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Abstract. Alzheimer’s disease (AD) is a progressive and fatal neurodegenerative disease, with no effective treatment or
cure. A gold standard therapy would be treatment to slow or halt disease progression; however, knowledge of causation
in the early stages of AD is very limited. In order to determine effective endpoints for possible therapies, a number of
quantitative surrogate markers of disease progression have been suggested, including biochemical and imaging biomarkers.
The dynamics of these various surrogate markers over time, particularly in relation to disease development, are, however,
not well characterized. We reviewed the literature for studies that measured cerebrospinal fluid or plasma amyloid-� and
tau, or took magnetic resonance image or fluorodeoxyglucose/Pittsburgh compound B-positron electron tomography scans,
in longitudinal cohort studies. We summarized the properties of the major cohort studies in various countries, commonly
used diagnosis methods and study designs. We have concluded that additional studies with repeat measures over time in a
representative population cohort are needed to address the gap in knowledge of AD progression. Based on our analysis, we
suggest directions in which research could move in order to advance our understanding of this complex disease, including
repeat biomarker measurements, standardization and increased sample sizes.
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INTRODUCTION

Alzheimer’s disease (AD) is characterized by pro-
gressive cognitive decline leading to dementia. It
has been estimated that over 35.6 million people
have dementia worldwide [1]. Continued high preva-
lence of AD [1] makes it a major public health
issue, due to the high financial and emotional cost.
AD is thought to be caused by neuronal death and
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brain atrophy [2]; this is often present alongside
the accumulation of both tau tangles and amyloid–�
(A�) plaques in the brain. Much debate has occurred
about the order of events leading to neuronal death
[3]; nevertheless, it is observed that both neurofib-
rillary tau tangles and A� plaques are present in
the brains of AD patients postmortem [4]. There-
fore, they have been widely employed as diagnostic
markers of the disease and, concomitantly, possible
quantitative measures of progression. Biomarkers,
such as A� and tau monomers and oligomers,
can be measured in the blood and cerebrospinal
fluid (CSF).
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Traditionally, measures of cognition have been
used as clinical trial endpoints to assess treatments for
AD [5, 6]. Current measures of cognitive decline have
shown various degrees of sensitivity and specificity
[7–9]. It has, however, been suggested that there is a
neuropathological threshold beyond which any treat-
ment will fail to affect cognition given the profound
amount of brain atrophy developed [10]. Therefore,
much research effort has been invested in preventa-
tive treatment, i.e. to stop neurodegeneration before
it becomes too severe. Given that such a treatment
will have to be administered prior to any signs of
cognitive dysfunction in order for it to be effective,
alternative clinical endpoints need to be established.
The European Medicine Agency (EMA) and US
Food and Drug Administration (FDA) have stated
that the rate of disease progression could be linked
to a biomarker indicative of underlying pathology
[6, 11].

Biomarkers were added to the National Institute
of Neurological and Communicative Disorders and
Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA) (NINCDS-
ADRDA) diagnostic criteria in 2011 [12]. Therefore,
a variety of quantitative, AD-specific measures have
been characterized that it is hoped can aid in diagnos-
ing the disease. In addition to their use as endpoints,
it has also been suggested that clinical trial popula-
tions can be enriched by including those individuals
exhibiting a biomarker profile indicative of future
conversion. Defining this preclinical stage itself is
a topic of debate in the field [13]. Despite their
use in diagnostics and potential use in clinical trial
enrichment, knowledge about the dynamics of these
biomarkers over time is limited. An understanding
of exactly when these become meaningful prognostic
markers is imperative in order for them to be clinically
useful.

Many biological markers of AD pathology have
been characterized to date. AD patients have sig-
nificantly lower A�42 and higher t-tau and p-tau in
the CSF compared to controls [14]. Total A� bur-
den can also be assessed in the brain via Pittsburgh
compound B (PiB)-positron electron tomography
(PET) scanning [15]. In addition, marked brain atro-
phy in AD and all-cause dementia cases can be
observed with magnetic resonance imaging (MRI)
scanning [16, 17]. Decreased glucose metabolism
as assessed by fluorodeoxyglucose (FDG)-PET is
also a hallmark of the disease [18]. Various studies
have described the differences in these biomarkers
between cognitively normal and AD patients. A pre-

vious systematic review and meta-analysis by Olsson
et al. [14] assessed the utility of CSF and blood based
markers in distinguishing between those with AD
and controls, in addition to mild cognitive impair-
ment (MCI) due to AD and stable MCI. An earlier
systematic review by McGhee et al. [19] used an
expanded set of criteria to identify biomarkers of
interest, including any biomarker that could be used to
describe the progression of AD. The work presented
in this paper focuses on the longitudinal use of clas-
sical A� and tau markers, as well as MRI and PET, in
cohort studies. In order to make the selected studies
comparable to other investigations, those which have
taken cognitive functional measures have also been
highlighted.

