gained-open
(increased in chromatin accessibility) and 11,067 were gained-closed regions (decreased in chromatin accessibility) before and after BLY719 treatment of T47D cells.
(B) Principal component analysis plot for the control and treatment replicates
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FIGURE 5 | Gene ontology (GO) and pathway analysis of differential enriched peaks. Differentially enriched peaks from Figure 4 were annotated with nearest
downstream genes. Then these genes are used to perform (A) gene ontology and (B) pathway analysis.
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modules for batch processing samples, and additional differential
analysis methods.
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