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Abstract

Different countries, especially Brazil, that have faced recurrent dengue epidemics for decades
and chikungunya epidemics since 2014, have had to restructure their health services to combat
a triple epidemic of arboviruses – Zika, dengue and Chikungunya – transmitted by the same
vector, mainly Aedes aegypti, in 2015–2016. Several efforts have been made to better under-
stand these three arboviruses. Spatial analysis plays an important role in the knowledge of dis-
ease dynamics. The knowledge of the patterns of spatial diffusion of these three arboviruses
during an epidemic can contribute to the planning of surveillance actions and control of
these diseases. This study aimed to identify the spatial diffusion processes of these viruses
in the context of the triple epidemic in 2015–2016 in Rio de Janeiro, Brazil. Two study designs
were used: cross-sectional and ecological. Sequential Kernel maps, nearest-neighbour ratios
calculated cumulatively over time, Moran global autocorrelation correlograms, and local
autocorrelation changes over time were used to identify spatial diffusion patterns. The results
suggested an expansion diffusion pattern for the three arboviruses during 2015–2016 in Rio de
Janeiro. These findings can be considered for more effective control measures and for new
studies on the dynamics of these three arboviruses.

Introduction

The emergence and reemergence of diseases have always been a concern of researchers,
managers and the general population worldwide. Several factors are attributed to the spread
of pathogens, including climatic, socio-environmental and human mobility factors [1, 2].
Among the diseases transmitted by vectors, Zika, dengue and chikungunya deserve attention.
Although the three arboviruses may have an asymptomatic presentation [3], their severe forms
pose a great challenge to public health. Zika virus (ZIKV) emerged as a major threat in
the Americas in 2015, generating serious cases of microcephaly in newborns [4, 5] and
Guillain–Barré [6]. Chikungunya virus (CHIKV) fever can trigger neurological and joint pro-
blems for months [7]. Finally, dengue virus (DENV) infection can present as a haemorrhagic
form, which can lead to death [8].

ZIKV, CHIKV and DENV are transmitted by the same vectors, mainly Aedes aegypti, and,
as a result, their global distributions often overlap [9].

In 2015 and 2016, several Brazilian municipalities were challenged by an epidemic caused
by the ZIKV that alarmed health professionals. The discovery of the severe forms of ZIKV
infection and its dispersion throughout the Americas led the Pan American Health
Organization and World Health Organization (PAHO/WHO) to declare an emergency of
international importance in 2015 [10]. Brazilian municipalities then endemic for the other
arboviruses – DENV and CHIKV – faced the introduction of a new virus, ZIKV, transmitted
by vectors or via sexual and vertical routes [11].

Several efforts have been made to improve the knowledge of ZIKV, especially in the context
of the triple epidemic, and spatial analysis plays an important role in the understanding of the
dynamics of diseases. Various techniques may be employed, such as those used in the inves-
tigation of outbreaks or epidemics [12]. Spatial diffusion is characterised as a dynamic process
of movement of a phenomenon in space and time, which occurs when a disease is transmitted
to a new region [13].

The spatial diffusion process can be classified as contagious, expansion, relocation or hier-
archical. The expansion or contagious patterns are characterised by the onset in a given region
and the spread to adjacent areas so that the disease has a greater intensity at the place of origin
and spreads with less intensity to neighbouring areas. In contrast, hierarchical and relocation
patterns are characterised by the onset of the disease in a certain place and a ‘jump’ of the
disease to a more distant place. The process of diffusion may also be mixed, when both expan-
sion and hierarchical diffusion processes are observed simultaneously [14]. Spatial diffusion
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provides information about the transmission dynamics of the dis-
ease, can support the planning of surveillance and control actions,
and can be used to generate hypotheses for studies [15] and
ultimately reducing the risk of disease spread [16].

Considering the occurrence and importance of the triple
epidemic in Brazil, the objective of this study was to identify
the spatial diffusion pattern of the diseases caused by ZIKV,
DENV and CHIKV in 2015–2016 in Rio de Janeiro, Brazil.