METHODS

Search terms

In order to ensure that studies relevant to our
analysis were identified, we conducted a review of
the literature. We searched the US National Library
of Medicine National Institutes of Health in 2015
for articles published in English between January
1995 and August 2015. The search terms are listed
below:

A) Alzheimer disease[MeSH Terms] AND amy-
loid[MeSH Terms] AND (cohort study[MeSH
Terms] OR cross-sectional study[MeSH Terms]
OR longitudinal study[MeSH Terms]) (Search
yielded 585 results).

B) Alzheimer disease[MeSH Terms] AND tau[All
Fields] AND (cohort study[MeSH Terms] OR
cross-sectional study[MeSH Terms] OR longi-
tudinal study[MeSH Terms]) (Search yielded
443 results).

C) Alzheimer disease[MeSH Terms] AND
(cohort study[MeSH Terms]) OR cross sec-
tional study[MeSH Terms]) OR longitudinal
study[MeSH Terms]) AND (positron emission
tomography[MeSH Terms]) OR mri scan
[MeSH Terms]) (Search yielded 854 results).

MeSH indexing is a system which places pub-
lications under categories of relevance; therefore,
publications selected will be based on how they have
been indexed. Cognitive testing was not used as a
search term for this review, although methods used in
the identified studies are discussed.
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Inclusion criteria

We included studies which measured brain atrophy
with MRI, amyloid levels with PiB-PET, tau levels as
assessed by tau PET, CSF tau (phosphorylated tau or
total tau), CSF A� (1–40, 1–42, or other variants),
blood/plasma tau (phosphorylated tau, total tau, or
antibodies to tau), blood A� (1–40, 1–42, or other
variants or antibodies to amyloid-�), or autopsy data
with tau or A� brain staining. Within this paper, we
define “biomarker” as any of these measures, i.e.,
as a measure of biological state independent from
clinical or cognitive measures. We included studies
which measured 50 or more people at a minimum of
2 distinct points in time (longitudinal study).

Exclusion criteria

We excluded reviews and intervention studies
(unless the placebo group fits the inclusion criteria).
We excluded papers that were not written in English.

Analysis

Studies were identified through reading the meth-
ods section of the paper. Analysis featured in this
paper was performed on longitudinal studies (cross-
sectional studies were omitted from analysis). In
certain instances, the study populations were not
precisely identified in the paper, in which case the
papers were excluded from the analysis (see Fig. 1).
Further information about the study, for example,
location, sample size, cognitive testing method, diag-
nosis method, was obtained from reading the methods
section of the paper. When more than one paper
was published per study, a selection of papers was
used for data extraction, including the first published
and most recently published papers. For very large
studies with more than 10 papers, relevant web-
sites were consulted for information. In this analysis,
we defined “number of participants” as the num-
ber of participants who had completed at least two
biomarker assessments. We categorized the studies
into groups, based on the way participants were
selected or recruited. These can be summarized as: i)
those which randomly recruited from memory clinic
admissions; ii) those who selected healthy partici-
pants but with an unrepresentative bias toward family
history; iii) those which followed patients who had
existing white matter changes; iv) those who recruited
from an existing population cohort; and v) those who
recruited groups of participants based on diagnostic

Fig. 1. Study Selection.

status. We collated the age and age distribution from
the studies, noting the mean age and standard devi-
ation within the overall study population, as well as
for each diagnostic group (cognitively normal, mild
cognitively impaired, and AD individuals). If these
values were not presented for the overall population,
but rather for the distinct diagnostic groups, the mean
age reflects the weighted average from the individuals
within the diagnostic groups present in the study.

