
The Scientific World Journal
Volume 2012, Article ID 278352, 10 pages
doi:10.1100/2012/278352

The cientificWorldJOURNAL

Research Article

Effects of Pooling Samples on the Performance of
Classification Algorithms: A Comparative Study

Kanthida Kusonmano,1, 2 Michael Netzer,3 Christian Baumgartner,3

Matthias Dehmer,1 Klaus R. Liedl,2 and Armin Graber1, 4

1 Institute for Bioinformatics and Translational Research, UMIT, 6060 Hall in Tyrol, Austria
2 Faculty of Chemistry and Pharmacy, Leopold-Franzens-University Innsbruck, 6020 Innsbruck, Austria
3 Institute of Electrical and Biomedical Engineering, UMIT, 6060 Hall in Tyrol, Austria
4 Novartis Pharmaceuticals Corporation, Oncology Biomarkers and Imaging, One Health Plaza, East Hanover, NJ 07936, USA

Correspondence should be addressed to Armin Graber, armin.graber@novartis.com

Received 18 December 2011; Accepted 10 January 2012

Academic Editor: Zhenqiang Su

Copyright © 2012 Kanthida Kusonmano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A pooling design can be used as a powerful strategy to compensate for limited amounts of samples or high biological variation. In
this paper, we perform a comparative study to model and quantify the effects of virtual pooling on the performance of the widely
applied classifiers, support vector machines (SVMs), random forest (RF), k-nearest neighbors (k-NN), penalized logistic regression
(PLR), and prediction analysis for microarrays (PAMs). We evaluate a variety of experimental designs using mock omics datasets
with varying levels of pool sizes and considering effects from feature selection. Our results show that feature selection significantly
improves classifier performance for non-pooled and pooled data. All investigated classifiers yield lower misclassification rates
with smaller pool sizes. RF mainly outperforms other investigated algorithms, while accuracy levels are comparable among all the
remaining ones. Guidelines are derived to identify an optimal pooling scheme for obtaining adequate predictive power and, hence,
to motivate a study design that meets best experimental objectives and budgetary conditions, including time constraints.

1. Introduction

High-throughput technologies generate large amounts of
data, which allow analysis of a broad range of biomolecules in
living organisms [1, 2]. For example, the transcriptome, pro-
teome, and metabolome can be studied by exploiting high-
dimensional datasets that comprise RNAs, proteins, and me-
tabolites, respectively. One of the most useful techniques,
that have been applied to high-dimensional biological data,
is sample pooling. It is a technique where subsets of samples
are randomly selected and pooled within each group, and the
cardinality of the samples subset is termed pool size. Pooling
helps to cut experimental costs and reduces analytical run
times; furthermore, it can compensate for limited amounts
of samples or can mitigate effects of biological sample varia-
tion. Many biological experiments have been performed
by pooling individual biological specimens (e.g., [3, 4]).
For instance, messenger RNA (mRNA) samples are pooled

together before hybridization in a microarray experiment.
Instead of employing as many array chips as number of sam-
ples n, actually required chips are reduced by a factor 1/p,
where p is the pool size.

The effects and efficiency of pooling samples have been
statistically investigated in many studies [5–9], which showed
that appropriate pooling can provide equivalent power as
obtained in comparable studies, where samples of individual
subjects are not pooled (i.e., pool size is equal to 1). Thus, it
becomes very interesting to study the effects of virtual pool-
ing on high-dimensional classification problems. Recent-
ly, this very active research area in bioinformatics has receiv-
ed widespread attention in the biomedical scientific commu-
nity; primarily, as a result of the recent medical paradigm
shift towards personalized medicine. This new strategy
reflects an early and ongoing focus on targeted medicines,
driven by a rigorous pathways approach to drug and bio-
marker discovery, which incorporates the qualification of
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biomarkers and their translation into companion diagnostics
in the codevelopment process. The discovery and qualifi-
cation of biomarkers as well as assay development, valida-
tion, and commercialization are empowered by an unpre-
cedented evolution and emergence of exciting new molecular
technologies including high-throughput “omics” microar-
rays, next-generation sequencing, functional imaging, and
evolving nanotechnologies. Classification methods have been
commonly employed to discover and validate sets of bio-
markers in system-wide biomedical studies that fulfil prede-
fined performance metrics, demonstrate clinical utility, and
meet technical, practical clinical, and business-related expec-
tations, which permit pursuing the development and com-
mercialization of a clinical assay. Those studies frequently aid
the prognostic and diagnostic assessment, and the predictive
comparison of treatments of diseases such as cancer [10, 11],
liver [12], or neurodegenerative diseases [13].