Methods

Study design

This study used two approaches: (a) a cross-sectional study of the
point spatial data of cases in the city of Rio de Janeiro, Brazil, and
(b) an ecological study of the incidence rate of the population of
the districts of Rio de Janeiro.

Location, study period and data source

The patterns of spatial diffusion of the three arboviruses were
studied in the municipality of Rio de Janeiro, Brazil, during the
2015–2016 epidemic. The municipality of Rio de Janeiro is located
in the southeast region of the country (latitude 22°54′10′′S and lon-
gitude 43°12′27′′W) (Fig. 1). It has 1224.6 km2, with 48.6% of an
urbanised area, and 31.4% of forest cover and 2.1% of water bodies
in the non-urbanised area. The map showing the land cover muni-
cipality characteristics of urbanised and non-urbanised areas can
be found in the link http://www.data.rio/datasets/mapa-de-uso-
do-solo-do-município-do-rio-de-janeiro-2016 [17].

Rio de Janeiro is the second most populous city in Brazil, with
a resident population of 6 320 446 and a density of 5265.82 inha-
bitants per km2, according to the 2010 census. It presents 94.4%
of households with adequate sanitary sewage and 78.4% of urban
households on public roads with adequate urbanisation (presence
of manhole, sidewalk, paving and curb) [18]. The HDI-M
(Human Development Index of the municipality) is 0.799 [18],
being 0.604 the lowest and 0.959 the highest HDI-M within the
municipality [19].

Zika, dengue and chikungunya cases notified to the national
notifiable disease surveillance system (SINAN) of the Ministry
of Health of Brazil in 2015 and 2016 were used. Individual records
were obtained with authorisation. Cases confirmed by laboratory or
clinical epidemiological criteria for each of the three arboviruses
were included in the analysis.

The digital maps by districts of the municipality of Rio de
Janeiro were extracted from the site of the municipality of Rio
de Janeiro (http://www.data.rio/). The populations living in the
neighbourhoods were estimated based on the 2010 census of
the IBGE (Instituto Brasileiro de Geografia e Estatística) [18].

Geocoding

The residential addresses of Zika, chikungunya and dengue cases
were geocoded by Google Maps and Open Street Map (both by
the QGIS Software MMQGIS plugin), Google Earth Pro, Bing
and Batchgeo APIs. The coordinates resulting from Google
Maps API classified as good quality (coordinate identification
by street name and number) were initially included. Second, the
coordinates obtained from the Open Street Map API that
obtained the coordinates from the street name and number
were used for observations with missing latitude and longitude

data. Third, the addresses geocoded by the Google Earth Pro
API were included when data were still missing; lastly, the Bing
API was used for observations without coordinates. At the end
of this process, all reports of ZIKV, DENV and CHIKV infections
had coordinates. Then, an evaluation of the data that obtained
duplicate coordinates was done. The observations that presented
a large number of duplications (>8) were geocoded by Batchgeo
and incorporated after correction.

Spatial data analysis

The point pattern data were analysed by the sequential kernel
maps [20] and nearest-neighbour analysis regression [21]. The
area data were analysed by global autocorrelation correlogram
using Moran’s I autocorrelation [22] and local autocorrelation
by analysing changes in the local indicators of spatial association
(LISA) over time [23].

The sequential kernel maps were made and analysed for
every four epidemiological weeks (EW) for the three arboviruses
according to the evolution stages of the epidemic curves
(Fig. 2). Analyses were performed for the following periods: EW
40 of 2015 to 39 of 2016, from EW 01 of 2015 to 40 of 2016
and from EW 44 of 2015 to 51 of 2016, for Zika, dengue and chi-
kungunya, respectively. The two dengue epidemics occurring in
the study period were analysed separately from EW 01 in 2015
to 40 in 2015 for the first epidemic curve and from EW 41 in
2015 to 40 in 2016 for the second epidemic wave. The kernel
density estimator is a smoothing technique that uses point data
and calculates the density of a given event per unit area, allowing
the identification of hotspots (areas with a large number of
events), on the map [20]. When sequential maps for several
moments in time are made, it is possible to observe how the
disease spreads over time in the study location. An exploratory
analysis was performed for diffusion pattern detection. The
maps were made using QGIS Software version 2.18 and the
Heatmap plugin [24].

