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A symbolic network-based 
nonlinear theory for dynamical 
systems observability
Christophe Letellier   1, Irene Sendiña-Nadal   2,3, Ezequiel Bianco-Martinez4 &  
Murilo S. Baptista4

When the state of the whole reaction network can be inferred by just measuring the dynamics of a 
limited set of nodes the system is said to be fully observable. However, as the number of all possible 
combinations of measured variables and time derivatives spanning the reconstructed state of the 
system exponentially increases with its dimension, the observability becomes a computationally 
prohibitive task. Our approach consists in computing the observability coefficients from a symbolic 
Jacobian matrix whose elements encode the linear, nonlinear polynomial or rational nature of the 
interaction among the variables. The novelty we introduce in this paper, required for treating large-
dimensional systems, is to identify from the symbolic Jacobian matrix the minimal set of variables 
(together with their time derivatives) candidate to be measured for completing the state space 
reconstruction. Then symbolic observability coefficients are computed from the symbolic observability 
matrix. Our results are in agreement with the analytical computations, evidencing the correctness of 
our approach. Its application to efficiently exploring the dynamics of real world complex systems such 
as power grids, socioeconomic networks or biological networks is quite promising.

Variables spanning the state space of a dynamical system which is irreducible to a few smaller subsystems are 
always dependent on each other through linear and nonlinear interactions. Consequently, one may expect to 
be able to determine an adequate subset of variables together with their well-selected Lie derivatives to get a full 
observability of the underlying dynamics, that is, for distinguishing all possible states of the network1,2. With the 
emergence of the Science of Complexity, complex networks are more and more often considered in various fields 
as well exemplified by power grids3, socio-economics networks4–6, or biological systems7–10. To allow a reliable 
monitoring, dynamical analysis or control of these high-dimensional systems, suitable and systematic techniques 
are required to identify the subset of variables providing the best (if not the full) observability of their underlying 
dynamics. A related problem is how to unfold the whole dynamics by completing this subset of variables to recon-
struct a space whose dimension is at least equal to the dimension of the original state space.

Dealing with multivariate time series, specially those produced by high-dimensional dynamical networks, is 
not a trivial problem11–13. Attempts to estimate network observability using symbolic techniques14,15 were made to 
overcome the large computational times associated with the exact analytical calculations. In those approaches, a 
dimension reduction is performed in real time on a symbolic observability matrix until state estimation is possi-
ble from the selected measurements. However, linear and nonlinear interactions among variables are considered 
on an equal footing while it is strongly required to distinguish them for a reliable assessment of the observability 
of a system2,13. In order to tackle such a challenging task, we propose a methodological approach that will be 
applied to reaction networks derived from dynamical systems with appropriately large dimension to corroborate 
our assessments with rigorous analytical calculations, and yet provide a framework making also possible the veri-
fication of observability in networked dynamical systems. The chosen reaction networks are models of interesting 
biological and physical systems: the circadian oscillation in the Drosophila period protein, the Rayleigh-Bénard 
convection, and the DNA replication. They also represent nonlinear systems with increasing nonlinear complex-
ity, commonly observed in other natural and man-made systems. Therefore, they are an appropriate subset of 
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nonlinear systems to serve as testbed of our approach’s performance and reliability. In addition, we will show that 
our approach correctly identifies whether a nonlinear dynamical system is fully or only partially observable, an 
information not accurately obtained by previously proposed methodological approaches16–19.

Since we are dealing with dynamical systems in general, the Jacobian matrix will be used to access the nature 
of how variables interact, allowing us to optimize our assessment of the symbolic observability coefficients. For 
high-dimensional complex systems this is a quite demanding computation since the number of cases to investi-
gate increases with the system’s dimension and exact analytical computations are prohibitive. Indeed, in practice, 
monitoring all the variables defining the system’s state is experimentally infeasible or inefficient, and it is of utmost 
importance to develop a methodological framework addressing the problem of targeting those variables yielding 
full observability. Despite several approaches have been proposed16,17, most of them neglect the nonlinear nature 
typically exhibited by complex systems and/or do not provide the space reconstructed from the measured variables. 
On the one hand, since nonlinearities are most often related to a lack of observability, linear approaches cannot 
properly address this problem. On the other hand, finding the appropriate combination of sensors (and time deriva-
tives) spanning the reconstructed space is a very time demanding computational task for large dimensional systems.

Here, we adopted a nonlinear symbolic approach taking into account the nature of the interactions among 
variables and analyze the distribution of the linear and nonlinear load of the variables in the symbolic Jacobian 
matrix of the system. By means of two easy-to-implement criteria we are able to successfully identify the minimal 
set of variables (and their time derivatives) candidate to be measured for completing the reconstructed space. 
Our results are in full agreement with the analytical prediction of getting a no null determinant of the observa-
bility matrix and the technique drastically reduces the search for candidate variables, thus providing a key step to 
observe and model natural and man-made complex systems of large dimension.

The subsequent part of the paper is organized as follows. Section Results is devoted to illustrate how our pro-
posed approach works considering a few large dimensional dynamical systems. Section Methods briefly intro-
duces the observability theory, and the current challenges for the determination of a system’s observability in 
nonlinear systems. Finally, the Discussion section provides some conclusions to this work.

Results
On rare occasions, nonlinear systems are fully observable from just a single scalar time series20 as previously 
investigated for many chaotic systems21–23. Since full (global) observability warrants that every distinct point of 
the original state space x d∈   can be univocally identified, there is a great interest to target the minimal set of 
variables to measure for accomplishing such a full observability condition.

As shown in Section Methods, to assess the (local or global) observability through a given measurement 
vector s, both a subset of m variables–sometimes designated as “sensors”24 –and the Lie derivatives have to be 
provided. Our aim is therefore to provide a method that can indeed solve the problem of determining the min-
imum set of variables to measure for observing a large complex system. In order to avoid testing the rank of the 
observability matrix via algebraic computation, we propose to use a technique based on a symbolic computation 
of the observability matrix in which the terms are not explicitely expressed but only their linear, nonlinear poly-
nomial or rational character2,13.