RESULTS

We identified 1,415 records after searching
PubMed; of these, 233 met our inclusion criteria
(Fig. 1). Given that any one individual study may
have been considered in more than one publication,
we attempted to identify those studies. In this case,
we identified 70 longitudinal studies from the 233
publications. A total of 22 articles were omitted from
analysis as the study name was not clearly identi-
fiable. We therefore conducted the present analysis
on the remaining 48 identified longitudinal studies as
listed in Table 1.

Study location

Out of the 48 longitudinal studies identified, the
majority took place in North America or Europe
(Fig. 2). Nineteen studies took place in the USA, many
being multi-site studies as, for example, the ADNI
study (see insert, Fig. 2b). Only 4 studies were con-
ducted outside of North America/Europe, and these
took place in Japan, Taiwan, and South Korea. Seven
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Fig. 2. Study locations. Proportion of studies in each country.
Countries in multinational studies included: France, Germany,
Switzerland, and the United Kingdom. One article did not specify
in which countries the study took place. One article specified multi-
national European study sites, 2 articles specified North American,
and 1 study featured USA, Australia, Europe, and Argentina.

studies took place in more than one country, and these
were not always specified. Figure 3 shows the coun-
tries which were identified in the studies.

Sample size

Another important feature of the identified studies
was the size of the sample that had undergone repeat
assessments. While there were a number of large stud-
ies, over a third (35.4%) had less than 100 participants
(studies with under 50 participants were excluded, see
methods). Five studies had over 500 participants and
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Fig. 4. Sample size. The number of studies with sample size in the
displayed range.

of these only 2 had more than 1,000. Results are sum-
marized in Fig. 4. This trend for low numbers in AD
studies is most likely due to the cost involved in a
number of the procedures being employed, such as
MRI scanning [20].

Recruitment and selection

Given the small sample sizes within the identi-
fied studies, the recruitment and selection criteria
employed were assessed. We categorized the studies
into groups, based on the way recruited partici-
pants were selected, as summarized in the methods.
The results are outlined in Table 2. The major-
ity (68.45%) of the studies identified (33/48) had
selectively recruited patients based on their diagno-
sis status. Seven studies recruited from an existing
population cohort, and although this was seemingly

Fig. 3. Study locations. A) Global distribution of studies identified in our systematic review. B) ADNI locations within the United States of
America and Canada. C) Enlarged map of European studies.
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Table 2
Recruitment and selection. The number of studies which

used each recruitment method

Type of recruitment Number of
studies

Consecutive memory clinic patients 5
Healthy but with bias toward family history of AD 2
Individuals with white matter changes 1
Subset of population cohort 7
Included based on disease status 33
Total 48

representative of the original cohort, often the sample
sizes were small – 5 out of 7 having a sample of under
300 individuals. The remaining methods of study cat-
egorization are summarized in Table 2. They refer to
different features of the population or address spe-
cific scientific questions. In general, there were few
studies following a representative population cohort.
This is likely due to the costs, length of time, and
logistics involved in such studies.

Diagnosis methods used

Given that a large proportion of studies recruited
participants based on the diagnosis of the participant,
we considered which diagnosis criteria were com-
monly used. There was a good degree of consensus
on this, with 37/48 studies using either the original or
revised NINCDS-ADRDA diagnostic criteria for AD
or probable AD [12]. Other criteria utilized included
use of the Clinical Dementia Rating, for example
using cut-points in the rating scale; this was done
in 8 out of the 48 studies. The Diagnostic and Sta-
tistical Manual of Mental Disorders IV and III were
referenced in 14/48 studies. A number of studies used
different diagnosis methods, such as use of cut-points
in cognitive scales and undefined “consensus diagno-
sis procedure”.

The diagnosis of MCI was described in 12 stud-
ies, and the Peterson criteria [21] were cited in
5 instances. In other cases, tailored criteria were
described. Various methods for describing a cog-
nitively healthy cohort were used, often featuring
cognitive scores in the healthy or normal range. Over-
all, there was good concordance in the diagnosis
techniques employed in the identified study popu-
lations.

Neuropsychological testing

Neuropsychological and cognitive testing can have
numerous limitations in the context of clinical trial

endpoints, including insensitivity at early stages [22].
Many tests are designed specifically to diagnose or
assess dementia and are not specific to AD. Addi-
tionally, the wide variety of tests available are not
always comparable, for example, they measure dif-
fering aspects of cognition or function. From the 48
studies identified, over 90 different tests were refer-
enced. These tests were done in various combinations
in the different studies. There appeared to be no
pattern in the selection of the tests, other than the
grouping into domains such as memory, executive
function or attention.