The second technique was proposed by Lee et al. [21], in
which the cumulative nearest-neighbour index (NNI) variation
is analysed when each point is added in time during the study
period. In the analysis of the nearest-neighbour ratio, a compari-
son is made between the average distance observed between each
point and its nearest neighbours and the expected average dis-
tance in a situation of spatial randomness [25]. Lee et al. proposed
a technique in which the variation of the ratio of the nearest
neighbour is first analysed when each point is added in time
during the study period. The resulting curve of this variation is
then adjusted to a regression curve that best fits its distribution.
The distribution of the values in the graph is adjusted to a set
of mathematical curves constructed to identify which best fit
this distribution. The best fit was evaluated by R2, the determin-
ation coefficient, and infers on the spatial diffusion model. In
simulations, inverse or the S curves better fit expansion diffusion
patterns, while a cubic curve indicates a hierarchical diffusion pat-
tern [21]. For the analysis of this statistic, the sp and SpatialEco
packages of the R software were used.

The global autocorrelation correlograms were calculated and
interpreted as described by Lam et al. [22]. The global Moran’s
I was used to represent the spatial autocorrelation of the incidence
rates. The spatial autocorrelation refers to the association of a
variable with its location. The Moran’s I statistic varies from −1
to 1, where a statistic is positive when nearby areas have similar
attributes, negative when assigned values are not similar and
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Fig. 1. Maps of Brazil, and the State and Municipality of Rio de Janeiro, with divisions by planning regions and neighbourhoods. (a) Map of Brazil with divisions by
State. The State of Rio de Janeiro is indicated in grey. (b) Map of the State of Rio de Janeiro with divisions by the municipality. The municipality of Rio de Janeiro is
shown in grey. (c) Municipality of Rio de Janeiro with divisions by planning regions (colours) and by neighbourhoods (codes).

Code neighbourhood Ramos 147 Cosmos 113 Costa Barros

Centro 39 Manguinhos Madureira 114 Pavuna

1 Saude 40 Bonsucesso 72 Vila Kosmos 159 Parque Colombia
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close to zero when the values are arranged randomly in space,
indicating spatial independence [22]. The spatial neighbourhood
condition was defined in this study by an adjacency matrix Wij.
Spatial correlograms are diagrams showing spatial autocorrelation

on the Y-axis and spatial scale, or lag, is computed on the X-axis.
The spatial diffusion pattern is revealed in these diagrams. If the
calculated correlograms show a decline as the lags move towards,
the spatial diffusion pattern indicated is expansion. Curves, which

