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Assume one has the capability of determining whether a node in a network is infectious or not by probing it. Then
problem of optimizing sentinel surveillance in networks is to identify the nodes to probe such that an emerging
disease outbreak can be discovered early or reliably. Whether the emphasis should be on early or reliable detection
depends on the scenario in question. We investigate three objective measures from the literature quantifying the
performance of nodes in sentinel surveillance: the time to detection or extinction, the time to detection, and the
frequency of detection. As a basis for the comparison, we use the susceptible-infectious-recovered model on
static and temporal networks of human contacts. We show that, for some regions of parameter space, the three
objective measures can rank the nodes very differently. This means sentinel surveillance is a class of problems, and
solutions need to chose an objective measure for the particular scenario in question. As opposed to other problems
in network epidemiology, we draw similar conclusions from the static and temporal networks. Furthermore, we
do not find one type of network structure that predicts the objective measures, i.e., that depends both on the data
set and the SIR parameter values.
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I. INTRODUCTION

Infectious diseases are a big burden to public health. Their
epidemiology is a topic wherein the gap between the medical
and theoretical sciences is not so large. Several concepts
of mathematical epidemiology—like the basic reproductive
number or core groups [1–3]—have entered the vocabulary
of medical scientists. Traditionally, authors have modeled
disease outbreaks in society by assuming any person to have
the same chance of meeting anyone else at any time. This
is of course not realistic, and improving this point is the
motivation for network epidemiology: epidemic simulations
between people connected by a network [4]. One can continue
increasing the realism in the contact patterns by observing
that the timing of contacts can also have structures capable
of affecting the disease. Studying epidemics on time-varying
contact structures is the basis of the emerging field of temporal
network epidemiology [5–8].

One of the most important questions in infectious disease
epidemiology is to identify people, or in more general terms,
units, that would get infected early and with high likelihood
in an infectious outbreak. This is the sentinel surveillance
problem [9,10]. It is the aspect of node importance, which is
the one most actively used in public health practice. Typically,
it works by selecting some hospitals (clinics, cattle farms, etc.)
to screen, or more frequently test, for a specific infection [11].

Defining an objective measure—a quantity to be maximized
or minimized—for sentinel surveillance is not trivial. It de-
pends on the particular scenario one considers and the means of
interventions at hand. If the goal for society is to detect as many
outbreaks as possible, it makes sense to choose sentinels to
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maximize the fraction of detected outbreaks [9]. If the objective
rather is to discover outbreaks early, then one could choose
sentinels that, if infected, are infected early [10,12]. Finally, if
the objective is to stop the disease as early as possible, it makes
sense to measure the time to extinction or detection (infection
of a sentinel) [13]. See Fig. 1 for an illustration. To restrict
ourselves, we will focus on the case of one sentinel. If one has
more than one sentinel, the optimal set will most likely not
be the top nodes of a ranking according to the three measures
above. Their relative positions in the network also matter (they
should not be too close to each other) [13].

In this paper, we study and characterize our three objective
measures. We base our analysis on 38 empirical data sets of
contacts between people. We analyze them both in temporal
and static networks. The reason we use empirical contact
data, rather than generative models, as the basis of this study
is twofold. First, there are so many possible structures and
correlations in temporal networks that one cannot tune them
all in models [8]. It is also hard to identify the most important
structures for a specific spreading phenomenon [8]. Second,
studying empirical networks makes this paper—in addition to
elucidating the objective measures of sentinel surveillance—a
study of human interaction. We can classify data sets with
respect how the epidemic dynamics propagate on them. As
mentioned above, in practical sentinel surveillance, the net-
work in question is rather one of hospitals, clinics or farms. One
can, however, also think of sentinel surveillance of individuals,
where high-risk individuals would be tested extra often for
some diseases.