The general and systematic procedure developed by Bianco-Martinez and coworkers2 and compiled in the 
Methods section, is in fact very time consuming since the computation of the observability coefficients corre-
sponding to all the 5.2 ⋅ 106 possible vectors spanning a reconstructed space of a 13-dimensional system would 
require intense and long computational time (more than 18 days). One optimization strategy is to reduce the 
number of possible combinations by identifying candidate variables that should be disregarded as members of the 
measurement set. A lack of observability has its origin in the existence of a singular observability manifold, a 
domain in the original state space where the determinant Det  of the observability matrix  is zero25. Let us note 
here that there is one very special case in which Det  ≈ 0 and, consequently, practical problems in the state esti-
mation may occur. This usually happens when Det  depends on some parameter(s) which may be arbitrarily 
small26. In general, a linear system may be (rarely and practically) non-observable with a nonzero determinant of 
the observability matrix. By construction, a null or non-constant determinant Det  is rooted in a null or a non-
linear component in the Jacobian matrix. Our technique relies precisely on tracking those nonlinear terms in the 
Jacobian matrix and, therefore, taking into account both linear and nonlinear interactions between variables 
becomes so relevant in assessing observability.

By analogy with what is done for chemical reactions27, it is possible to consider any dynamical system as a 
reaction network, whose associated weighted adjacency matrix is the symbolic Jacobian matrix ∼ . Using the 
terminology from graph theory, we define the linear out-strength of the node i, σ i( )out

lin , as the number of times the 
ith variable appears in linear terms in the governing equations, that is,

i J( )

(1)
j i

j J

jiout
lin

1ji

∑σ = .
≠

| =





The larger is σ i( )out
lin , the higher the probability the ith variable needs not to be measured because it is related to other 

variables via linear couplings which will not induce nonlinear terms in the determinant of the observability matrix.
The situation in which  = =J J 1ij ji  and i j( ) ( ) 1out

lin
out
linσ σ= =  means that variables i and j are exclusively linearly 

coupled with no other variables involved. Consequently, full observability of the ith variable can only be accessed 
by measuring the jth variable and vice versa. It is thus necessary (and sufficient) to measure at least one of them 
because they cannot be simultaneously excluded from the set of measured variables. A second criterion to decide 
which variable to choose between these two is needed. The idea is built on how a variable candidate to be 
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non-measured is influenced by the other candidate variables. Let be {xk} the set of variables candidate to be non 
measured with k ∈ Vnm ⊂ {1, 2, ..., m} and Vnm the set of integers indexing the non-measured variables. Thus, the 
in-strength of the ith variable provided by the non-measured ones is defined as

i J( )

(2)
k V

k i

ikin
nm

nm

∑σ =
∈

≠



where = ≡J 1 1ik
 ,  = ≡J 1 2ik , and J 1 3ik

 = ≡ . Using this correspondence for the symbolic terms, we can 
assume that the larger is σ i( )in

nm , the less observable through the ith variable the system is. The rationale is as fol-
lows: the more nonlinearly coupled is the ith function fi(x) with the non-measured variables, the larger the degree 
of the determinant of the observability matrix, and the less observable the dynamics through the measurements 
is22. Therefore, we should preferably remove that variable with the largest non-measured in-strength σin

nm.
Therefore, the minimal set of variables to measure for reconstructing a state space with a full observability can 

be automatically determined from (i) the symbolic Jacobian matrix ∼  of the system under study, (ii) the linear 
out-strength out

linσ , and (iii) the in-strength in
nmσ  provided by the non-measured variables. Note that the knowledge 

of the exact functional dependence of the coupling between variables is not necessary, only its polynomial or 
fractional nature2. From the vector of state variables x, those components xi having the largest σout

lin are discarded 
as candidates to be sensors after having checked they are present at least once in the equations governing the 
dynamics of a sensor variable. All remaining possible embeddings s that can be constructed from the final set of 
variables candidate to become sensors are then tested using a Matlab® algorithm and ranked according to the 
corresponding estimated symbolic observability coefficient ηs.

In order to validate whether our proposed method is in agreement with algebraic computations, we will con-
sider three dynamical systems of increasing dimension (d = 5, 9 and 13) describing complex systems coming from 
biology or physics. As it is known that the presence of symmetries in the state space can affect the assesment of 
observability22, we will also consider the case of equivariant dynamical systems obeying f(Γ ⋅ x) = Γ ⋅ f(x), where 
Γ defines a discrete symmetry like a rotation or an inversion28.

A 5D rational model for the circadian PER oscillations in Drosophila.  In our attempt to consider 
biological or physically motivated systems, let us start with the model











=
+

−
+

= −
+

+
+

=
+

+
+

−



 +

+
+






=
+

−



 +

+ +
+






+

= −

x v K
K x

v x
K x

x k x Vx
K x

V x
K x

x Vx
K x

V x
K x

x V
K x

V
K x

x V x
K x

x V
K x

k v
K x

k x

x k x k x (3)

s I

I

m

m

s

d

d

1

4

4
5
4

1

1

2 1
1 2

1 2

2 3

2 3

3
1 2

1 2

4 4

4 4
3

2

2 3

3

3 3

4
3 3

3 3
4

4

4 4
1

4
2 5

5 1 4 2 5

˙

˙

˙

˙

˙

proposed by Goldbeter for the circadian oscillation in the Drosophila period protein29. This is a five-dimensional 
rational model which produces a limit cycle for the parameter values initially reported29. This system is interesting 
in the sense that its complexity already presents a big challenge from the analytical point of view. The correspond-
ing symbolic Jacobian matrix reads as

=
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1 0 0 0 1
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0 0 1 1 1
0 0 0 1 1 (4)

5D

The symbolic observability coefficients corresponding to a univariate measurement s = xi are η = .0 17x1
5 , 

0 08x2
5η = . , 0 02x3

5η = . , η = .0 09x4
5  and, 0 30x5

5η = . , where the notation xi
5 refers to the vector  ̈ ⃛

....
x x x x x( , , , , )i i i i i  

whose observability to span the state space of the original system is estimated. According to the observability 
coefficient values, the ranking of the variables providing better observability is

   x x x x x5 1 4 2 3.