2 Gamboa 41 Ramos 73 Vic. de Carvalho Jacarepagua

3 Santo Cristo 42 Olaria 74 Vila da Penha 115 Jacarepagua

4 Caju 157 Maré 75 Vista Alegre 116 Anil

5 Centro Penha 76 Iraja 117 Gardenia Azul

6 Catumbi 43 Penha 77 Colegio 118 Cidade de Deus

7 Rio Comprido 44 Penha Circular 78 Campinho 119 Curicica

8 Cidade Nova 45 Bras de Pina 79 Quintino Bocaiva 120 Freguesia (Jpa)

9 Estacio 46 Cordovil 80 Cavalcanti 121 Pechincha

10 Sao Cristovao 47 Parada de Lucas 81 Engenheiro Leal 122 Taquara

11 Mangueira 48 Vigario Geral 82 Cascadura 123 Tanque

12 Benfica 49 Jardim America 83 Madureira 124 Praça Seca

13 Paqueta Inhauma 84 Vaz Lobo 125 Vila Valqueire

14 Santa Teresa 50 Higienopolis 85 Turiaçu Barra da Tijuca

158 Vasco da Gama 52 Maria da Graça 86 Rocha Miranda 126 Joa

161 Lapa 53 Del Castilho 87 Honorio Gurgel 127 Itanhanga

Zona Sul 54 Inhauma 88 Osvaldo Cruz 128 Barra da Tijuca

15 Flamengo 55 Engda Rainha 89 Bento Ribeiro 129 Camorim

16 Gloria 56 Tomas Coelho 90 Marechal Hermes 130 Vargem Pequena

17 Laranjeiras 156 Compdo Alemão Ilha do Governador 131 Vargem Grande

18 Catete Meier 91 Ribeira 132 Recreio dos Band

19 Cosme Velho 51 Jacare 92 Zumbi 133 Grumari

20 Botafogo 57 Sao Fran. Xavier 93 Cacuia Bangu

21 Humaita 58 Rocha 94 Pitangueiras 134 Deodoro

22 Urca 59 Riachuelo 95 Praia da Bandeira 135 Vila Militar

23 Leme 60 Sampaio 96 Cocota 136 Campo Afonsos

24 Copacabana 61 Engenho Novo 97 Banca¡rios 137 Jardim Sulacap

25 Ipanema 62 Lins de Vasc 98 Freguesia (Ilha) 138 Magalhaes Bastos

26 Leblon 63 Meier 99 Jardim Guanabara 139 Realengo

27 Lagoa 64 Todos os Santos 100 Jardim Carioca 140 Padre Miguel

28 Jrd. Botanico 65 Cachambi 101 Taua 141 Bangu

29 Gavea 66 Eng. de Dentro 102 Monero 142 Senador Camara

30 Vidigal 67 Agua Santa 103 Portuguesa 160 Gericino

31 Sao Conrado 68 Encantado 104 Galeao 162 Vila Kennedy

154 Rocinha 69 Piedade 105 Cidade Univ Santa Cruz

Tijuca 70 Aboliçao Pavuna 148 Paciencia

32 Pr. da Bandeira 71 Pilares 106 Guadalupe 149 Santa Cruz

33 Tijuca 155 Jacarezinho 107 Anchieta 150 Sepetiba

34 Alto da Boa V Campo Grande 108 Parque Anchieta Guaratiba

35 Maracana 143 Santissimo 109 Ricardo de Alb 151 Guaratiba

36 Vila Isabel 144 Campo Grande 110 Coelho Neto 152 Barra de Guar

37 Andarai 145 Sen Vasconcelos 111 Acari 153 Pedra de Guar

38 Grajau 146 Inhoaiba 112 Barros Filho
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show a decline and, after some lags, an increase, presenting a ‘V’
shape, indicate a hierarchical diffusion process [22]. The spdep
package in R Software was used to perform this analysis.

Finally, the spatial diffusion pattern was also identified based
on the analysis of LISA changes over time, as described by
Cohen and Tita [23]. For this technique, the LISA was calculated
for every four EW, similar to those used in the Kernel analyses.
The local autocorrelation indicators for each observation indicate
spatial clusters of similar values around an observation. In this
way, the LISA will compare the incidence rate of a unit with
the average rate of its neighbours and tests if this similarity is
statistically significant. Statistical significance indicates spatial
autocorrelation [26]. Cohen and Tita proposed in 1999 that the
spatial diffusion patterns could be detected by observing LISA
changes over time [23]. Initially the LISA values for each pair,
composed of a given site and its neighbours, were evaluated
according to the occurrence of local agglomeration and the
occurrence of the pairs were identified according to the following
indications: LOW-LOW (LL), a location with an attribute
value below the average and neighbours with values below the
average; LOW-HIGH (LH), a location with an attribute value
below the average and neighbours with values above the average;
HIGH-HIGH (HH), a location with an attribute value above
the average and neighbours with values above the average; and
HIGH-LOW (HL), a location with an attribute value above the
average and neighbours with values below the average. This
process was repeated for successive observations over time and
then the changes in the levels of spatial association between
each observation and its neighbours throughout the study period
were verified. These changes indicate the pattern of spatial diffu-
sion. GeoDa Software version 1.18.14 was used to perform this
analysis [27].