In the remainder of the paper, we will describe the objective
measures, the structural measures we use for the analysis,
and the data sets, and we will present the analysis itself. We
will primarily focus on the relation between the measures,
secondarily on the structural explanations of our observations.
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(a) Time to detection or extinction (b) Time to detection (c) Frequency of detection
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FIG. 1. Objective measures for the Office data with the infection rate β = 1: (a) the time to detection or extinction, (b) time to detection,
(c) frequency of detection. The area of the circles are proportional to the respective objective measure. This means that in panel (c) the most
important node is the largest, while in (a) and (b) it is the smallest. The three most important nodes of each panel are highlighted.

II. METHODS

A. Objective measures

1. Time to detection or extinction

Assume that the objective of society is to end outbreaks
as soon as possible. If an outbreak dies by itself, that is fine.
Otherwise, one would like to detect it so it could be mitigated
by interventions. In this scenario, a sensible objective measure
would be the time for a disease to either go extinct or be
detected by a sentinel: the time to detection or extinction tx [13].

2. Time to detection

Suppose that, in contrast to the situation above, the priority
is not to save society from the epidemics as soon as possible,
but just to detect outbreaks fast. This could be the case if one
would want to get a chance to isolate a pathogen, or start
producing a vaccine, as early as possible, maybe to prevent
future outbreaks of the same pathogen at the earliest possibility.
Then one would seek to minimize the time for the outbreak to
be detected conditioned on the fact that it is detected: the time
to detection td .

3. Frequency of detection

For the time to detection, it does not matter how likely it is
for an outbreak to reach a sentinel. If the objective is to detect as
many outbreaks as possible, the corresponding measure should
be the expected frequency of outbreaks to reach a node: the
frequency of detection fd .

Note that for this measure a large value means the node is
a good sentinel, whereas for tx and td a good sentinel has a
low value. This means that when we correlate the measures,
a similar ranking between tx and fd or td and fd yields a
negative correlation coefficient. Instead of considering the
inverse times, or similar, we keep this feature and urge the
reader to keep this in mind.

B. Reducing temporal networks to static networks

There are many possible ways to reduce our empirical
temporal networks to static networks. The simplest method
would be to just include a link between any pair of nodes

that has at least one contact during the course of the data set.
This would however make some of the networks so dense that
the static network structure of the node-pairs most actively in
contact would be obscured. For our purpose, we primarily want
our network to span many types of network structures that can
impact epidemics. Without any additional knowledge about
the epidemics, the best option is to threshold the weighted
graph where an edge (i, j ) means that i and j had more than θ

contacts in the data set. In this work, we assume that we do not
know what the per-contact transmission probability β is (this
would anyway depend on both the disease and precise details
of the interaction). Rather we scan through a very large range
of β values. Since we anyway to that, there is no need either
to base the choice of θ on some epidemiological argument,
or to rescale β after the thresholding. Note that the rescaled
β would be a non-linear function of the number of contacts
between i and j . (Assuming no recovery, for an isolated link
with ν contacts, the transmission probability is 1 − (1 − β )ν .)
For our purpose the only thing we need is that the rescaled β is
a monotonous function of β for the temporal network (which
is true). To follow a simple principle, we omit all links with a
weight less than the median weight θ .

C. Disease simulations

We simulate disease spreading by the SIR dynamics, the
canonical model for diseases that gives immunity upon recov-
ery [2,14]. For static networks, we use the standard Markovian
version of the SIR model [15]. That is, we assume that diseases
spread over links between susceptible and infectious nodes the
infinitesimal time interval dt with a probability β dt . Then,
an infectious node recovers after a time that is exponentially
distributed with average 1/ν. The parameters β and ν are
called infection rate and recovery rate, respectively. We can,
without loss of generality, put ν = 1/T (where T is the
duration of the sampling). For other ν values, the ranking
of the nodes would be the same (but the values of the tx
and td would be rescaled by a factor ν). We will scan an
exponentially increasing progression of 200 values of β, from
10−3 to 10. The code for the disease simulations can be
downloaded [16].
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For the temporal networks, we use a definition as close
as possible to the one above. We assume an exponentially
distributed duration of the infectious state with mean 1/ν.
We assume a contact between an infectious and susceptible
node results in a new infection with probability β. In the
case of temporal networks, one cannot reduce the problem
to one parameter. Like for static networks, we sample the
parameter values in exponential sequences in the intervals
0.01 � β � 1 and 0.01 � ν/T � 1 respectively. For temporal
networks, with our interpretation of a contact, β > 1 makes
no sense, which explains the upper limit. Furthermore, since
temporal networks usually are effectively sparser (in terms of
the number of possible infection events per time), the smallest
β values will give similar results, which is the reason for the
higher cutoff in this case.