This is in a rather good agreement with the analytical determinants



www.nature.com/scientificreports/

4Scientific REPOrTS |  (2018) 8:3785  | DOI:10.1038/s41598-018-21967-w











∆ =
+ + +

∆ ∆ ∆

∆ = −
+ +

v K k V K VK
K x K x K x

x

k V K V K k
K x K x

256
( ) ( ) ( )

;

, and where complexity exceeds our computational abilities;

( ) ( )
,

(5)

x
s I

I

x x x

x
s

4 16
1
3

3
2

3
2

1 1
4

5
4 8

3 3
4

1 2
2 5

12

1
4

3
3

3
3

1
2

1
2

3 3
6

1 2
4

1
5

2
5

3
5

4
5

5
5

since the simpler determinant (with singularity of the 10th degree) is obtained for variable x5 providing the best observ-
ability, then variable x1 is associated with a determinant with a singularity of the 14th degree, and the three variables x2, 
x3 and x4 providing the poorest observability are associated with determinants too complicated to be computed with 
MAPLE®. The number (125) of all possible combinations of dimension 5 is still sufficiently small for allowing a system-
atic computation of the corresponding symbolic observability coefficients ηs. Prior to carry out those computations, we 
conducted our a priori analysis to target the candidate variables to be discarded. The linear out-strengths are 

(1) (4) (5) 1out
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linσ σ σ= = = , the two others being null. Among the off-diagonal terms of the symbolic Jacobian 

matrix which are equal to 1, we have J45 = J54 = 1, meaning that at least one of the two variables x4 and x5 has to be 
measured. Therefore, this suggests that the sets with the minimum number of sensors providing full observability com-
prise at least three variables, either (x2, x3, x4) or (x2, x3, x5). In order to have a five dimensional space, these two sets have 
to be completed with two Lie derivatives. It turns out that only two combinations yielded full observability: ( 1)x x x2

2
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sensors. These results are algebraically confirmed by the constant determinants of the observability matrix (or equiva-
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which is now no longer constant as it depends on variable x4. There is thus a singular observabiliy manifold. On 
the other hand, if the derivative of the second variable is substituted with the derivative of the third one, the 
Jacobian matrix J of such a transformation Φx x x2 3
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2 can be rank deficient with a null determinant for some domain 

of the original state space.
Finally, we wanted to assess the observability of the couple of variables {x1,x5}, identified as sensors of the sys-
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also in agreement with the determinants of the Jacobian matrices of the corresponding transformations,
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, characterizing a rank defi-

cient observability matrix . This is therefore a first evidence that our method to reduce the number of sensor 
variables correctly assesses the observability of this rather complex reaction network.

A 9D system for the Rayleigh-Bénard convection.  Let us consider now a nine-dimensional system 
describing the dynamics of three-dimensional fluid cells with a square plateform in a Rayleigh-Bénard convec-
tion31. It was obtained by applying a triple second-order Fourier series ansatz to the governing hydrodynamic 
equations. The equations read as
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where R is the reduced Rayleigh number and parameters bi (i = 1, …, 6) define the geometry of the square cell31. 
This system is equivariant under the rotation (see page 506 in Gilmore and Letellier’s book32)

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 (9)
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In fact, eight variables are symmetry-related by pairs, namely (x1 − x3), (x2 − x4), (x5 − x9), and (x7 − x8), and 
variable x6 is the single one left invariant under the symmetry (9). Up to four co-existing chaotic attractors were 
observed in this system31. An example of one of those chaotic attractors is shown in Fig. 1 for the bi-values
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Figure 1.  A chaotic attractor produced by the 9-dimensional dynamical network (8). Parameter values: σ = 0.5 
and R = 14.22, and rest of parameter values are listed in (10).

m x1 x2 x3 x4 x5 x6 x7 x8 x9 η

8 1 2 1 1 1 1 1 1 — 1.00

8 1 1 2 1 1 1 1 — 1 1.00

8 1 1 1 2 1 1 1 — 1 1.00

8 1 1 1 2 1 1 1 1 — 1.00

8 2 1 1 1 1 1 — 1 1 1.00

8 1 1 — 1 1 1 1 2 1 1.00

8 1 1 — 1 1 1 2 1 1 1.00

8 — 1 1 1 1 1 2 1 1 1.00

Table 1.  All possible subsets with m = 8 measured variables and one Lie derivative (of the variable for which 
“2” is reported) providing a full observability of the state space associated with the 9-dimensional system (8). 
Those variables not affecting the full observability when not measured are highlighted in bold face.
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And a = 0.5. This system is irreducible in the sense that it cannot be split in lower-dimensional independent 
systems.

This system is an interesting example because it constitutes a highly connected reaction network for which a 
graphical approach as the one developed by Liu and coworkers17 leads to only measure one of its nine variables 
to estimate its states (see the Supplementary Section S1).The variable that least influences the others (or equiva-
lently, the one least “seen” by the rest) is x6 (σout(6) = 2) since it only affects nonlinearly the derivative of x9. From 
a symmetry point of view, variable x6 must be measured to recover the right symmetry property: without this 
variable, the reconstructed state space would be necessarily associated with an inversion symmetry (a symmetry 
the original system does not have).

The symbolic Jacobian matrix of system (8) is
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1 1 1 1 1 0 1 0 0
1 1 0 1 1 0 0 0 1
1 1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 0 1
0 1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0 1
1 0 0 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1
0 1 0 1 1 1 1 1 1 (11)

9D

For this 9-dimensional system, there are 24309 possible combinations of variables and their derivatives candi-
dates for providing full observability (see the Supplementary Section S2). Dealing with all these potential solu-
tions is still afordable with our symbolic technique but it would take a rather long computational time (about 2 h). 
In order to reduce the number of combinations to test, we computed the linear out-strength i( )out

linσ  of the 9 varia-
bles which are
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These values indicate that variables x2, x4, x5, x6 are necessarily to be included in the list of variables to be 
measured for obtaining a full observability since none of them linearly affect the dynamics of the rest. The other 
five are candidate variables to be removed from the measurements. Their respective in-strengths coming from the 
non measured variables are:

σ σ σ σ σ= = = = = .(1) (3) 3, (7) (8) 5, and (9) 4in
nm

in
nm

in
nm

in
nm

in
nm

To determine whether all the candidate variables could be removed, we checked if there are pairs of exclusive varia-
bles, that is, when two candidate variables are linearly coupled each other (one being linearly “seen” by the other). 
Among the off-diagonal elements Jij equal to 1, we have  J J17 71= , J29, J J38 83

 = , and J49
 . Variables (x1, x7) and (x3, x8) thus 

form two pairs of mutually exclusive variables. Variable x9 is the single one not involved in an exclusive pair and can be 
removed from the set of measured variables. To decide which variable from each pair can be safely removed, we check 
which variables have the largest in-strength from the candidate variables to be non measured. The comparison returns 
that variables x7 and x8 are the ones to be removed since σ σ σ σ= = > = =(7) (8) 5 (1) (3) 3in

nl
in
nm

in
nm

in
nm .