Recently, a study has been published investigating effects
induced by pooling data [14]; however, this analysis did not
explicitly include feature selection, which is a frequently used
analysis step in high-dimensional classification problems.
Feature selection is applied prior to the classification process
for reducing noise features and selecting key features, which
in general leads to a better discrimination by classification
methods.

In the current work, we investigate the impact of pool-
ing biological samples on classification algorithms in com-
bination with feature selection. The data employed in our
study are systematically synthesized with various numbers of
markers and different human and animal (e.g., mice or rats)
data scenarios. The data of human scenario mimick real-life
experiments with larger sample size and higher biological
variance comparing to animal scenario. A comparative study
on the performance of commonly used classifiers in non-
pooled and pooled data is performed. We apply supervised
machine learning where predictive functions are deduced
from training data. We focus on five important classifiers,
support vector machines (SVMs) using linear and radial ker-
nels, random forest (RF), k-nearest neighbors (k-NNs),
penalized logistic regression (PLR), and prediction analysis
for microarrays (PAMs).

Technical preliminaries of pooling samples, investigated
classification algorithms, and feature selection are described
in the next section. The materials and methods of data simu-
lation and analysis framework are then explained. As results
of this study, first we report the benefits of feature selection
on both non-pooled and pooled datasets. Then, the effects
of pooling data are presented. This comparative evaluation
depicts the performance of classifiers on datasets of indivi-
dual and pooled samples with several pool sizes. We also pro-
vide a comparison of human and animal scenarios, denoting
the simulation of datasets that exemplify data characteristics
typically observed in human studies and animal experiments.
These results are discussed according to properties of data
and classification algorithms. We conclude the work by ded-
ucing guidelines for the selection of classification algorithms
and pool sizes that allow researchers to identify a study design
that meets best their experimental objectives and budgetary
conditions, including time constraints.

The main contribution of our paper is as follows: a thoro-
ughly chosen experimental design, which combines an appli-
cable pool size with a proper classification algorithm, allows
constructing predictive models with performance charac-
teristics comparable to models resulting from regular non-
pooled strategies. These pooling designs can be primarily
applied in biomarker discovery studies to build classification
models to predict the class of future non-pooled subjects.
Depending on the application and clinical utility of respec-
tive classifiers, such predictions might relate to the diagnosis
and prognosis of disease, or the prediction of treatment
success for individual patients.

2. Technical Preliminaries

2.1. Pooling Samples. For a general high-throughput experi-
mental setup, let n denote the number of samples, and m rep-
resent the number of pooled samples or performed experi-
ments (e.g., microarray chip or mass spectrometry runs).
Thus, m is equal to n in non-pooled experiments. The
observed value of a feature f in sample i is denoted by zi.
We assume for each feature f (e.g., gene expression or meta-
bolite concentration) that z1, . . . , zn are independent and
identically distributed random variables with mean μ f and
biological variance σ2. By considering the technical variance
εk ∼ N(0, σ2

ε ) to account for experimental variability, the
experimental measurements can be represented as

yi = zi + εi. (1)

The biological and technical variations are independent. As-
suming that each individual contributes equally to the pool,
the pooled value z′ is the average of p individuals

z′ = 1
p

p∑

i=1

zi, (2)

where p refers to the pool size. In this study, we consider desi-
gns where n = pm and m is the number of pooled samples.
The measured values of pooled samples y′1, . . . , y′m can be
represented as

y′k = z′k + εk, (3)

where εk ∼ N(0, σ2
ε ) as in (1). The biological variance of

pooled sample is then reduced to σ2/p [14, 15].