For both temporal and static networks, we assume the
outbreak starts at one randomly chosen node. Analogously,
in the temporal case we assume the disease is introduced with
equal probability at any time throughout the sampling period.
For every data set and set of parameter values, we sample 107

runs of epidemic simulations.

D. Empirical networks

As motivated in the Introduction, we base our study on em-
pirical temporal networks. All networks that we study record
contacts between people and falls into two classes: human
proximity networks and communication networks. Proximity
networks are, of course, most relevant for epidemic studies,
but communication networks can serve as a reference (and it is
interesting to see how general results are over the two classes).
The data sets consist of anonymized lists of two identification
numbers in contact and the time since the beginning of the
contact.

Many of the proximity data sets we use come from the
Sociopatterns project [17]. These data sets were gathered by
people wearing radio-frequency identification (RFID) sensors
that detect proximity between 1 and 1.5 m. One such datasets
comes from a conference, Hypertext 2009, (Conference 1) [18],
another two from a primary school (Primary School) [19] and
five from a high school (High School) [20], a third from a
hospital (Hospital) [21], a fourth set of five data sets from an
art gallery (Gallery) [22], a fifth from a workplace (Office)
[23], and a sixth from members of five families in rural Kenya
[24]. The Gallery data sets consist of several days where we
use the first five.

In addition to data gathered by RFID sensors, we also use
data from the longer-range (around 10m) Bluetooth channel.
The Cambridge 1 [25] and 2 [26] datasets were measured by
the Bluetooth channel of sensors (iMotes) worn by people in
and around Cambridge, UK. St Andrews [27], Conference 2
[25], and Intel [25] are similar data sets tracing contacts at,
respectively, the University of St. Andrews, the conference
Infocom 2006, and the Intel research laboratory in Cambridge,
UK. The Reality [28] and Copenhagen Bluetooth [29] data sets
also come from Bluetooth data, but from smartphones carried
by university students. In the Romania data, the WiFi channel
of smartphones was used to log the proximity between univer-
sity students [30], whereas the WiFi dataset links students of a
Chinese university that are logged onto the same WiFi router.

For the Diary data set, a group of colleagues and their family
members were self-recording their contacts [31]. Our final
proximity data, the Prostitution network, comes from from
self-reported sexual contacts between female sex workers and
their male sex buyers [32]. This is a special form of proximity
network since contacts represent more than just proximity.

Among the data sets from electronic communication, Face-
book comes from the wall posts at the social media plat-
form Facebook [33]. College is based on communication at
a Facebook-like service [34]. Dating shows interactions at
an early Internet dating website [35]. Messages and Forum
are similar records of interaction at a film community [36].
Copenhagen Calls and Copenhagen SMS consist of phone
calls and text messages gathered in the same experiment as
Copenhagen Bluetooth [29]. Finally, we use four data sets of
e-mail communication. One, E-mail 1, recorded all e-mails to
and from a group of accounts [37]. The other three, E-mail
2 [38], 3 [39], and 4 [40] recorded e-mails within a set of
accounts.

We list basic statistics—sizes, sampling durations, etc.—of
all the data sets in Table I.