The first test to assess the accuracy in selecting the minimal set of variables providing the highest observability 
consists in systematically investigating those combinations where all the variables are measured except one. The 
symbolic observability coefficients are reported in Table 1. In all cases providing full observability with just a sin-
gle variable not being considered, the discarded measure matches one of the candidate variables x1, x3, x7, x8 and 
x9 (marked in bold face in the table) confirming our preselection analysis.

Our systematic computation of the symbolic coefficients allows us to quantify the number of times Ni(η) the 
variable xi is not part of an embedding providing a given observability value η. In particular, the values of Ni(η = 1.0) 
for the variables potentially candidate to be non measured (N1(1.0) = 4, N3(1.0) = 2, N7(1.0) = 7, N8(1.0) = 5, and 
N9(1.0) = 9, see the first part of Table 2), support our initial choice for not measuring x7, x8, and x9 but measuring 
x1 and x3, since x7, x8 and x9 seem to be less essential for providing full observability. Consequently, as long as full 
observability is required, our two network-based criteria correctly identify those variables whose absence from the 
set of sensors does not affect the full observability of the system. Indeed, when the minimal number of variables, that 
is, m = 6, is measured, the two possible combinations providing a full observability correspond to a space recon-
structed from variables x1, x2, x3, x4, x5 and x6 (see the Supplementary Table S1. We therefore correctly assessed the 
best variables to measure for getting full observability with the minimum of variables. Of course, it is also possible to 
get full observability by measuring more than 6 variables. In that case, we searched for them among the 8 preselected 
variables using the linear out-strength. From the 354 possible combinations, we obtained 6 combinations using 7 
measured variables and 2 with 8 measured variables. Performing a full blind search, with no preselection, from a 
total number of 1080 combinations with 7 or 8 measured variables, we found 2 and 6 additional combinations pro-
viding full observability, respectively. All of them are reported in the Supplementary Table S1.
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We also investigated the combinations with less than 6 measured variables and providing the largest symbolic 
observability coefficients whose dependency on m is shown in Fig. 2. For m = 5 (m = 4, 3, 2 and 1) there are 4 (2, 
6, 4, and 4, respectively) combinations with η = 0.90 (η = 0.73, 0.36, 0.14, 0.04, respectively). All those combina-
tions are made up of the six preselected variables identified by solely using the symbolic Jacobian matrix and σout

lin 
and in

nmσ  to rank them.
The non-preselected variables can be involved in reconstructed vectors when a good but not a full observabil-

ity is desired or when m > 6 (a good observability is considered when η > 0.75 as reported in a previous work33). 

m x1 x2 x3 x4 x5 x6 x7 x8 x9 η

6 2 2 2 1 1 1 — — — 1.00

6 2 2 2 1 1 1 — — — 1.00

7 1 2 2 1 1 1 1 — — 1.00

7 1 2 — 1 1 1 1 2 — 1.00

7 — 1 1 2 1 1 2 1 — 1.00

7 — 1 1 2 1 1 2 1 — 1.00

7 — 1 1 1 1 1 2 1 1 1.00

7 — 1 — 1 1 1 2 2 1 1.00

7 2 2 1 1 1 1 — 1 — 1.00

7 2 1 2 2 1 1 — — — 1.00

7 2 1 2 1 1 1 — — 1 1.00

7 2 1 1 2 1 1 — 1 — 1.00

7 2 1 1 1 1 1 — 1 1 1.00

5 2 3 2 1 1 — — — — 0.90

5 2 1 2 3 1 — — — — 0.90

6 3 2 1 1 1 1 — — — 0.90

6 3 1 2 1 1 1 — — — 0.90

6 3 1 1 2 1 1 — — — 0.90

6 2 3 1 1 1 1 — — — 0.90

6 2 3 1 1 1 — — 1 — 0.90

6 2 1 3 1 1 1 — — — 0.90

6 2 1 1 3 1 1 — — — 0.90

6 2 1 1 3 1 — — 1 — 0.90

6 1 3 2 1 1 1 — — — 0.90

6 1 3 2 1 1 — 1 — — 0.90

6 1 3 — 1 1 — 1 1 — 0.90

6 1 2 3 1 1 1 — — — 0.90

6 1 2 — 1 1 — 1 3 — 0.90

6 1 1 3 2 1 1 — — — 0.90

6 1 1 2 3 1 1 — — — 0.90

6 1 1 2 3 1 — 1 — — 0.90

6 — 1 1 3 1 — 2 1 — 0.90

6 — 1 1 2 1 — 3 1 — 0.90

6 — 1 — 1 1 — 3 2 1 0.90

6 — 1 — 1 1 — 2 3 1 0.90

6 — 1 — 1 1 — 2 3 1 0.90

5 4 2 1 1 1 — — — — 0.80

5 4 1 2 1 1 — — — — 0.80

5 4 1 1 2 1 — — — — 0.80

5 2 1 4 1 1 — — — — 0.80

5 1 2 4 1 1 — — — — 0.80

5 1 1 4 2 1 — — — — 0.80

6 4 1 1 1 1 — — 1 — 0.80

6 4 1 1 1 1 — — — 1 0.80

6 1 1 4 1 1 — 1 — — 0.80

6 1 1 4 1 1 — — — 1 0.80

Table 2.  List of the different possible combinations of measured variables and their Lie derivative orders 
providing a symbolic observability coefficient η ≥ 0.75 of the state space associated with the 9-dimensional 
system (8).
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For instance, this is exemplified in the middle and lower part of Table 2 with a systematic computation of the 
symbolic observability coefficients η for embeddings built from 5 or 6 measured variables. In this case, we observe 
that a very good observability (η = 0.90) can be obtained with only 5 variables being measured, namely (x1, x2, 
x3, x4, x5). The fact that variable x6 is not included, prevents from a full observability and, in particular, its absence 
induces a lack of symmetry, as previously discussed. Again, by looking at the distribution of Ni(0.9) we have: 
N1(0.9) = 5, N3(0.9) = 5, N7(0.9) = 14, N8(0.9) = 14, and N9(0.9) = 20. Therefore, for this level of observability 
(η = 0.9) the last three variables, x7,x8, and x9 can be again chosen to be removed from the set of observations. 
If we accept a slightly lower observability coefficient (η = 0.80), other possibilities emerge in which variable x6 
is systematicaly removed from the set of measured variables (last part of Table 2). Our two criteria are thus very 
efficient to detect those variables not really impacting the access to a full observability measure, but discard some 
possibilities offering a good (but not full until m ≤ 6) observability with severe consequences on the symmetry 
properties of the reconstructed attractor.