2.2. Classification Algorithms. The general procedure in clas-
sification is to train a classifier on labeled training samples
and to classify future unlabeled samples employing the
trained model [16, 17]. Let x be a data set of a variables
{ f1, . . . , fa}, called features and ci be a class variable. Then
a classifier is a function f : f1 × · · · × fa → ci.

SVMs can be explained by four basic concepts: (i) the
separating hyperplane, (ii) the maximum margin hyper-
plane, (iii) the soft margin, and (iv) the kernel function [18,
19]. SVMs construct a separating hyperplane which gives the
largest separation margin between two classes. Soft margin
allows some errors occur between the separation and a kernel
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function maps data into higher dimensional data space
allowing the linear separation in nonlinear classification
problems [12, 20].

RF is an ensemble-based machine learning method,
which relies on the aggregation of results from several indi-
vidual decision trees [21]. Each tree in the procedure is con-
structed by bagging data from the original dataset. A num-
ber of features are randomly selected to build a tree. The pre-
dicted class for each sample is then assumed to be the class
that obtained the majority vote based on all trees.

k-NN is an instance-based learning method [16]. Giving
a new query point (i.e., sample) x, k-NN finds k points in a
training set, which are closest in distance to x. The class of x is
determined by majority voting of k nearest neighbors using,
for example, the Euclidean distance as metric.

PLR combines the logistic regression criterion with a
penalization of the L2-norm of the coefficients which enables
a stable fit, even with a large number of features [22]. It per-
forms similarly to SVMs, but in addition provides an
estimate of the underlying probability [23].

PAM classifies samples based on the method of nearest
shrunken centroids. The method assigns an unknown sample
to the class whose centroid is closest (i.e., smallest squared
distance). The centroids are shrunken by moving class centro-
ids toward the overall centroids after standardizing by the
within-class standard deviation for each feature. If the dif-
ference between the centroids of all classes and the overall
centroid is smaller than a user-defined threshold for a feat-
ure, the feature is eliminated [24].

2.3. Feature Selection. The performance of classifiers strongly
depends on properties of the feature set, such as which infor-
mation is irrelevant or redundant. Feature selection uses dif-
ferent measures to select relevant features and is an impor-
tant first step in building diagnostic, prognostic and predi-
ctive models [25]. Methods for feature selection can be classi-
fied into filter, wrapper, and embedded methods [26]. Wrap-
pers use estimates of discriminatory performance (e.g., accu-
racy) provided by machine learning approaches to evaluate
feature subsets. Similar to wrappers, embedded methods
integrate with classifiers but take into account search strate-
gies that require less computational power. Filter methods
rank features based on their ability to distinguish between
predefined classes and are independent of the classification
algorithm and easier to interpret. In this paper, we apply sta-
tistical hypothesis testing, the Student’s t-test, which is com-
monly used in bioinformatics.

3. Materials and Methods

3.1. Datasets. The mock datasets have been generated by
simplicity mimicking various biological scenarios. Let n be
the number of samples and a denote the number of features.
A sample consists of features { f1, . . . , fa}, which represent,
for example, gene expressions or metabolite concentrations
in a biological context. The dataset can be described as a set
of samples D = {(xi, ci) | xi ∈ X , ci ∈ C}, where X is a
set of samples, x1, . . . , xn, and C is a set of class labels. The

data are balanced and dichotomous with a set of class labels
C = {control, case}. For each feature, samples among each
class are assumed to follow a Gaussian distribution, which is
denoted as follows:

Xcontrol ∼ N
(
0, σ2),

Xcase ∼ N
(
γ, σ2).

(4)

σ2 is considered as biological variance. γ denotes the relative
mean difference between two groups. We define a discrimi-
nator (i.e., biomarker in biological context) as a feature with
γ /= 0. In this study, γ is randomly chosen from uniform dis-
tribution U(0.3, 0.4) [27]. Thus, the value of γ in the case
group of a nonmarker is 0, otherwise it is greater than 0. In
addition, the technical variance is taken into account as εi ∼
N(0, σ2

ε = 0.22) according to (1). The numbers of markers
are varied from 1 to 10.