E. Static network descriptors

To gain further insight into the network structures promot-
ing the objective measures, we correlate the objective measures
with quantities describing the position of a node in the static
networks. Since many of our networks are fragmented into
components, we restrict ourselves to measures that are well
defined for disconnected networks. Otherwise, in our selection,
we strive to cover as many different aspects of node importance
as we can.

1. Degree

Degree is simply the number of neighbors of a node. It
usually presented as the simplest measure of centrality and
one of the most discussed structural predictors of importance
with respect to disease spreading [42]. (Centrality is a class
of measures of a node’s position in a network that try to
capture what a “central” node is; i.e., ultimately centrality is not
more well-defined than the vernacular word.) It is also a local
measure in the sense that a node is able to estimate its degree,
which could be practical when evaluating sentinel surveillance
in real networks.

2. Subgraph centrality

Subgraph centrality is based on the number of closed
walks a node is a member of. (A walk is a path that could be
overlapping itself.) The number of paths from node i to itself
is given by Aλ

ii , where A is the adjacency matrix and λ is the
length of the path. Reference [43] argues that the best way to
weigh paths of different lengths together is through the formula

CS (i) =
∑

λ

Aλ
ii

λ!
. (1)

3. Component size

As mentioned, several of the data sets are fragmented
(even though the largest connected component dominates
components of other sizes). In the limit of high transmission
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TABLE I. Basic statistics of the empirical temporal networks. N is the number of nodes, C is the number of contacts, T is the total sampling
time, �t is the time resolution of the data set, M is the number of links in the projected and thresholded static networks, and θ is the threshold.

Data set N C T �t M θ Ref.

Conference 1 113 20 818 2.50 d 20 s 1 321 2 [18]
Conference 2 198 327 333 2.95 d 20 s 775 75 [25]
Hospital 75 32 424 4.02 d 20 s 582 8 [21]
Reality 63 26 260 8.63 h 5 s 421 3 [28]
Office 92 9 827 11.4 d 20 s 389 3 [23]
Primary School 1 236 60 623 8.64 h 20 s 299 3 [19]
Primary School 2 238 65 150 8.58 h 20 s 257 3 [19]
Romania 42 1 748 401 62.8 d 1 m 128 61 [30]
High School 1 312 28 780 4.99 h 20 s 1 385 2 [20]
High School 2 310 47 338 8.99 h 20 s 1 601 2 [20]
High School 3 303 40 174 8.99 h 20 s 1 096 3 [20]
High School 4 295 37 279 8.99 h 20 s 1 363 2 [20]
High School 5 299 34 937 8.99 h 20 s 1 298 2 [20]
Gallery 1 200 5 943 7.80 h 20 s 398 2 [22]
Gallery 2 204 6 709 8.05 h 20 s 393 2 [22]
Gallery 3 186 5 691 7.39 h 20 s 362 2 [22]
Gallery 4 211 7 409 8.01 h 20 s 294 2 [22]
Gallery 5 215 7 634 5.61 h 20 s 967 1 [22]
Cambridge 1 186 3 853 714 6.07 d 20 s 180 1 312 [25]
Cambridge 2 2 536 2 064 114 3.89 d 1 s 5 996 42 [26]
Intel 112 2 448 720 4.15 d 20 s 107 1 326 [25]
Copenhagen Bluetooth 671 458 920 28.0 d 20 s 13 363 2 [29]
Kenya 52 2 070 2.54 d 1 h 43 26 [24]
Diary 49 2 143 4.28 yr 1 d 345 4 [31]
Prostitution 16 730 50 632 6.00 yr 1 d 39 044 1 [32]
St Andrews 25 408 996 74 d 1 s 139 379 [27]
WiFi 18 719 9 094 619 83.7 d 5 m 884 800 6 [41]
Facebook 45 813 855 542 4.28 yr 1 s 183 412 1 [33]
Messages 35 624 489 653 8.27 yr 1 s 94 768 2 [36]
Forum 7 084 1 429 573 8.61 yr 1 s 70 942 2 [36]
Dating 29 341 529 890 1.15 yr 1 s 74 561 2 [35]
Copenhagen Calls 483 10 545 28.0 d 1 s 271 6 [29]
Copenhagen SMS 533 30 380 21.6 d 1 s 320 12 [29]
E-mail 1 57 194 444 160 112 d 1 s 92 442 1 [37]
E-mail 2 3 188 309 125 81 d 1 s 16 220 3 [38]
E-mail 3 986 332 334 1.52 yr 1 s 9 474 3 [39]
E-mail 4 167 82 927 271 d 1 s 1 830 4 [40]
College 1 899 59 835 193 d 1 s 8 608 2 [34]