A 13D model for DNA replication.  A third and even more challenging case is now considered, a 
13-dimensional model for the DNA replication in fission yeast. Fission yeast cells are carrying two mutant genes, 
wee1− and cdc25OP, which initiate mitosis in eukaryotic cells before the end of their DNA replication. A second 
feature is that DNA synthesis can be restarted without intervening mitoses. Novak and Tyson proposed a model 
for cell cycle in fission yeast taking into account these two properties in Schizosuccharomyces pombe34. The under-
lying mechanisms are described by the set of thirteen differential equations



























β α

β

β

β

β

µ











= − + + + + +

= − −
+ +

+
− +

− + + + + + +
= − + + +
= − + + +

=
+ −

+ −
−

+

=
+ −

+ −
−

+

=
−

+ −
−

+
+

= − + + + +
= − + +
= − + + +

=
−

+ −
−

+

=
+ −

+ −
−

+
=

′ ′

′

′

′

x k k k k x x k x k k x

x k k x
k x x x x m

K x
k x x x

k x x k k x k k k x x
x k k k x x k k x
x k x x k k k k x

x k x x x
K x

k x
K x

x k x x x
K x

k x
K x

x k x
K x

k x x x
K x

x k x k k k x x k k x
x k x x k k k x

x k x x k k k k x

x k x x
K x

k x
K x

x k x x x
K x

k x
K x

m m

( ) ( )
( )

( )

( ) ( )( )
( ) ( )

( )
( )(1 )

1
( )(1 )

1
(1 )

1
( )

( ) ( )
( )
( )

(1 )
1

( )(1 )
1

(12)

ee r

p

r r

r

r

i

r

ir

u

u

r

ur

wr

wr w

ee r

r

r

u

r

ur

c

r

cr

1 1 2 w 7 2 1 25 8 7 4 4

2 3 4 2
p 2 1 8 3

m 2
7 2 1 8

8 2 3 8 6 9 7 2 2 4 10

3 5 6 8 2 3 8 4 9

4 7 2 1 7 4 2 2 4

5
i 1 8 5

m 5

i 5

m 5

6
2 1 8 6

m 2 6

u 2 6

m 2 6

7
7

m 7

w 1 8 7

m 7

8 w 1 25 2 7 2 8 7 4 10

9 8 2 3 8 4 6 9

10 7 2 8 7 4 2 2 10

11
u 5 11

m 11

u 11

m 11

12
c 1 8 12

m 12

c 12

m 12

where x1 = G2K, x2 = R, x3 = G1K, x4 = G2R, x5 = IE, x6 = UbE2, x7 = Wee1, x8 = PG2, x9 = G1R, x10 = PG2R, 
x11 = UbE, and x12 = Cdc25, are concentration variables, see Novak and Tyson34 for a more detailed explanation 
of the meaning of these variables and values of the rate constants.
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Figure 2.  Largest symbolic observability coefficient η versus the number m of measured variables for the 9D 
Rayleigh-Bénard model (8).
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This 13-dimensional rational model is characterized by the symbolic Jacobian matrix
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1 1 0 1 0 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 1 1 1 0 0 1
0 1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 (13)

13D

According to the linear out-strengths σout
lin, we have five candidate variables eligible to be excluded from the 

observations since having not null σout
lin values:

σ σ σ σ σ= = < = = = .(1) (8) 1 (4) (9) (10) 2out
lin

out
lin

out
lin

out
lin

out
lin

The linear off-diagonal elements =J( 1)ij
  are J14, J18, J24

 , J29
 , J2,10

 , J39, J81
 , and J8,10

 . There is therefore a single pair 
of exclusive candidate variables, that is, variables x1 and x8 (J J 118 81= =  ). Variables x4, x9, and x10 can therefore be 
safely removed from the set of measured variables and x1 and x8 can not be simultaneously removed. The 
in-strength in

nmσ  from the set of potentially non-measured variables is equal to 2 for all the candidate variables 
except for x9 which is σ =(9) 0in

nm . Our criteria does not allow us this time to resolve the uncertainty between x1 
and x8.

Following the same procedure as with the two previous examples, we performed our a priori analysis by sys-
tematically computing the symbolic observability coefficients when a single variable is removed and collecting 
only those combinations providing either full or null observability (see Table 3). As expected, when one of the 
variables x1, x4, x8, x9 or x10 is not included in the observation set of 12 variables plus one derivative, the observ-
ability is full. On the contrary, if one of the variables x6, x7, x11 and x12 is removed, the symbolic observability 
coefficient drops to zero for any possible choice of the first derivative. These variables are therefore essential and 
need to be measured. This is due to the fact that these variables have no out-connection other than to themselves 
as shown in the corresponding columns of the symbolic Jacobian matrix in Eq. (13).

Let us now validate whether it is possible to retrieve a full observability when either the set {x1, x4, x9, x10} or 
{x4, x8, x9, x10} are removed from the list of variables to measure. This was performed by systematically computing 
the symbolic observability coefficients for all the combinations reconstructing a 13-dimensional space without 
taking into account those two sets of variables. We found that for this DNA model, there are not too many possi-
bilities to reconstruct a space providing full observability of the original state space (see the Supplementary 
Table  S1). For instance, when removing two of them, x8 and x9 the reconstructed state vector 

  x x x x x x x x x x x x x( , , , , , , , , , , , , )1 1 2 2 3 3 4 5 6 7 11 12 13  is the only one providing full observability. If we discard three 
variables (x8, x9, and x10), there are two combinations allowing for a full observabiltiy embedding: 

 x x x x x x x x x x x x x( , , , , , , , , , , , , )1 1 2 2 3 4 5 6 7 10 11 12 13  and  x x x x x x x x x x x x x( , , , , , , , , , , , , )1 1 2 3 3 4 5 6 7 10 11 12 13 . A system-
atic analysis of the symbolic observability coefficients as the number of variables are removed from the set of 
observations indicate that the coefficient already drops to 0.93 when m = 9 variables are measured (see Fig. 3). As 
the estimated threshold for an optimal observability is 0.7533, it is worthless to investigate sets of size smaller than 
m = 7.