The Mini-Mental State Examination (MMSE) was
the most commonly used test out of all the identified
studies (64.6%). This is not surprising, given its ease
and speed of administration. It was designed to dif-
ferentiate dementia from other psychiatric illnesses.
It has demonstrated specificity in diagnosing demen-
tia, but is not sensitive enough to diagnose AD [23].
The Alzheimer’s Disease Assessment Scale (ADAS)
is a battery of tests which are used to assess cogni-
tive and non-cognitive dysfunctions in people with
AD [5]. The cognitive arm (ADAS-Cog) is made up
of 11 tasks, which assess memory, language, praxis,
attention among other cognitive abilities. Despite
its common use in clinical trials of treatments for
symptomatic patients, only 9 out of the 48 studies
referred to using the ADAS-cog assessment. Other
articles referred to a “comprehensive battery” or did
not describe the tests in detail in the methods sec-
tions of the publications. Surprisingly, 3 out of the
48 studies do not reference use of cognitive tests.
We were unable to discern if this was because they
were not performed or if they were omitted from the
publication.

Biomarkers measured

Of primary importance in this review were the
different biomarkers which were measured in the
studies. CSF and blood biomarker studies have been
comprehensively reviewed recently by Olsson et al.
[14]; however, these did not discriminate those which
had performed repeat measures. It is somewhat sur-
prising, that in total, only 48 named studies had
performed repeat biomarker measurements. Monitor-
ing the levels of these markers is highly desirable
within clinical trial design, improving diagnosis and
developing prognostic tools among other things.
Even within the 48 studies, a majority of them (28/48)
(Fig. 5) had only used MRI scans of whole brain or
hippocampal atrophy, which is not a measure specific
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Fig. 5. Biomarkers measured. Number of studies measuring each
biomarker. The table presents the number of studies that measured
a combination of biomarkers.

to AD. For instance, reduced hippocampal volume
has been found in multiple conditions, including
Parkinson’s disease, Huntington’s disease, and fol-
lowing traumatic brain injury [24, 25]. This may also
be a result of the fact that many studies were interested
in forms of dementia other than AD. Reduced glucose
metabolism as assessed by FDG-PET has been shown
to discriminate between regional differences in AD
and normal subjects [26]. It has been shown to iden-
tify AD in 88% of cases, with a sensitivity of 94%
and a specificity of 73% [27]. Despite this, only 3 of
our selected studies (ADNI [28–110], DIAN [111]
and the MCSA [109, 112–115]) made use of FDG-
PET. CSF was assayed in only 9 studies. In other
cases, reference to blood testing was made without
always describing the full range of biomarkers that
were analyzed. Our results are summarized in Fig. 5.

Number of time points measured
and follow-up time

During our search, we observed that many studies
had compared biomarker level at one point in time
for diagnostic use only. However, these studies do
not document the changes that occur over time. We
assessed the number of repeat measures which had
been taken from an individual (Fig. 6). Out of the 48

identified studies, 28 (58.33%) had performed mea-
surements at just 2 separate times. There was often a
lack of clarity in the literature, with a different num-
ber of repeats taken in different patients. This was due
to various reasons, for example, death, drop out, and
illness. Three studies (ADNI [28–110], BLSA [103,
105, 116–118] and MIRIAD [119, 120]) took more
than 6 repeat measures. These were, however, limited
to MRI measures of brain volume and atrophy, which
are not specific measures of AD.

Another important feature of the follow-up mea-
sure is the amount of time between measurements.
The average time between the initial and last measure
taken in the studies is presented in Fig. 6. 26 out of
the 48 studies took all measures in less than 2.5 years,
representing a fairly short follow-up for a disease with
such protracted development, often lasting decades.
Only 10 studies return to patients at 5 years or more
following the first measure. The longest described
follow-up was 17 years in the BIOCARD study
[121, 122]. We also found a lack of clarity surround-
ing repeat measures in the literature, with the precise
timing of the protocols not being clearly described,
with only average intervals for entire groups being
presented. In most of the cases, the follow-up was
not uniform between participants. It should be noted,
however, that some studies were not complete at the
time of writing, so the number of, and length of,
follow-up measures may increase over time.