probabilities, all nodes in the component of the infection seed
will be infected. In such a case it would make sense to place
a sentinel in the largest component (where the disease most
likely starts).

4. Harmonic closeness

Closeness centrality builds on the assumption that a node
that has, on average, short distances to other nodes is central
[44]. Here, the distance d(i, j ) between nodes i and j is the
number of links in the shortest paths between the nodes. The
classical measure of closeness centrality of a node i is the
reciprocal average distance between i and all other nodes. In
a fragmented network, for all nodes, there will be some other
node that it does not have a path to, meaning that the closeness
centrality is ill defined. (Assigning the distance infinity to
disconnected pairs would give the closeness centrality zero
for all nodes.) A remedy for this is, instead of measuring

the reciprocal average of distances, measuring the average
reciprocal distance [45],

CC (i,G) = 1

N

∑

j �=i

1

d(i, j )
, (2)

where d−1(i, j ) = 0 if i and j are disconnected. We call this
the harmonic closeness by analogy to the harmonic mean.

5. Harmonic vitality

Vitality measures are a class of network descriptor that
capture the impact of deleting a node on the structure of the
entire network [46,47]. Specifically, we measure the harmonic
closeness vitality, or harmonic vitality, for short. This is the
change of the sum of reciprocal distances of the graph (thus,
by analogy to the harmonic closeness, well defined even for
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disconnected graphs):

CV (i,G) =
∑

j∈G CC (j,G)
∑

j∈G\{i} CC (j,G \ {i})
. (3)

Here the denominator concerns the graph G with the node i

deleted. If deleting i breaks many shortest paths, then CC (i)
decreases, and thus CV (i) increases. A node whose removal
disrupts many shortest paths would thus score high in harmonic
vitality.

6. Coreness

Our sixth structural descriptor is coreness. This measure
comes out of a procedure called k-core decomposition. First,
remove all nodes with degree k = 1. If this would create new
nodes with degree one, delete them too. Repeat this until there
are no nodes of degree 1. Then, repeat the above steps for
larger k values. The coreness of a node is the last level when
it is present in the network during this process [48].

F. Temporal network descriptors

1. Degree

Like for the static networks, in the temporal networks we
measure the degree of the nodes. To be precise, we define the
degree as the number of distinct other nodes a node in contact
with within the data set.

2. Strength

Strength is the total number of contacts a node has partic-
ipated in throughout the data set. Unlike degree, it takes the
number of encounters into account.

3. Up- and downstream component sizes

Temporal networks, in general, tend to be more discon-
nected than static networks. For node i to be connected to j

in a temporal networks there has to be a time-respecting path
from i to j , i.e., a sequence of contacts increasing in time
that (if time is projected out) is a path from i to j [7,8]. Thus
two interesting quantities—corresponding to the component
sizes of static networks—are the fraction of nodes reachable
from a node by time-respecting paths forward (downstream
component size) and backward in time (upstream component
size) [49].

4. Temporal statistics

If a node only exists in the very early stage of the data,
the sentinel will likely not be active by the time the outbreak
happens. If a node is active only at the end of the data set, it
would also be too late to discover an outbreak early. For these
reasons, we measure statistics of the times of the contacts of
a node. We measure the average time of all contacts a node
participates in; the first time of a contact (i.e., when the node
enters the data set); and the duration of the presence of a
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node in the data (the time between the first and last contact
it participates in).