To actually check the results accounted for the symbolic observability coefficients ηs, we computed all the 
determinants Det s corresponding to ηs = 1 (results are reported in the Supplementary Table S1). In the 14 cases 
for which the symbolic observability coefficients are equal to one, the determinant Det s was always nonzero (for 
the whole state space): our technique always correctly identify reconstructed vectors providing full observability 
of the original space. As another example, as shown in Fig. 3, full observability is never achieved for m = 9 and the 
largest symbolic observability coefficient is 0.93, which still provides a good observability. By using the recon-
structed space     x x x x x x x x x x x x x x( , , , , , , , , , , , , , )13

1 1 2 2 3 3 5 6 7 10 11 12 12 13 , (one of the cases reported in Table 4) the 
determinant

 k k k k k k k k x
K x

Det ( ) ( ) ( ) ( 1)
1 (14)r7 2 2p 8r 4 7r 4

c 12

mc 12

β
= − + + + +

−
+ −

is zero for x12 = 1, a singular observability manifold of first order, explaining why the observability coefficient is 
no longer equal to 1 but close to it. To further show how the observability coefficient decreases when Det s van-
ishes for a singularity of higher degree22, we computed the determinant
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k k k k k k k k k x x
K x K x

Det ( ) ( ) ( ) ( 1) ( 1)
( 1 ) ( 1 ) (15)

s 7r 2 2p 8r 4 7r 4
u c 11 12

mc 12 11

β
= − + + + +

− −
+ − + −µ



associated with the reconstructed space      x x x x x x x x x x x x x x( , , , , , , , , , , , , , )13
1 1 2 2 3 3 6 7 10 11 11 12 12 13  providing a 

slightly smaller observability (η = 0.86) in agreement with the singular observability manifold (15) of second 
order, defined by Det s = 0, that is, by (x11 − 1)(x12 − 1) = 0. Due to a too large complexity, it was not possible 
to analytically compute the observability matrix when a single variable is measured.

As detailed in the Supplementary Section S1, Liu and coworkers’ graphical technique shows that by measuring 
the four variables x6, x7, x11, and x12 it is possible to estimate the states of the system. Clearly, our results are in 
strong disagreement. At this point, it is relevant to explain why our results are so different from those reported 
in previous works16,17. The first reason for the discrepancy is that Liu’s algorithm uses a linear theory, only taking 
into account whether the ith variable participates or not in the differential equation of variable j and not con-
cerned on how is that dependence. The latter is just equivalent to use a symbolic Jacobian matrix equal to

1 1 0 1 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 1
0 1 1 0 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 (16)
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and not the one defined in Eq. (13). Despite there are more than 2100 combinations with 6 or 7 measured varia-
bles resulting in full observability, there is none with a single variable. However, with a linear approach, it is still 
possible to show that the combinations providing full observability correctly identify the variables which must 
necessarily be used (Table 5), that is, variables x6, x7, x11, and x12. Nevertheless, the observability is obviously 

Non-measured Derivative retained η

x1 x8 1.00

x4 x1 or x2 1.00

x8 x1 1.00

x9 x2 or x3 1.00

x10 x2  or x8 1.00

x6 ∀ xi 0.00

x7 xi∀ 0.00

x11 ∀ xi 0.00

x12 ∀ xi 0.00

Table 3.  Symbolic observability coefficients when twelve (out of thirteen) variables of the DNA model (12) are 
measured. The derivative used for reconstructing a 13-dimensional state space is also reported.
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Figure 3.  Largest symbolic observability coefficient η versus the number m of measured variables for the DNA 
model (12).
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overestimated (1 compared to 0.43 with a nonlinear theory) and, in addition, this approach does not allow to 
select what derivatives to use for spanning the reconstructed space. Assessing the observability of a network with 
a linear theory thus provides very poor and misleading results.

Discussion
The observability of a complex system refers to the property of being able to infer its whole state space by meas-
uring the dynamics of a limited set of its variables. Determining the conditions that guarantee the full observ-
ability of a system involves testing a number of possibilities that increases exponentially with the dimension of 
that system and, for each case, it is required to compute the determinant of the observability matrix defining the 
singular observability manifold, that is, the subset of the state space that cannot be observed from the measure-
ment25. It was shown in one of our previous works2 that for a five-dimensional rational system, the analytical 
computation of such a determinant may already exceed the capacity of softwares like Maple® or Mathematica®. 
Therefore, alternative approaches to investigate large complex systems are needed. Those proposed for instance 
by Sedoglavic16 or Liu and coworkers17 remain yet unsatisfactory as discussed by Wang and coworkers35, mainly 
because they do not provide a method to select which Lie derivatives accompany the measured variables and, 
more importantly, they do not consider a nonlinear observability theory appropriate to deal with nonlinear sys-
tems, nonlinearities occuring in the node dynamics or nonlinearly coupled units.

Actually, the treatment proposed by Sedoglavic16 is only probabilistic and tests local observability, not the 
global one. On the other hand, the graphical approach developed by Liu and co-workers17 is based on a linear 
description of the system which can only lead, by definition, to approximated results since, as previously dis-
cussed, the lack of observability mainly originates in the location (in the fluence graph) of nonlinear terms. We 
here investigated the three systems considered by Liu and coworkers (see the Supplementary Section S1) and 
showed that, in contrast with our results, theirs are not in agreement with the analytical predictions. In our 
previous work2, we investigated the same five-dimensional rational system considered by Sedoglavic16. While in 
the latter reference, the algorithm developed by the author identifies the first variable as the one providing (in 
fact local) observability, it is only poorly the case when the symbolic algorithm developed in the former one is 
applied to the possible combinations using this variable, even combined with other variables. And what is even 
more questionable, it is that when x1 is combined with one of the four other variables, x2, x3, x4 and x5, the largest 
symbolic observability coefficient is still very small, that is, 0.30, 0.18, 0.30, and 0.48, respectively.