From the data properties described above, we consider
two simplified scenarios of data set characteristics. Scenario 1
is defined with a = 1000 and n = 90 per class. The biological
variance σ2 has the value of 0.2. These assumptions are used
to simulate human data set characteristics. Scenario 2 is
defined with a = 1000, n = 30 per class, and σ2 = 0.1. The
later assumptions are used to imitate animal (e.g., mice and
rats) data set characteristics. Human biomarker discovery
studies are generally designed and executed with a higher
number of samples than animal experiments. On the other
hand, the variability in animal experiment is smaller than in
human settings according to in-bred and genetic homogene-
ity of study subject populations as well as better means to
standardize and control experimental conditions [28].

3.2. Pooling Data Simulation. Let p be the number of samples
that are pooled. In this study, we set p = 2, 3, and 5, that
n = pm, where m is the number of pooled samples. Most
measurements of pools were reported to be similar to aver-
ages of individuals comprising the pool [8, 15]. Thus, in this
study, each pooled sample was obtained by averaging p sam-
ples. For p = 2, 3, and 5, the pooling datasets are in sizes of
90, 60, and 36 instances in the human scenario of total 180
samples and in size of 30, 20, and 12 instances in the animal
scenario of total 60 samples, respectively. In order to mimic a
real-life experiment, in which the pooling is done before the
samples are analyzed, the simulated data were transformed
by performing exponential function to the basis e prior to
pooling [29]. Then the pooled data were transformed back
into the natural log scale. The new value of derived pooled
samples y′ can be represented as

y′ = loge

⎛
⎝ 1
p

p∑

i=1

ezi

⎞
⎠ + εk, (5)

where zi denotes the value of each individual sample and εk
denotes technical errors, εk ∼ N(0, σ2

ε = 0.22) of a pooled
experiment as applied from (2) and (3). Note that each value
y′ is calculated for each feature.

3.3. Classification, Feature Selection, and Model Evaluation.
The discriminatory ability of popular classifiers, which are
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SVMs using both linear and radial kernels, RF, k-NN, PLR,
and PAM are compared based on synthetic data. Feature
selection by using statistical t-test is included. The features
are ranked according to the t-statistics and the top 10, 100,
and 1000 features are selected for classification. The imple-
mentation of the R package classification for microarrays
(CMAs) [30] was used for feature selection, classification
and model evaluation. In this work, for model evaluation,
we did not perform common-applied k-fold cross-validation
(CV), which subdivides data into k partitions and each turn
uses one partition as test set and the remainder as training
set. This is specific to the pooling problem since in real life
the constructed classifier only utilize future individual sam-
ple for class prediction. The training sets can be pooled
since the classes of subjects are already known. However, new
subjects cannot be pooled for testing as they might belong to
different classes. Thus, the CV or even other model evalua-
tion method, for example, bootstrap cannot be applied
in the pooling approach as the test set cannot consist of
pooled samples in real use. Consequently, we used sepa-
rate training and test sets for model evaluation. Classifier
construction utilizes a training set and then model validation
is performed by using a test set. The test set comprised 450
individual samples and the average misclassification rates
from each test sample was obtained. The pipeline from data
simulation to model evaluation was repeated 300 times. The
selected number of test samples and the number of replica-
tions were found to give a small variance and stable results in
our setting, respectively.

Feature selection was performed for each training set.
A number of top ranked features (10, 100, and 1000) were
selected based on a training data. The selected ranked fea-
tures were then utilized in the test set for model estimation.