Average age of participants

It has been postulated that the preclinical phase of
AD can begin as early as 40 years old or younger [13,
123]; however, profiles of AD biomarkers in young
individuals have not been characterized frequently.
The average age of the participants in the studies we
identified is 71 years, with a median age of 73 years
(Fig. 7). One study identified included two birth-year
cohorts performed in Uppsala, Sweden, where men
were recruited for a 70-year-old cohort and 77-year-
old cohort [124]. Although 19 out of the 48 studies
(39.6%) recruited participants who were 60 years
old or younger, it was very rare for any participants
to be under 50 years old. One of the only studies
to assess young individuals was the DIAN Study,
which specifically recruits young healthy individu-
als, from families with a history of AD, to assess the
progression of Early Onset AD (EOAD). Benzinger
et al. [111] presented findings for participants with
an average age of 39.3 (SD 9.46) and 38.8 (SD 10.4).
The other study which clearly utilized under 50s was
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Fig. 6. Length of follow-up and number of repeat measures. A) Number of studies with average follow-up in each interval. B) Number of
studies with repeat measures.

the Wisconsin Registry for Alzheimer’s Prevention.
Okonkwo et al. [125] also aim to study younger indi-
viduals from families with a history of AD.

DISCUSSION

Our aim was to review the literature to identify
cohort studies which incorporated longitudinal mea-
surements of AD biomarkers and MRI imaging. The
work presented builds upon the previous systematic
reviews performed by Olsson et al. [14] and McGhee
et al. [19], and focuses on well-established AD
biomarkers (A�, tau, and PET markers) in cohorts
comprised of at least 50 subjects. It has been 6
years since Jack et al. first proposed the hypothetical
temporal model of AD progression [126]. Under-
standing the dynamics of these measures is of obvious

importance for planning clinical trials of possible
therapies in preclinical patients. This will also facili-
tate the development of mathematical models for the
prediction of AD development and progression. How-
ever, finding data to support such models has proven
difficult. We have observed that there is a lack of
studies which measure AD biomarkers in a represen-
tative population cohort over long periods of time.
This work adds to the recently published review by
McGhee and colleagues [20], with a focus on charac-
terizing the age and geographical location of patients
with repeat measurements over time. In general, our
findings agree with those of McGhee et al., in that
there is not sufficient research to support the adoption
of any pathological biomarker, a system for selecting
biomarkers, such as that proposed by McGhee et al.,
should therefore be adopted in the future.
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Fig. 7. Age of participants. Histogram outlining the dispersion of mean age of each study population identified by the systematic review.
The yellow line corresponds to the overall mean age, taken as the average of each study population, and the red line to the median age of
study participants across the systematic review.

Although there appears to be a bias in the location
of AD studies toward Europe and North America,
these areas are those shown to be most affected by the
increasing prevalence of dementia [127]. It is there-
fore not surprising that these are the most studied
regions. However, while the incidence of AD seems
to be stable or perhaps slightly declining in developed
countries (possibly due to improved cardiovascular
health) [128], the incidence of dementia in develop-
ing countries is predicted to increase [1]. More studies
in these countries are therefore desirable. The small
sample sizes of the cohorts followed was striking,
with over a third following just 50–100 patients. This
is most likely due to the large costs of biomarker mea-
surement. In the cost analysis presented by Silverman

et al., which is estimated from Medicare values, an
FDG-PET scan was listed as $1,661, an MRI as up
to $1,294.17, and neuropsychological testing as just
$84.33 [20]. It is clear that cheaper alternatives to
these imaging scans are desperately needed. Indeed,
efforts are now focused on the development of blood
based biomarkers [129]. If this is achieved, they will
enable much larger populations to be screened for
preclinical markers.