Ethical aspects

This project was developed in accordance with the guidelines of
Resolution 466 of December 2012 and was submitted to the
Ethics Committee of the National School of Public Health
Sérgio Arouca of FIOCRUZ and authorised by the CAAE
(no 85031718,2,0000,5240; Decision no 2,580,613 of 4 April
2018).

Results

Georeferencing

First, duplications and observations of individuals with notifica-
tion of residence outside the municipality of Rio de Janeiro
were removed. After georeferencing, localities outside of the
municipality were identified and excluded. Among the georefer-
enced observations, 573 cases of Zika, 156 cases of chikungunya
and 501 cases of dengue were reported mainly among residents
of Niterói and Baixada Fluminense municipalities, which neigh-
bour Rio de Janeiro city. Data with onset dates of symptoms out-
side the study period were also removed (Fig. 3). The proportion
of cases georeferenced by API is shown in Table 1.

Among ZIKV infections, 203 cases lacked a street name
and were georeferenced by neighbourhood, while 1283 lacked
household information and were georeferenced by street name.

Among CHIKV infections, 20 cases lacked a street name and
were georeferenced by the neighbourhood, while 292 lacked
household information and were georeferenced by street name.
Chikungunya had the fewest duplications, was reported in
the communities of Rio de Janeiro and had a poor return in
the Batchgeo.

Fig. 2. Zika, chikungunya and dengue epidemic curves for the Rio de Janeiro municipality in 2015 and 2016.
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Among DENV infections, 190 cases lacked a street name and
were georeferenced by the neighbourhood, 59 lacked contain
street or neighbourhood name information and were georefer-
enced by the municipality, and 1074 lacked household informa-
tion and were georeferenced only by street name.

Point data analysis

Sequential Kernel maps were made for every four EW for each
disease under study and analysed visually according to the regions
of the county (Figs 4–7).

Sequential maps of Zika showed a greater intensity of cases
among the 48 EW 2015 to 19 EW in 2016. From EW 48 to 51
in 2015, hotspots were observed around the neighbourhoods of
the planning regions of Pavuna, Penha and Madureira. In the fol-
lowing weeks, areas with greater intensity emerged in Sepetiba,
Praça Seca, Rocinha and the region encompassing the planning
region of Centro. EW 04 to 07 of 2016 comprised the peak of

the epidemic curve, with the intensity remaining high in the
regions of Sepetiba, Rocinha and in the area that encompasses
the neighbourhoods of Flamengo, Catete, Santa Teresa, Rio
Comprido, Estácio and Tijuca. Increased intensity was also observed
in the regions of Penha, Santa Cruz districts, Copacabana and
Botafogo. Through all study period, the hotspot of Zika cases not
only remains in initial areas but also reached neighbouring areas,
suggesting a putative expansion diffusion pattern.

The sequential maps of chikungunya showed an increased
intensity of cases beginning in EW 04 to 07 of 2016 mainly in
the area that included the neighbourhoods of the planning regions
of Centro to Pavuna. Hotspots appeared in EW 12 to 15 EW in
2016 in the regions around Anchieta, Engenho Novo, Complexo
do Alemão and Centro. The highest numbers of cases occurred
in EW 16 to 19 in 2016, with hotspots in the same regions of
the previous weeks and increased intensity in the regions of
Bangu, Madureira and Penha. The propagation of cases restricted
to certain areas suggested an expansion diffusion pattern.