Parameter tuning for every classifier was performed using
internal 3-fold CV with customized grids [30] on the training
set. The number of folds was found to have no significant
effect on classifier performance. By applying a 3-fold CV stra-
tegy, the training set was subdivided into three equal parti-
tions where each one took turns and consecutively was
used for model validation, and the remainder for training.
Finally, the optimal parameters were derived from the CV. By
performing CV, soft margin values (c = 0.1, 1, 5, 10, 50, 100,
500) were tuned for SVMs both linear and radial kernel. The
gamma values (0.25, 0.50, 1.00, 2.00, and 4.00) were deter-
mined for radial kernel. For RF, numbers of randomly sam-
pled features (4, 8, 16, 32, and 64 considered based on
squared root of total features which is 1000) were adjusted
and the number of trees was set to 1000. A k value (1 to
number of top ranked features) was selected for k-NN. The
lambda values (0.0625, 0.1250, 0.2500, 0.50, 1.00, 2.00, 4.00,
8.00, and 16.00) were tuned for PLR. The thresholds for
deltas were searched among (0.1, 0.25, 0.5, 1, 2, and 5) in
PAM.

4. Results and Discussion

Five well-known classifiers, comprising SVMs using both
linear and radial kernels, RF, k-NN, PLR, and PAM, were

Table 1: Comparison of classification performance with different
numbers of top-ranked features.

Misclassification rate

Classifiers Top 10 Top 100 Top 1000

Individual

SVM with linear kernel 0.2191∗∗ 0.3479∗∗ 0.3757

SVM with radial kernel 0.2178∗∗ 0.3211∗∗ 0.3712

RF 0.2436∗∗ 0.2926∗∗ 0.2975

k-NN 0.2515∗∗ 0.3270∗∗ 0.4354

PLR 0.2160∗∗ 0.3329∗∗ 0.3761

PAM 0.2096∗∗ 0.3185∗∗ 0.2310

Pool size = 5

SVM with linear kernel 0.3229∗∗ 0.3817∗∗ 0.4131

SVM with radial kernel 0.3167∗∗ 0.3771∗∗ 0.4571

RF 0.3272∗∗ 0.3568∗∗ 0.3841

k-NN 0.3133∗∗ 0.3779∗∗ 0.4720

PLR 0.3113∗∗ 0.3772∗∗ 0.3983

PAM 0.3005∗∗ 0.3799∗ 0.3681

Classification performance is presented for different number of top-ranked
features. The dataset contains a total of 1000 features and 90 samples per
class with 10 markers. Top 1000 features denote no feature selection. The
table shows results using individual samples and illustrates results derived
by means of a pooled dataset when pool size is 5, respectively. Significance
levels ∗P < 0.05 and ∗∗P� 0.05 indicate comparisons where no feature
selection is performed by using the Wilcoxon rank sum test.

selected to investigate discriminatory performance for (i)
different number of top ranked features, (ii) different pooling
sizes including different numbers of virtual discriminators
(i.e., biomarkers in biological context), and (iii) human and
animal (e.g., mice or rats) scenarios.

4.1. Effects of Feature Selection. In this study, we used the
Student’s t-test, the most popular statistical test to filter genes
[31], for feature selection. Filter methods have the advantages
of classifier independence, lower computational complexi-
ty, and they provide ranking and prioritization of features
which are important for biological contextualization and
interpretation [26].

Results (based on the human scenario) demonstrate that
the examined classifiers generally show significantly smaller
misclassification rates (using the Wilcoxon rank sum test)
when employing feature selection in both individual and
pooled data, compared to runs without feature selection
(Table 1). This observation can be explained by the ability
of feature selection to reduce noise and to avoid model
overfitting. The findings are in concordance with several
other studies showing that feature selection methods yield
better discriminatory power of classification algorithms (e.g.,
[12, 27]). However, PAM performs better without feature
selection when compared with the parameter setting where
the 100 top-ranked features are selected in our datasets.
This may be an effect of internal feature selection and the
optimal parameter delta from parameter tuning, which shri-
nks the standardized centroid for each class in this particular
algorithm [24].
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4.2. Effects of Pooling Samples. In order to investigate the
effects of pooling samples on classification algorithms, data-
sets of different numbers of pooled samples were mimicked
(see Section 3). The evaluation was based on human scenario
and 100 top-ranked features using the t-test for feature
selection.