G. Modified Kendall’s τ coefficient

We use a version of the Kendall τ coefficient [50] to
elucidate both the correlations between the three objective
measures, and between the objective measures and network
structural descriptors. In its basic form, the Kendall τ measures
the difference between the number of concordant (with a
positive slope between them) and discordant pairs relative to
all pairs. There are a few different versions that handle ties
in different ways. We count a pair of points whose error bars
overlap as a tie and calculate

τ = nc − nd

nc + nd + nt

, (4)

where nc is the number of concordant pairs, nd is the number
of discordant pairs, and nt is the number of ties.

III. RESULTS

A. Correlation between the objective measures

We start investigating the correlation between the three
objective measures throughout the parameter space of the SIR
model for all our data sets.

1. Static networks

We use the time to detection and extinction as our baseline
and compare the other two objective measures with that. In
Fig. 2, we plot the τ coefficient between tx and td and between
tx and fd . We find that for low enough values of β, the τ for
all objective measures coincide. For very low β the disease
just dies out immediately, so the measures are trivially equal:
all nodes would be as good sentinels in all three aspects. For
slightly larger β—for most data sets 0.01 < β < 0.1—both
τ (tx, td ) and τ (tx, fd ) are negative. This is a region where
outbreaks typically die out early. For a node to have low tx ,
it needs to be where outbreaks are likely to survive, at least for
a while. This translates to a large fd , while for td , it would be
beneficial to be as central as possible.
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If there are no extinction events at all, tx and td are the
same. For this reason, it is no surprise that, for most of the data
sets, τ (tx, td ) becomes strongly positively correlated for large
β values. The τ (tx, fd ) correlation is negative (of a similar
magnitude), meaning that for most data sets the different
methods would rank the possible sentinels in the same order.
For some of the data sets, however, the correlation never
becomes positive even for large β values (like Copenhagen
Calls and Copenhagen SMS). These networks are the most
fragmented onesm meaning that one sentinel unlikely would
detect the outbreak (since it probably happens in another
component). This makes tx rank the important nodes in a way
similar to fd , but since diseases that do reach a sentinel do it
faster in a small component than a large one, tx and td become
anticorrelated.

2. Temporal networks

In Fig. 3, we perform the same analysis as in the previous
section but for static networks. The picture is to some extent
similar, but also much richer. Just as for the case of static
networks, τ (tx, fd ) is always nonpositive, meaning the time
to detection or extinction ranks the nodes in a way positively
correlated with the frequency of detection. Furthermore, like
the static networks, τ (tx, td ) can be both positively and neg-
atively correlated. This means that there are regions where td
ranks the nodes in the opposite way than the tx . These regions
of negative τ (tx, td ) occur for low β and ν. For some data
sets—for example the Gallery data sets, Dating, Copenhagen
calls, and Copenhagen SMS—the correlations are negative
throughout the parameter space.

Among the data sets with a qualitative difference between
the static and temporal representations, we find Prostitution
and E-mail 1 both have strongly positive values of τ (tx, td ) for
large β values in the static networks but moderately negative
values for temporal networks.

B. Correlation between objective measures
and structural descriptors

In this section, we take a look at how network structures
affect our objective measures.

1. Static networks

In Fig. 4, we show the correlation between our three
objective measures and the structural descriptors as a function
of β for the Office data set. Panel (a) shows the results for the
time to detection or extinction. There is a negative correlation
between this measure and traditional centrality measures like
degree or subgraph centrality. This is because tx is a quantity
one wants to minimize to find the optimal sentinel, whereas
for all the structural descriptors a large value means that a
node is a candidate sentinel node. We see that degree and
subgraph centrality are the two quantities that best predict
the optimal sentinel location, while coreness is also close (at
around −0.65). This in line with research showing that certain
biological problems are better determined by degree than more
elaborate centrality measures [51]. Over all, the τ curves are
rather flat. This is partly explained by τ being a rank correlation
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FIG. 4. Correlations between the three objective measures and
various quantities describing the static network structure for the Office
data set. Panel (a) shows results for the time to detection or extinction,
(b) shows results for the time to detection, (c) shows results for the
frequency of detection.

coefficient:if the rankings do not change (even if the objective
measures do), then neither do the τ values.