Table 1. Geocoding methods for Zika, chikungunya and dengue cases

Geocoding methods

Zika Chikungunya Dengue

N % N % N %

Google Maps 8116 21.0 2276 16.7 3912 9.2

Open Street Map 26 0.1 10 0.1 119 0.3

Google Earth Pro 22 827 59.1 9239 67.6 30 769 72.8

Bing 7397 19.2 2130 15.6 7425 17.6

Batchgeo 223 0.6 – – 32 0.1

TOTAL 38 589 100.0 13 655 100.0 42 257 100.0

Fig. 3. Georeferences of registered cases of ZIKV, CHIKV and
DENV infections in Rio de Janeiro.
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The sequential maps for the first epidemic curve of dengue
showed a higher intensity of cases from EW 13 to 16 of 2015,
with moderate intensity in the region of Realengo and Vila
Isabel. In EW 17 to 20 of 2015, the peak of the epidemic curve, hot-
spots occurred in the region encompassing the neighbourhoods of
Bangu, Complexo do Alemão and Vila Isabel and, with less inten-
sity, in the Centre region. Visual analysis of the sequential kernel
maps referring to the first epidemic curve showed no disease
jumps, suggesting a diffusion pattern of expansion.

In the second epidemic curve of dengue, low intensity of cases
was observed in the Penha region from EW 05 to 08 of 2016. This
intensity increased in the following weeks, from EW 09 to 12 of
2016, from Penha to Bonsucesso. In EW 13 to 16 of 2016, the

peak of the epidemic curve, hotspots were observed in the regions
of Realengo, Bangu, Vila Isabel, Engenho Novo, Centro regions
and Penha to Inhaúma. In the following EW, the intensity of
the cases decreased in almost all municipalities and was concen-
trated only in the Bangu and Senador Camará regions. Jumps of
case intensity were not observed, suggesting a diffusion pattern of
expansion.

The results of the nearest-neighbour regression analysis over
time for Zika, chikungunya and the first and second dengue epi-
demic curves performed as described by Lee et al. indicated an
expansion type of diffusion pattern for all three diseases.
Among the curves that indicated a spatial diffusion pattern, the
S-curve had the highest R2 value (Table 2, Fig. 8).

Fig. 4. Sequential kernel maps of Zika cases from epidemiologic weeks 40 of 2015 to 39 of 2016.

Epidemiology and Infection 7



The results of LISA variations over time suggested a spatial
diffusion pattern by the expansion of ZIKV and DENV infections
in both CE and a hierarchical pattern for CHIKV (Table 3).

The correlograms for Zika, chikungunya and dengue showed a
decline in Moran’s I, after the second spatial lag. The graph for
Zika and chikungunya showed that this pattern persisted until

the fifth spatial lag. In both plots of the two dengue epidemics,
there was a stabilisation of Moran’s I after the third spatial lag,
still suggestive of an expansion diffusion pattern (Fig. 9).

These techniques showed that the spatial diffusion pattern of
the three arboviruses during the 2015–2016 epidemics matched
the expansion diffusion model.

Fig. 5. Sequential kernel maps of Chikungunya cases from epidemiologic weeks 44 of 2015 to 51 of 2016.
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Discussion

The spatial diffusion pattern of expansion for Zika, chikungunya
and dengue was suggested by the results of the Kernel sequential
maps, the NNI variation over time, spatial autocorrelation corre-
logram and the LISA changes over time for the municipality of
Rio de Janeiro in the 2015–2016 period.

The study period comprised two epidemic waves of dengue
because both occurred during the Zika and chikungunya epi-
demics. This approach enabled the study of the dengue diffusion
pattern in a scenario where there is an indication of problems in
the classification of cases and to compare the two epidemics. Our
results indicate that there was no change in the diffusion patterns
in the two dengue waves studied and in the findings for Zika and
chikungunya.

Several studies have reported problems related to the notifica-
tion of Zika, chikungunya and dengue cases in Brazil. Although
the Ministry of Health of Brazil only reported cases of Zika
from April 2015 [28], ZIKV was identified in Brazil in 2013
[29, 30]. According to Brito et al., many Zika cases were reported
as dengue in 2015 [31] and, as suggested by Teixeira et al., many
cases of chikungunya were reported as dengue in 2014 [32]. In
addition, the Brazilian Ministry of Health indicated the underre-
porting of dengue cases [33]. The misclassification of cases was
also described in a study in Gabon, Central Africa, where the
presence of ZIKV was identified during dengue and chikungunya

epidemics in 2007, prior to the initiation of notifications for ZIKV
infections [34].