Misclassification rates obtained by the six classifiers
were investigated for individual subjects and pooled samples
(pool sizes of 2, 3, and 5). The results show that the misclassi-
fication rates increase with larger pool sizes (Figure 1), which
is in accordance with the study of Telaar et al. [14]. This char-
acteristic can be observed with both small and larger num-
bers of markers in datasets. Although pooling helps to de-
crease variances of biological samples, the sample size is
reduced when samples are pooled [15] which can degrade the
discriminatory ability of classifiers. In addition, the increase
of misclassification rates with raising pool sizes follows a
linear pattern. The difference among the performance of
classifiers is larger for higher numbers of markers than for
small numbers of markers in the data.

Significant differences in the performance of classifiers
between individual subjects and various pool sizes become
apparent from the Wilcoxon rank sum test (Figure 2). In
datasets with large number of markers, the performances of
classifiers show significant differences in every pair of pool
size (Figure 2(b)). On the other hand, in the datasets with
small numbers of markers, there is no statistical significant
difference (P > 0.05) between some pairs of pool sizes
(Figure 2(a)). For example, there is no statistically difference
between individual sample and pool size = 2 and between
pool size = 3 and pool size = 5 in PLR. For SVMs with
both linear and radial kernels, performances of classifiers do
not show statistical differences at pool sizes of 2 and 3, res-
pectively. These results could motivate the use of classifiers
with different pool sizes in cases where the data is noisy and
only a small number of markers are expected.

In order to gain further insight on the performance of
different classifiers, the misclassification rate of classifiers
with different number of markers from 1 to 10 was inves-
tigated (Figure 3). RF outperforms other classifiers for every
pool size (2, 3, and 5) in our settings (with 100 top-ranked
features). For other classifiers, the performance-ranked order
slightly differs, depending on the pool size. SVM with linear
kernel does not perform as well as SVM with radial kernel
in our settings. The kernel function helps to map data into
higher dimension space. This could allow the linear hyper-
plane providing better separation between data points of two
classes. The performance variation of classifiers is greater for
individual and small pool sizes than for larger pool sizes.

The RF classifier demonstrates a good predictive perfor-
mance even when most predictive features are noisy and
turns out to be robust against overfitting. In earlier studies,
it was also reported to produce favorable results [32, 33]. In
addition, ensemble methods like RF are generally well-suited
for reducing the total expected error [34].

Also performance trends of classifiers with increasing
numbers of markers are demonstrated in Figure 3. The
higher the number of markers, the better the classification
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Figure 1: Performance of classifiers on individual samples and
various pool sizes. A comparison of classifiers performances for
datasets of individual samples and pool sizes of 2, 3, and 5 are
shown. Misclassification rates rise with larger pool sizes. (a) and (b)
show the comparison when numbers of markers are 2 and 10, res-
pectively. The height of bars indicates 95% confidence interval from
300 replications.

performance [20]. This trend is apparent with any number
of pooled data.

4.3. Results of the Mimicked Animal Scenario. To provide a
real-life scenario, we mimicked datasets of human studies
and animal (in this case mice or rats) experiments. The ani-
mal datasets were simulated with a smaller sample size
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Figure 2: Statistically significant matrices of classifiers performances among various pool sizes datasets. Statistically significant differences of
performances of classifiers among different pool sizes of 1 (individual), 2, 3, and 5 are shown using Wilcoxon rank sum test, respectively. (a)
and (b) show the matrices when numbers of synthesized markers are 2 and 10, respectively. Each square represents a comparison between
two pool sizes datasets. The colors indicate the level of significance.

and smaller variance compared to the human scenario (see
Section 3), reflecting properties of real-world data [28, 35].
For instance, mice experiments are generally conducted with
smaller sample sizes. The variability in mice is smaller than
in human settings due to in-bred and genetic homogeneity
of populations as well as means to standardize and control
experimental conditions (e.g., dietary control, time of sample
collection). The effects of pooling samples in the animal
scenario are shown in Figure 4.