We have shown how the efficiency of the algorithm initially proposed by Bianco-Martinez and coworkers2 is 
improved by identifying the minimal set of measured variables providing full observability before any search for 
the corresponding Lie derivatives. The reduced sets of candidate variables capable of fully reconstructing large 
reaction networks was correctly determined by analyzing the way the variables interact, by only applying two sim-
ple criteria on the symbolic Jacobian matrix of the networked system. For the 13 DNA model, there are 5.2 ⋅ 106 
possible combinations to test (see the Supplementary Section S2 for the details), requiring more than 18 days of 
computations with a 2.5 GHz Intel Core i5 processor. With our preselection of variables, only 2870 combinations 
are needed to be tested lowering the computation time to about 4 min, that is, by a factor greater than 1800! These 
criteria reduce drastically the time spent for searching candidate variables, thus providing the grounds to observe 
natural and man-made complex systems.

In order to evaluate the reliability of our procedure, we computed a success rate defined as the number of times 
a symbolic observability coefficient equal to 1 actually corresponds to getting a constant analytical determinant of 

m x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 η

9 2 2 2 — 1 1 1 — — — 1 2 1 0.93

9 2 2 2 — 1 1 2 — — — 1 1 1 0.93

9 2 2 2 — 1 2 1 — — — 1 1 1 0.93

9 2 2 2 — 2 1 1 — — — 1 1 1 0.93

8 2 2 2 — — 1 1 — — — 2 2 1 0.86

8 2 2 2 — — 1 2 — — — 2 1 1 0.86

8 2 2 2 — — 2 1 — — — 2 1 1 0.86

9 — 2 2 — 1 1 1 2 — — 1 2 1 0.93

9 — 2 2 — 1 1 2 2 — — 1 1 1 0.93

9 — 2 2 — 1 2 1 2 — — 1 1 1 0.93

9 — 2 2 — 2 1 1 2 — — 1 1 1 0.93

8 — 2 2 — — 1 1 2 — — 2 2 1 0.86

8 — 2 2 — — 1 2 2 — — 2 1 1 0.86

8 — 2 2 — — 2 1 2 — — 2 1 1 0.86

7 — 1 2 — — 1 1 3 — — 2 3 — 0.72

              

Table 4.  Symbolic observability coefficients for the DNA system. The first part corresponds to the case where 
variables {x4, x8, x9, x10} are not measured, the middle part to the case where variables {x1, x4, x9, x10} are not. 
Only the cases where the symbolic coefficient is non-zero and for which only a first derivative is used (to avoid 
too many possibilities) are reported.
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the observability matrix. For the 42 combinations providing η = 1, the success rate is 100%. While we were able 
to identify and algebraically check all the resulting combinations for the 5D and 9D models, it was impossible for 
the 13D model due to the large amount of them. In the case of the 9D model, for which we obtained mp = 6 pre-
selected variables, our procedure missed 2 out of 8 combinations with m = 7, and 4 out of 6 with m = 8 (see the 
Supplementary Table S1). The missed combinations involve at least one variable which was not preselected and, 
consequently, not considered in our computations. When m = 6, some combinations are associated with a sym-
bolic observability coefficient equal to 0.90: in that case, 36 out of 54 corresponding to this value of the symbolic 
observability coefficient were made up of the preselected variables. When m = 5 < mp, 100% of the combinations 
(34) associated with the largest symbolic observability coefficient (0.90) involved the preselected variables. It is 
important to note that, when m ≤ 6, all combinations providing the largest symbolic observability coefficient (see 
Fig. 2) are made up of the preselected variables (and are actually found). This means that the preselected variables 
are indeed the revelant ones for estimating the system states and, that all combinations using these variables are 
correctly identified. To the best of our knowledge, we have a single case for which the full observability was not 
detected by our procedure33: it corresponds to the rare case for which two nonlinear terms cancel each other in 
the computation of the determinant of the observability matrix.

Finally, as firstly reported by Parlitz and coworkers36, the observality of a system could be addressed by using 
delay coordinates. As shown by Gibson and coworkers37, delay coordinates are related to derivatives by a rotation 
and a rescaling. Consequently, any result valid for derivative coordinates (not affected by rotation and rescal-
ing) holds for delay coordinates. The reduced sets of m measured variables (m < d) are not dependent on the 
use of delay or derivative coordinates, only on the choice of the complementary coordinates to reconstruct a 
d-dimensional space. Therefore, the extension of the technique proposed in this work to networks of discrete 
time systems (discretization of continuous-time systems) and iterated maps seems to be rather straightforward 
according, for instance, to Sarachik and Kreindler38 and to Nijmeijer39, respectively.

Methods
Introduction to observability theory.  Our framework to quantify the observability of a dynamical sys-
tem is here introduced with some definitions. Let us consider a d-dimensional dynamical system represented by 
the state vector x ∈ d whose components are given by

x f x x x x i d( , , , , ), 1, 2, 3, , (17)i i d1 2 3 = … = …

where fi is the ith component of the vector field f.
Let us introduce the vector ∈s m  whose m components are the time series of measured variables given by 

the measurement function

s h x( ) (18)= .