A review of the case definitions in use when the Zika epidemic
arrived in Brazil concluded that they may have influenced the pro-
blems in the classification of cases during the study period since
laboratory testing of all cases was not performed during the epi-
demic. In 2017, Braga et al. suggested that the Zika case definition
used by the Brazilian Ministry of Health did not present good spe-
cificity and sensitivity [35].

The underreporting of cases may have occurred because some
ZIKV, DENV and CHIKV infections are asymptomatic [3] and
misclassification may be due to the similar initial clinical signs
and symptoms of the three arboviruses [36].

The sequential kernel maps revealed that some regions were
more affected by certain diseases than others. The regions close
to the neighbourhoods of Sepetiba and Rocinha had high inten-
sities of Zika cases and low intensities of the other two viruses.
In contrast, the districts of Realengo, Padre Miguel and Bangu
had only high intensities of chikungunya and dengue cases in a
similar period of time, EW 12–20/2016. The northern region of
the municipality is heavily affected by the three diseases and the
area comprising the neighbourhood of Pavuna had the highest
density of Zika cases, while the density of chikungunya was high-
est in the region near Anchieta, neighbouring Pavuna the density
of dengue was highest in Penha. The epidemic curves and the

Fig. 6. Sequential kernel maps for dengue for epidemiological weeks 01 of 2015 to 40 of 2015.
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sequential kernel maps show an increase of CHIKV and DENV
cases when ZIKV cases begin to decline in EW 12 of 2016 (Figs
2 and 4–7). The analysis of sequential kernel maps suggested a
spatial diffusion by expansion for the three arboviruses.

A factor common to neighbourhoods with high case inten-
sities was a lower socio-economic level. A positive relationship
between low socio-economic level and high risk of dengue was
reported in the state of São Paulo [37] and Zika in the state of
Bahia [38].

Sequential kernel maps are widely used in the studies of den-
gue in Brazil [39, 40, 41]. An expansion diffusion pattern was
reported by Barreto et al. in 2008 and Melo et al. in 2010 and a
mixed pattern was suggested by Morato et al. in 2015 [41].
Although kernel density maps are considered a visual analysis,
this descriptive step is important for the initial observation of
the distribution of diseases in space and time. Considering its

Fig. 7. Sequential kernel maps for dengue for epidemiological weeks 41 of 2015 to 40 of 2016.

Table 2. Coefficients of determination of regression models for variation of the
ratio of the nearest neighbour over time for Zika, chikungunya and dengue, Rio
de Janeiro, 2015–2016

Disease Inverse curve Cubic curve S curve

Zika 0.462* 0.567* 0.986*

Chikungunya 0.648* 0.569* 0.989*

Dengue 1st
epidemic curve

0.478* 0.685* 0.984*

Dengue 2nd
epidemic curve

0.550* 0.564* 0.984*

*P-value < 0.001
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high subjectivity in the identification of spatial diffusion patterns,
more empirical methods were also used.

The analysis of NNI variation over time, spatial autocorrel-
ation correlograms and changes of LISA over time suggested an
expansion spatial diffusion pattern for the three arboviruses,
except for the LISA variation as a function of time for CHIKV,
which suggested a hierarchical pattern. Therefore, we indicate
an expansion diffusion pattern for the three arboviruses in the
context of the triple epidemic. This identification reveals the char-
acteristics related to the disease dynamics. According to Cromley
and McLafferty [14], the expansion of a disease reflects a localised
human interaction between an individual and their neighbours. In
this case, the vector population may also be connected. Similarly,
the hierarchical process reflects the movement of individuals, how

they interact and their social and transport connections [14].
Characteristics such as environmental and vector factors, network
connections and proportions of susceptible and infected indivi-
duals should be further studied for a better understanding of
our findings. The importance of interactions through network
connections in the spatial diffusion process has been widely
described [15, 42]. The region of the municipality of Rio de
Janeiro is largely connected by highways and railways, favouring
the expansion of the three arboviruses.