We found a paucity of representative population
cohorts that measure biomarkers over time. This
implies that there are limitations to what can be con-
cluded from the identified studies on the temporal
dynamics of biomarkers. Such information is highly
desirable in any assessment of possible therapies. The
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most common method of recruitment for these studies
is to select participants based on their diagnosis. This
has led to a bias towards studying AD in patients who
are either mildly cognitively impaired or those who
have progressed to the disease state. There is therefore
a lack of knowledge of the entire disease spectrum by
age within the general population. Meaning that the
process which causes AD may well be a part of aging
rather than a pathogenic process. A number of the
selected studies did not recruit an ethnically represen-
tative sample. For example, in the ADNI study, over
90% of participants had White Caucasian ancestry in
comparison to the US population, where 63% have
this ethnicity. In particular, Blacks, Asians, and His-
panics were underrepresented in this sample. Studies
tended to exclude participants with health conditions
other than AD. Given that AD is thought to be a dis-
ease of mixed pathology, and occurs concomitantly
with other diseases of old age, it can be argued that
studies of comorbid individuals are of real value. At
present, they are scarce in the literature. It would be of
further interest to compare the profile of early against
late onset AD, with age as a central stratification in
assessing the dynamics of change in biomarkers over
time.

Braak et al. demonstrated that tau tangles and A�
plaques can be identified in the brains of individuals
from as young as age 20 and 40, respectively [123].
It is therefore of importance to connect this pathol-
ogy with CSF, blood, and brain imaging markers.
One important current challenge facing the develop-
ment of preclinical preventative treatments for AD
is assessing efficacy in a clinically healthy pre-onset
population. This makes the dynamics of change in
biomarker measures in younger populations of great
importance. We found that the average age stud-
ied was 70–75 years old, with individuals under
50 rarely included in the studies identified. A rela-
tively small number of existing studies have measured
these biomarkers in young populations. Patenico et
al. assessed a group of 21–63-year-olds for CSF
biomarkers (A�, p-tau, and t-tau) and demonstrated
that they were significantly different from older age
groups [130]. Blomberg et al. assayed participants
as young as 45 and found a positive correlation
between CSF tau levels and age [131]. This was also
demonstrated by Sjogren et al., who additionally set
reference values for CSF tau in the age clusters 21–50,
51–70, and 71–93 years. They demonstrated different
profiles in these age groups [132]. In order to build
on these findings, larger populations of young cohorts
should ideally be studied.

It was clear that the NINCDS-ARDRA criteria
have been well adopted in published studies as these
were widely used for diagnosis. This consensus in
measurement techniques is important in drawing epi-
demiological comparisons between studies. Studies
on variability in different clinician’s diagnosis (the
recording of measurement error due to the person
making the diagnosis) for the same patient at one
point in time is of obvious importance. This has been
done for the NINCDS-ARDA criteria; Lopez et al.
found “fair” to “substantial” agreement between clin-
icians when they diagnosed 40 patients with blinded
notes [133]. More recently, Khan et al. surveyed
2,618 patients and found high intra-class correlation
for ADAS-Cog [134]. Repeated diagnosis by differ-
ent clinicians at one point in time would also aid in
our understanding of variance. Computerized tests
would also help in reducing variance due to human
subjectivity. A good understanding of variance in
measurement (both biomarkers, cognitive tests and
brain scans) is critical in evaluating useful clinical
trial endpoints.

Progression of AD is frequently quantified by cog-
nitive measures. As such they have been frequently
used as an endpoint in published clinical trials [6].
However, we found that there is no consensus on
which tests are most useful in monitoring disease
progression, as a large variety of different tests were
used in the identified studies (over 90). Tests were
used in different combinations, making it difficult
to compare results from the different studies. Fur-
thermore, overall composite scores were calculated
in different ways. The most commonly used test
identified was the MMSE; however, this test has lim-
ited diagnostic accuracy [135] in addition to being
an unreliable predictor of conversion to a disease
state [136]. The ADAS-Cog also has a number of
limitations including a non-linear relationship with
disease progression and ceiling effects [137, 138].
Improvements in the sensitivity and specificity of
these measures are therefore needed. At present, there
is a lack of standardized cognitive measures in the
field. Standardized cognitive measures, as well as a
comprehensive understanding of the variance associ-
ated with them, is also critical to their use as clinical
trial endpoints.