In general, the trends of the animal study simulations
(Figure 4) are similar to the human scenario (Figure 1),
where a larger pool size causes higher error rates for classi-
fiers. The differences between classifier performances are also
larger for bigger numbers of mocked markers in datasets.
However, the classifiers produce increased misclassification
rates compared to the human scenario despite the lower vari-
ance in the animal datasets. The lower variability is compro-
mised by the effect of the sample size. We have investigated
the performance of classifiers in the animal study scenario

with the same sample size as in the human setting. As expect-
ed, the classifiers in the animal scenario outperform the ones
in the human setting (Figure 5).

5. Conclusions

In this work, we provide a systematic evaluation of pooling
designs on the discriminating ability of classifiers. The per-
formance of SVMs, RF, k-NN, PLR, and PAM was studied on
mock datasets. The results highlight that pooling strategies
generally lead to higher error rates of classifiers. Misclassifi-
cation rates are likely to increase with pool sizes in a linear
pattern, not exponentially. Moreover, with datasets having
small number of makers, there is no statistically significant
difference of the performance of classifiers between some
pairs of pool sizes. Although being inferior to non-pooling
design, these results suggest the consideration of pooling
strategies for “omics” biomedical studies; especially, if there
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Figure 3: The performance of classifiers for various numbers of markers based on non-pooled and pooled data. Misclassification rates of
classifiers are shown when the number of markers is increasing from 1 to 10. (a) shows the performance of classifiers on dataset of individual
samples (90 controls and 90 cases). (b)–(d) show the performance of classifiers on pooled datasets when pool sizes are 2, 3, and 5, respectively.

are budgetary or time constraints that do not permit the ana-
lytical execution of individual sample runs (e.g., LC/MS-
MS). Furthermore, a staged approach might also be consid-
ered where first a pooling design is used for global profil-
ing of biomarkers in high-dimensional datasets and subseq-
uent model building, followed by qualification steps where
individual samples are analyzed and only a subset of biomol-
ecules is targeted for analysis. This comparative study moti-
vates scientists to consider and balance pros and cons of
various designs prior to the execution of biomarker discovery
studies. Thus, scientists are encouraged to make an informed
decision to leverage pooling designs as a valid strategy to
compensate for limited amounts of samples or high biologi-

cal variation, or as a remedy to improve analytical cost and
time efficiency.

In this study, we applied various classifiers with and
without feature selection, and systematically explored the ef-
fect of relevant parameters on their performance. In general,
all considered designs aim at discovering a subset of features
via an algorithm that is subsequently used to predict future
outcome, such as the disease status. Our results show that
RF mainly outperforms SVMs, k-NN, PLR, and PAM in
our settings, while the latter provide comparable accuracy
among themselves. SVMs perform better with a radial ker-
nel compared to a linear one. We strongly recommend con-
ducting feature selection prior to classification. It aids in
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Figure 4: Performance of classifiers based on the animal scenario.
Performance of classifiers for datasets of individual samples and
pool sizes of 2, 3, and 5 are compared. Misclassification rates rise
with larger pool sizes as the human scenario. (a) and (b) show the
comparison when numbers of markers are 2 and 10, respectively.
The height of bars indicates 95% confidence interval from 300
replications.

picking important features and reducing noise, which in turn
yields better performance of classification algorithms. The
results highlight the importance of applying feature selection
and pooling design according to the individual properties of
the classification algorithms. As a consequence of the selected
data properties in the human and animal study scenarios,
sample size influences and compromises the performance
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Figure 5: Performance of classifiers based on the animal scenario
(sample size = 180). Performance of classifiers for datasets of
individual samples and pool sizes of 2, 3, and 5 are compared when
numbers of markers = 10 and sample size = 90 samples per class
as performed in human scenario. The height of bars indicates 95%
confidence interval from 300 replications.

of classifiers more than variance of the data in our setting.
Therefore, even though data of the animal scenario has lower
variance in this study, the classifiers do not perform better
than in human datasets.

In future studies, we want to include skewed class distri-
butions and correlations between features in our mock data-
sets and explore the effect of these properties as well as unbal-
anced study group sample sizes on the performance of classi-
fiers.
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