The characteristics of the sites of origin and destination of
the transmission linked to the vector, population density and socio-
economic level are related to the factors related to the local trans-
mission and dispersion of ZIKV [43]. The main vector responsible
for the transmission of the three arboviruses in Brazil, A. aegypti,

Fig. 8. Best fit resulting curves generated by the nearest-neighbour variation over time for Zika, chikungunya and dengue.

Table 3. Frequency of changes in LISA autocorrelation indexes for Zika, chikungunya and dengue incidence rates in Rio de Janeiro neighbourhoods, 2015–2016

Pattern

Zika Chikungunya
Dengue 1st epidemic

curve
Dengue 2nd

epidemic curve

N % N % N % N %

Expansion 11 61 11 34 13 57 10 56

Hierarchical 7 39 21 66 10 43 8 44

Total 18 100 32 100 23 100 18 100
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can be coinfected by all three viruses and can transmit them sim-
ultaneously. Ruckert et al. observed that mosquitoes coinfected
with ZIKV and CHIKV had a lower viral load of ZIKV compared
to that of CHIKV [9]. This finding indicates the need for future
studies to determine whether vector capacity may explain why cer-
tain regions are more affected by one virus than by another.

The present study aimed to identify the diffusion pattern of
Zika, chikungunya and dengue in the context of the 2015–2016 tri-
ple epidemic in the municipality of Rio de Janeiro. We also aimed
to assess a model to identify the characteristics of the disease
dynamics, to identify patterns for the perspective of prediction of
a model in order to assist in the emergence of new hypotheses
and to contribute to the elaboration of more accurate prevention
programmes [13]. This project was not designed to assess the rele-
vant patient immunological, vector, environmental or climatic fac-
tors to explain the model of transmission of these diseases.

An important limitation of this work is related to the quality of
the georeferenced addresses. Some addresses were georeferenced
by only the street name, resulting in coordinates in the middle
of a street. This occurred mainly in poor communities. In these
locations, there is often a main address with subdivisions in alleys,
houses and apartments. The APIs used and the individual search
of these addresses could not capture this subdivision since it is not
an official division in the municipality. Clusters were observed in
the places where this occurred; thus, we concluded that there was
no influence on the results of the analyses.

The existence of four serotypes of DENV was not considered
in this study. Their differences related to symptomatology, patient
immune response and consequent transmission potential may
generate differences in the diffusion pattern suggested as a result
of this work.

The correlograms are graphs that demonstrate the behaviour of
spatial autocorrelations of the incidence rate (the variable used in
this study) to the lag of a neighbourhood order. The neighbour-
hoods were defined by an adjacency matrix and the correlograms
comprised five spatial lags, to the fifth-order neighbours. The
analysis was performed assuming a greater number of spatial
lags, with no change in the diffusion pattern. The results obtained
using this method corroborated those reported in other studies.

The method based on LISA modifications returned a low pro-
portion of frequencies with statistical significance and did not
obtain a great difference in the frequencies to detect the spatial
diffusion process for most diseases and should be interpreted
with caution.

The analysis of the nearest neighbour with respect to time is
considered the most formal analysis for the detection of spatial dif-
fusion patterns. The findings in this study of spatial diffusion by
expansion corroborate that reported for dengue in Taiwan [21].

In conclusion, we suggest an expansion diffusion pattern for
the Zika, chikungunya and dengue epidemics in the context of
the 2015–2016 triple epidemic in the city of Rio de Janeiro,
Brazil, as well as the sites most affected by the diseases. This

Fig. 9. Correlograms of the global Moran’s I for the incidence rates of Zika, chikungunya and dengue in Rio de Janeiro, 2015–2016.
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finding may help in the elaboration of a more effective control
programme as well as the elaboration of new studies to fill gaps
in the dynamics of the three arboviruses.
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