We found that MRI was performed far more fre-
quently than any other biomarker measures. The main
caveat associated with it, is that it is not a specific
measure for AD, meaning that any abnormalities
detected could signal other disease types [24, 25].
Amyloid-PET and FDG-PET scans are more specific
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to AD [26, 27], but were infrequently used in compar-
ison to other measures. This is likely due to the more
involved procedure as well as the need for expen-
sive equipment. While CSF and blood were taken in
a number of studies, different biomarkers were often
measured with different assays, again leading to a
lack of comparability between studies. Much work
has been done on the diagnostic performance of CSF
A� and tau. For example, Olsson et al. demonstrated
that CSF T-tau, p-tau, A�42, NFL and plasma T-tau
were strongly associated with AD [14]. However,
future work should focus on the timing and order that
these biomarkers become abnormal, to enable them
to be more useful in a prognostic context. An under-
standing of the changes over time (i.e., dynamics
by age and time) is also important for understand-
ing measurement variance. CSF levels of A�1-42,
T-tau, and P-tau were shown to be stable during a
30-day study [139], but longer time frames should
also be considered. We found that it was most com-
mon to measure biomarkers at 2 points in time, with
very few studies repeating measures more than twice.
This can be attributed to the high costs of the mea-
sures used [20] or the invasiveness of CSF sample
collection [140]. Earlier and more frequent measures
would facilitate more robust conclusions to be drawn
on the precise timing and etiology of AD pathology.
In addition, they would help to define a pre-clinical
AD profile to aid in the design of trials of possible
therapies. However, it is recognized that because of
the invasiveness of the procedure of sample collec-
tion patient compliance to repeated sampling may be
understandably problematic.

As this work was not intended to be a full sys-
tematic review, some relevant studies may have been
omitted from the analysis. More published articles
could be screened, to identify studies excluded by
our selection criteria. Several studies were omitted
from our analysis as the study population was unclear
in the published research. The study methods were
also unclear in a number of papers, meaning that our
findings may not be truly representative of the work
completed. The search excluded all cause dementia
studies, and this may have resulted in AD cases being
missed from the analysis. It should also be noted that
as MRI is not specifically an AD-related marker and
that studies that have been identified in this review
may have incorrectly classified non-AD dementia as
AD, there may be further heterogeneity among the
results. Tissue such as plasma and CSF may have
been stored and not assayed in a number of stud-
ies. Future longitudinal analyses could, therefore, be

performed on this, while the studies were not iden-
tified through reviewing the literature. Indeed, many
longitudinal cohort studies freeze samples such as
plasma for future analysis.

In general, there was a lack of clarity regarding
reporting of the study methods in many arti-
cles, including the study location and populations
sampled. Other aspects of the protocol such as recruit-
ment criteria, cognitive tests used, and assessment
schedules were sometimes not discussed in detail.
A more thorough description of methods would help
researchers draw comparisons between studies. Stan-
dardized reporting methods across cohort studies
would help with this.

Despite the numerous limitations that presently
exist within the field, there remains many new
initiatives that aim to complete gaps in our cur-
rent knowledge of the epidemiology of AD. The
CHARIOT Register aims to enlist cognitively healthy
participants from age 60 upwards, to be used as a
basis for future research studies [141]. Dementias
platform UK have bought together 31 UK based
cohorts, in order to see if they can be useful to study
dementia retrospectively [142]. The European Med-
ical Information Framework-AD (EMIF-AD) also
aims to connect Europe-wide cohorts for the benefit
of AD research [143]. Other long term initiatives are
taking place in Italy [144] and Japan [145] to follow-
up healthy and diseased participants. Many of these
new initiatives focus on collaboration between stud-
ies and data accessibility, so it is to be hoped that
following a period of measurement standardization,
the field will be in a good position to support clinical
trials of possible therapies.

In summary, we have found that there are few
studies that record longitudinal measures of AD
biomarkers in well-defined and large cohorts of
participants. This is of particular relevance to the
development of preventative treatments, given the
costs of trials that run over many years given the long
period over which disease progression takes place.
Therapies that induce small improvements in slow-
ing progression would be better than no therapy at all
– which is the current situation. To detect low efficacy
in a relatively short time span of a few years in an as
yet cognitively unimpaired population will require a
much better understanding of the temporal dynamics
of biomarker changes. Understanding of these tempo-
ral and age related changes will also help us to better
understand the true etiology of this disease and there-
fore aid in the development of future treatments. At
present, many new cohorts are being established, and
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more data pooling across studies is taking place in
order to improve our knowledge. But it is clear from
this review that urgent needs include better standard-
ization in measurement, more precise determination
of measurement error, better longitudinal follow-up
of participants, and larger study population sizes.
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