For td [Fig. 4(b)], most curves change behavior around β =
0.2. This is the region when larger outbreaks could happen, so
one can understand there is a transition to a situation similar
to tx [Fig. 4(a)]. fd [Fig. 4(c)] shows a behavior similar to
td in that the curves start changing order, and what was a
correlation at low β becomes an anticorrelation at high β. This
anticorrelation is a special feature of this particular data set,
perhaps due to its pronounced community structure. Nodes
of degree 0, 1, and 2 have a strictly increasing values of fd ,
but for some of the high degree nodes (that all have fd close
to one) the ordering gets anticorrelated with degree which
makes Kendall’s τ negative. Since rank-based correlations are
more principled for skew-distributed quantities common in
networks, we keep them. We currently investigate what creates
these unintuitive anticorrelations among the high degree nodes
in this data set.

Next, we proceed with an analysis of all data sets. We
summarize plots like Fig. 4 by the structural descriptor with the
largest magnitude of the correlation |τ |. See Fig. 2. We can see,
that there is not one structural quantity that uniquely determines
the ranking of nodes, there is not even one that dominates over
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FIG. 5. The strongest correlation between the three objective measures and various measures of the position of nodes for the static networks.
Lighter shaded background are data sets of human proximity, the darker background figures indicate data of human communication. The β axis
is logarithmic.

the range of β that we investigate. Furthermore, there are some
striking patterns:
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FIG. 6. Transition graphs. The areas of the circles correspond to
the frequency of the structural measure in Fig. 5. The widths of the
lines are proportional to how many times one measure is succeeded
by another as β increases.

(1) Degree is the strongest structural determinant of all
objective measures at low β values. This is consistent with
Ref. [13].

(2) Component size only occurs for large β. In the limit of
large β, fd is only determined by component size (if we would
extend the analysis to even larger β, subgraph centrality would
have the strongest correlation for the frequency of detection).

(3) Harmonic vitality is relatively better as a structural
descriptor for td , less so for tx and fd . tx and fd capture the
ability of detecting an outbreak before it dies, so for these
quantities one can imagine more fundamental quantities like
degree and the component size are more important.

(4) Subgraph centrality often shows the strongest corre-
lation for intermediate values of β. This is interesting, but
difficult to explain since the rationale of subgraph centrality
builds on cycle counts and there is no direct process involving
cycles in the SIR model.

(5) Harmonic closeness rarely gives the strongest correla-
tion. If it does, it is usually succeeded by coreness and the data
set is typically rather large.

(6) Datasets from the same category can give different
results. Perhaps College and Facebook is the most conspicuous
example. In general, however, similar data sets give similar
results.

The final observation could be extended. We see that,
as β increases, one color tends to follow another. This is
summarized in Fig. 6, where we show transition graphs of the
different structural descriptors such that the size corresponds
to their frequency in Fig. 7, and the size of the arrows show
how often one structural descriptor is succeeded by another
as β is increased. For tx , the degree and subgraph centrality
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FIG. 7. For every β value, this figure shows the strongest correlation between the three objective measures and various measures of network
position for the temporal networks. For each data set, the upper panel shows the results for tx , the middle panel td , and the lower panel fd . The
lighter background shows data sets of human proximity while the darker background is based on human communication data. The axes are
logarithmic.

are the most important structural descriptors, and the former
is usually succeeded by the latter. For td , there is a common
peculiar sequence of degree, subgraph centrality, coreness
component size, and harmonic vitality that is manifested as the
peripheral, clockwise path of Fig. 6(b). Finally, fd is similar to
tx except that there is a rather common transition from degree to
coreness, and harmonic vitality is, relatively speaking, a more
important descriptor.