One of the formal ways to define the observability of a system is as follows40. We provide such a definition in 
the case where a single scalar time series is measured, s = h(x), but a generalization to the case of m measured 
variables is straighforward. The dynamical system (17) is said to be state observable at time tf if every initial state 
x(0) can be uniquely determined from the knowledge of a finite time series of the measured variable s(τ), 0 ≤ τ 
≤ tf. In practice, it is possible to test whether the dynamical system (17) is observable through a measurement 
function by computing the rank of the observability matrix20, that is, the Jacobian matrix of the Lie derivatives of 
s. Differentiating s(t) yields


 x

x
x

x
f x xs t

t
h h h h( ) d

d
( ) ( ) ( ),f= =

∂
∂

=
∂
∂

=

where f h(x) is the Lie derivative of h along the vector field f. The jth order Lie derivative is given by




=
∂

∂

−

x
x

f xh
h x

( )
( )

( ),f
j f

j 1

being the zero order Lie derivative the measured variable itself, x xh h( ) ( )f
0 = . Therefore, the observability 

matrix ∈ ×
s

d d  can be written as

m N M1 M2 M3 M4 M5 M6

6 230 9 87 111 62 0 230

7 1896 307 879 981 728 327 1892

m M7 M8 M9 M10 M11 M12 M13

6 230 9 110 63 230 230 9

7 1892 303 978 722 1891 1891 470

Table 5.  Number N of combinations providing a full observability—according to a linear theory—when 
m variables are measured. The numbers Mi in which the ith variable is involved in a vector spanning the 
reconstructed state space providing a full observability are also reported. In bold, the four variables which are 
the most often involved.
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x

≡ ∂
∂

 and the dynamical system (17) is said to be state observable if and only if the observability matrix 
has full rank, that is, rank (s) = d. Notice that, the full observability of a system is determined by the space 
spanned not only by the measured variables but also by their appropriate Lie derivatives1.

The observability matrix s corresponds in fact to the Jacobian matrix of the change of coordinates Φs: x → X 
where ∈X d  is the reconstructed state vector from the m measured variables and their adequately chosen d − m 
Lie derivatives30. Let us make explicit the observability matrix x xi j

  for the situation where two arbitrary variables 
xi and xj are measured directly, that is, when s = (h1(x),h2(x)) = (xi, xj), and h1 and h2 are two measurement func-
tions. In this case, the observability matrix reads as,
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where the order Lie derivatives k and l are such that k + l = d − 2, that is, there are d − 2 + 1 possibilities for 
choosing k and l. According to the Takens theorem41, it is possible to increase the dimension up to 2dH + 1 
where dH is ideally the Haussdorff dimension of the attractor to ensure a global diffeomorphism between the 
original state space and the reconstructed one, as long as the measurement function is generic. Showing that a 
measurement function is generic is not a trivial problem which is out of the scope of the present work. There is, 
therefore, no guarantee that the Takens theorem applies here. Moreover, our aim is to select the minimal set of 
measurements providing the best observability of the system. When a higher-dimensional reconstructed space 
is considered, this means that a global diffeomorphism perhaps may be obtained but it also means that the meas-
urements provide information that is non-optimal and from which the analysis is most likely problematic and 
tricky42,43. Consequently, investigating higher-dimensional reconstructed spaces has a rather limited interest in 
the present context.

The fact the system is fully observable from the two measured variables considered in the matrix (20) depends 
also on the particular choice of the pair (k, l), the numbers of successive derivatives computed from xi and xj, 
respectively. Therefore, it is crucial to specify how the measured variables and their derivatives are used to recon-
struct the state space. An approach–as the ones developed in other works16–18–missing this necessary condition 
cannot indeed properly address the problem of full (or even good) observability.

Symbolic observability formalism.  The procedure to calculate the symbolic observability coefficients is 
implemented in four steps as follows:

i) �Construction of the symbolic Jacobian matrix (∼ ). The Jacobian matrix  , composed of elements Jij, of 
the system (17) is transformed into a symbolic Jacobian matrix ∼  by replacing each linear element Jij by 
1, each non-linear polynomial element Jij by, and each rational element Jij by when the j th variable is 
present in the denominator or by 1 otherwise. This is more or less equivalent to the so-called influence 
(or fluence) diagram as used by Letellier and Aguirre23 where linear and nonlinear coupling terms are 
associated with solid and dashed arrows, respectively, and as used by Liu and coworkers17 where 
coupling terms are labelled with arrows (without distinguishing linear from nonlinear couplings). In the 
present approach, rational terms are distinguished from nonlinear polynomial terms since they strongly 
reduce the observability2.

ii) �Construction of the symbolic observability matrix (Os). Let us consider for simplicity a univariate 
measurement s = h(x) = xi. For this particular case, the first row of Os is just defined by the derivative of 
the measurement function dh, that is, O 1j1

 =  if j = i and 0 otherwise. The second row is directly obtained 
from ∼ by copying its ith row, that is, O Jj ij2

 =  ∀j, being i the index of the measured variable. The kth 
row is obtained as follows. First, each element of the ith row of the symbolic Jacobian observability 
matrix ∼  is multiplied by the corresponding ith component of the vector =v O O( , , )d1 �� �

� �  where 
= − k 1 refers to the (k − 1)th row of the symbolic observability matrix Os. The rules to perform the 

symbolic product  ⊗J vij i are such that2
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⊗ =
⊗ =

⊗ = =

⊗ = ≠ .

a
a a

a a a

a a

0 0,
1 ,

1 for 1, 1,

1 1 for 0 (21)

Second, the resulting symbolic Jacobian matrix ∼′ is thus reduced into a row where each element 
O Jkj i ij= ∑ ′  is just the sum of the elements of the jth column according to the addition law2

a a
a a a
a a a

a

0 ,
1 for 0,
1 for 0, 1,

1 1 (22)

⊕ =
⊕ = ≠

⊕ = ≠

⊕ = .

In the case m variables are measured, the construction of Os is performed by blocks of size (di + 1) × d, 
being di the number of derivatives of si and d m di

m
i1∑ + == , and the construction of each block 

follows the same rules described above for univariate measures.
iii) �Computation of the symbolic observability coefficients. The determinant of Os is computed according to 

the symbolic product rule defined in (21) and expressed as products and addends of the symbolic terms 
1, 1 and 1, whose number of occurrences are stored in variables N1, N and N, respectively. A special 
condition is required for rational systems such that, if N = 0 and N ≠ 0 then N = N. The symbolic 
observability coefficient for the measurement s is then equal to

η = + +
D

N
D

N
D

N1 1 1
(23)s 1 2 1 3 1

with D = max(1, N1) + N + N and 0 ≤ ηs ≤ 1, being ηs = 1 for a combination providing full 
observability.

iv) �Selecting the miminal set of variables to measure and the adequate Lie derivatives for providing a full 
observability. The symbolic observability coefficients ηs for each one of the sets of m measured variables 
and their selected d − m Lie derivatives are ranked versus the decreasing value of ηs and increasing m. 
Those featuring ηs = 1 and the smallest m can be selected as the minimal sets of variables to measure.
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