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ABSTRACT Draft genomes of five Campylobacter isolates recovered from New Zea-
land brushtail possums are described. Genome sizes ranged from 1.591 Mbp to 1.594
Mbp, with G�C contents of 29.9% to 29.95%. Comparison to Australian Campylobac-
ter 16S rRNA gene sequences suggests that the species may be common to pos-
sums.

In the 1850s (1), the Australian brushtail possum (Trichosurus vulpecula; Maori, paihamu)
was first introduced to New Zealand, where it rapidly became a significant invasive

pest (1). Although Campylobacter spp. have been described in the Australian brushtail
possum population (2, 3), they have not previously been isolated from the New Zealand
population (4, 5). We hypothesized that brushtail possums play a role in the epidemi-
ology of Campylobacter spp. in New Zealand, contributing to the contamination of
waterways and other environments (6).

Swabs from the cecum, intestine, or feces were taken from road-killed possums
or possums killed as routine pest control in an urban or perirural setting (Palmer-
ston North, New Zealand). Swabs were cultured on cefoperazone amphotericin teico-
planin (CAT) agar (Fort Richard Laboratories, Auckland, New Zealand) in an H2-
enriched microaerobic atmosphere at 37°C, and colonies typical of Campylobacter spp.
were seen after 3 days. Single colonies were subcultured on Columbia horse blood agar
(Fort Richard Laboratories) and grown under the same conditions for genomic DNA
preparation. Genomic DNA was extracted using a QIAamp DNA minikit (Qiagen, Hilden,
Germany). DNA was checked for quality using Qubit assay kits (Life Technologies,
Oregon, USA) and for fragmentation using gel electrophoresis. Genomic DNA was
sequenced at New Zealand Genomics, Ltd. (Massey University, Palmerston North, New
Zealand), using either an Illumina MiSeq or Illumina HiSeq 2500 instrument (Scoresby,
Victoria, Australia) according to the manufacturer’s instructions with paired-read
lengths of 250 and 150 bp, respectively. Sequence data were trimmed using Trimmo-
matic v.0.3.8 (7) (trim parameters, 1:30:11 LEADING:10 TRAILING:10 MINLEN:30), assembled
using SKESA v.2.2.1 (8) using the default settings, and further processed and annotated
online by the NCBI Prokaryotic Genome Annotation Pipeline (9). Relevant sequencing,
assembly, and genome statistics are described in Table 1.

Genomes ranged in size from 1,591,228 bp to 1,594,282 bp with between 1,659 and
1,671 predicted coding sequences. The G�C contents were between 29.9% and
29.95%. All genomes had single copies of 5S, 16S, and 23S rRNA gene sequences
and 33 identifiable tRNAs. The 16S rRNA sequences from all isolates were identical and
showed the closest BLAST similarity to Campylobacter isolate BTP1Tcr (GenBank
accession number AY554142), with a pairwise sequence identity of 99.6% over
1,427 bp. This sequence was obtained from a study of Australian brushtail possums (2),
which identified both Helicobacter and Campylobacter carriage. This species of Campy-
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lobacter possibly forms an association with the gastrointestinal tract of possums. Compar-
ison with representative 16S rRNA sequences from all other Campylobacter species showed
that the closest similarity was to Campylobacter helveticus (98.7% identity, NCBI assembly
accession numbers GCF_002080395 and GCF_900176295), with similar observed levels of
identity with Campylobacter upsaliensis (98% to 98.4% identity, GCA_000167395,
GCA_000185345, and GCA_000620965) and Campylobacter avium (98.2% identity,
GCA_002238335 and GCA_002245935).

Data availability. Campylobacter genomes from this article are submitted un-

der BioProject accession number PRJNA552733 and BioSample accession num-
bers SAMN12216776 through SAMN12216780, with GenBank accession numbers
VJNR00000000, VJNS00000000, VJNT00000000, VJNU00000000, and VJNV00000000,
corresponding to SRA accession numbers SRR9678926, SRR9678927, SRR9678928,
SRR9678929, and SRR9678925, respectively.
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TABLE 1 Campylobacter sp. genome statistics

Strain
Length
(bp)

No. of
contigs

N50

(bp)
Coverage
(�)

No. of
CDSsa

G�C
content
(%)

NCBI assembly
accession no.

GenBank
accession no.

SRA
accession no.

Sequence
type

Raw
sequences
(Mbp)

LR185c 1,591,228 55 64,039 101 1,659 29.95 GCA_008633905 VJNR00000000 SRR9678926 MiSeq 2 � 250 bp 160.4
LR196d 1,592,443 41 117,332 463 1,665 29.91 GCA_008633865 VJNS00000000 SRR9678927 HiSeq 2 � 150 bp 736.9
LR264d 1,593,663 40 129,728 381 1,671 29.9 GCA_008633895 VJNT00000000 SRR9678928 HiSeq 2 � 150 bp 606.6
LR286c 1,592,793 47 78,517 414 1,671 29.92 GCA_008633875 VJNU00000000 SRR9678929 HiSeq 2 � 150 bp 659.2
LR291e 1,594,282 39 129,696 455 1,668 29.92 GCA_008633915 VJNV00000000 SRR9678925 HiSeq 2 � 150 bp 725.7
a CDSs, coding DNA sequences.
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