2. Temporal networks

In Fig. 7, we show the figure for temporal networks
corresponding to Fig. 5. Just like the static case, even though
every data set and objective measure is unique, we can make
some interesting observations.

(1) Strength is most important for small ν and β. This is
analogous to degree dominating the static network at small
parameter values.

(2) Upstream component size dominates at large ν and β.
This is analogous to the component size of static networks.
Since temporal networks tend to be more fragmented than static

ones [49], this dominance at large outbreak sizes should be even
more pronounced for temporal networks.

(3) Most of the variation happens in the direction of larger ν

and β. In this direction, strength is succeeded by degree which
is succeeded by upstream component size.

(4) Like the static case, and the analysis of Figs. 5 and 7,
tx and fd are qualitatively similar compared to td .

(5) Temporal quantities, such as the average and first times
of a node’s contacts, are commonly the strongest predictors
of td .

(6) When a temporal quantity is the strongest predictor of
tx and fd it is usually the duration. It is understandable that this
has little influence on td , since the ability to be infected at all
matters for these measures; a long duration is beneficial since
it covers many starting times of the outbreak.

(7) Similar to the static case, most categories of data sets
give consistent results, but some differ greatly (Facebook and
College is yet again a good example).

The bigger picture these observations paint is that, for
our problem, the temporal and static networks behave rather
similarly, meaning that the structures in time do not matter so
much for our objective measures. At the same time, there is
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not only one dominant measure for all the data sets. Rather are
there several structural descriptors that correlate most strongly
with the objective measures depending on ν and β.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have investigated three different objective
measures for optimizing sentinel surveillance: the time to
detection or extinction, the time to detection (given that the
detection happens), and the frequency of detection. Each of
these measures corresponds to a public health scenario: the
time to detection or extinction is most interesting to minimize
if one wants to halt the outbreak as quickly as possible, and
the frequency of detection is most interesting if one wants to
monitor the epidemic status as accurately as possible. The time
to detection is interesting if one wants to detect the outbreak
early (or else it is not important), which could be the case if
manufacturing new vaccine is relatively time consuming. We
investigate these cases for 38 temporal network data sets and
static networks derived from the temporal networks.

Our most important finding is that, for some regions of
parameter space, our three objective measures can rank nodes
very differently. This comes from the fact that SIR outbreaks
have a large chance of dying out in the very early phase [52],
but once they get going they follow a deterministic path. For
this reason, it is thus important to be aware of what scenario
one is investigating when addressing the sentinel surveillance
problem.

Another conclusion is that, for this problem, static and
temporal networks behave reasonably similarly (meaning that

the temporal effects do not matter so much). Naturally, some of
the temporal networks respond differently than the static ones,
but compared to, e.g., the outbreak sizes or time to extinction
[53–55], differences are small.

Among the structural descriptors of network position, there
is no particular one that dominates throughout the parameter
space. Rather, local quantities like degree or strength (for
the temporal networks) have a higher predictive power at
low parameter values (small outbreaks). For larger parameter
values, descriptors capturing the number of nodes reachable
from a specific node correlate most with the objective measures
rankings. Also in this sense, the static network quantities
dominate the temporal ones, which is in contrast to previous
observations (e.g., Refs. [53–55]).

For the future, we anticipate work on the problem of
optimizing sentinel surveillance. An obvious continuation of
this work would be to establish the differences between the
objective metrics in static network models. To do the same in
temporal networks would also be interesting, although more
challenging given the large number of imaginable structures.
Yet an open problem is how to distribute sentinels if there
are more than one. It is known that they should be relatively
far away [13], but more precisely where should they be
located?
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