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Abstract: Lineage commitment and differentiation of hematopoietic cells takes place in well-defined
microenvironmental surroundings. Communication with other cell types is a vital prerequisite for
the normal functions of the immune system, while disturbances in this communication support the
development and progression of neoplastic disease. Integrins such as the integrin very late antigen-4
(VLA-4; CD49d/CD29) control the localization of healthy as well as malignant B cells within the tissue,
and thus determine the patterns of organ infiltration. Malignant B cells retain some key characteristics
of their normal counterparts, with B cell receptor (BCR) signaling and integrin-mediated adhesion
being essential mediators of tumor cell homing, survival and proliferation. It is thus not surprising
that targeting the BCR pathway using small molecule inhibitors has proved highly effective in the
treatment of B cell malignancies. Attenuation of BCR-dependent lymphoma–microenvironment
interactions was, in this regard, described as a main mechanism critically contributing to the efficacy
of these agents. Here, we review the contribution of VLA-4 to normal B cell differentiation on the one
hand, and to the pathophysiology of B cell malignancies on the other hand. We describe its impact as
a prognostic marker, its interplay with BCR signaling and its predictive role for novel BCR-targeting
therapies, in chronic lymphocytic leukemia and beyond.
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1. Integrins in the Hematopoietic System

The communication between hematopoietic cells and their microenvironment in primary and
secondary lymphoid organs is relevant for the functioning of immune cells, and disturbances in
this communication are characteristic of hematologic neoplasia. B cell malignancies can arise from
any stage of B cell differentiation and the malignant clones usually still contain characteristics of
the cell-of-origin. Therefore, understanding homeostasis is a prerequisite for understanding and
successfully treating cancer.

In health, B cell development and differentiation occur in well-defined sequential steps. The initial,
antigen-independent stage, which comprises the differentiation from pro-B cells via pre-B cells and
immature B cells to transitional (mature) B cells, takes place in the bone marrow. B cells then leave
the bone marrow at the transitional B cell stage and complete the antigen-independent maturation
into immunocompetent naïve mature B cells in the spleen. Upon antigen-binding and co-stimulation,
further B cell differentiation takes place in secondary lymphoid organs.

During these differentiation steps, B cells rely on adhesive mechanisms. First, extravasation,
tissue entry and retention are vital processes during the development and selection of B cells.
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Second, the interactions of B cells with other cell types, such as antigen-presenting cells (APCs) and
T cells, require cell–cell contact. One of the most important families of cell adhesion receptors that
mediate cell–cell and cell–extracellular matrix interactions is the integrin family. The term integrin stems
from the capacity of these molecules to bi-directionally propagate signals across the cell membrane,
thereby integrating signals from the extracellular environment into cytoplasmic signaling. Integrins are
heterodimeric molecules of two non-covalently associated transmembrane subunits, the alpha and beta
chains, and are classified on the basis of the combination of the alpha and beta subunit. In mammals,
24 possible heterodimers have been identified, deriving from differential combination of 18 α subunits
and eight β subunits (reviewed, e.g., in [1], Scheme 1A). The α4 subunit can couple with either β7 or
β1 subunits. The integrin very late antigen-4, VLA-4 (α4/β1, in other terms CD49d/CD29) is primarily
expressed on leukocytes and best studied in the context of its role as a key mediator of hematopoietic
stem- and progenitor cell homing and retention in bone marrow. The other α4 containing integrin,
α4/β7 orchestrates T cell migration to the intestine by binding to its ligand MAdCAM-1 [2], and will
therefore not be addressed in the following chapters.
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Scheme 1. The integrin family of adhesion molecules. (A) Combinations of α and β subunits in
mammals. In I domain containing integrins (e.g., LFA-1, see Section 5), the I-domain is added to the
beta propeller of the α subunit, completely blocking access to the ligand-binding domain of the resting
integrin. (B) Schematic structure of the VLA-4 integrin and its domains.

While VLA-4 is the dominant integrin in hematopoietic progenitors, B cells express two major
integrins, namely VLA-4 and lymphocyte function-associated antigen 1 (LFA-1, αLβ2). The usage
and function of these integrins depend on the differentiation stage of the B cells. VLA-4 has emerged
early during evolution and can contribute to the functions of B cells that are related to innate immune
responses, e.g., T-independent antibody responses. LFA-1, which arose only in the last part of vertebrate
evolution, is crucial to adaptive functions, e.g., the positioning of B cells in secondary lymphoid
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organs for T–B cell interactions [3,4]. Nevertheless, in the adaptive context, VLA-4 is involved in
the acquisition of antigen by B cells and their subsequent activation [5,6]. VLA-4 also contributes to
leukocyte extravasation to secondary tissue sites during inflammation, which is a multistep process.
Thereby, VLA-4 has not only the capacity to mediate the typical integrin-dependent late steps of
strong adhesion to the endothelium, which are determined by high-affinity interactions with the
ligand, but also to orchestrate low-affinity rolling on the endothelium, which is an earlier step of the
cascade and classically attributed to selectins. These characteristics are related to structural features,
most importantly the composition of domains in the α4 subunit. The molecular structure of VLA-4 is
shown in Scheme 1B. VLA-4 affinity can be dynamically upregulated by a process called inside-out
activation, which is best characterized in the context of the chemokines presented by the endothelial
cells (for details, see Section 5).

Major VLA-4 ligands are the extracellular matrix protein fibronectin and VCAM-1. VCAM-1
expression is constitutively present on various stromal cells and endothelial cells, but upregulated
by inflammatory signals in a NF-kB-dependent manner [7]. Besides these ligands, certain forms of
osteopontin and other non-classical ligands such as emilin have been suggested as VLA-4 partners [8–10].
Moreover, VLA-4 was suggested to interact with JAM-B, a junctional molecule, during the step of
actual transmigration [11].

Although the importance of VLA-4 for stem- and progenitor cells in the bone marrow, and thus
for the maintenance of a healthy immune system, has been acknowledged for decades, new aspects of
its functioning in different hematopoietic cell types are still being discovered. This is mainly due to its
complex levels of regulation, which allow for a multitude of cell type- and context-dependent functions.
In this review, we first describe the major importance of VLA-4 in the development and maturation
of the healthy B cell pool. We then focus on B cell malignancies, describing what is known about
the prognostic value of VLA-4 as well as the mechanisms of its action under pathologic conditions.
Finally, we examine its therapeutic impact as a predictive factor under BCR inhibitor therapy and
possible future roles as a therapeutic target.

2. VLA-4 Functions during B Cell Development in Bone Marrow

B cell development in the bone marrow is VLA-4-dependent and involves their adhesive capacity
at several stages. Early studies using chimeric mice have reported that mice with a deficiency in the
alpha subunit of VLA-4 (CD49d) generate very few B cells due to impaired B cell differentiation at the
pro-B cell stage [12,13]. It is also an early finding that B cell precursors, during their development,
rely on the VLA-4-dependent binding to VCAM-1 presented by stromal cells [14,15]. This might not
only confer their appropriate localization towards supportive signals such as CXCL12, but also lead to
the initiation of signal transduction from the pre-BCR. An in vitro study reported the formation of an
immune synapse between human pre-B and stromal cells. Into this synapse, the pre-BCR is recruited
through the cross-linking of pre-B cell integrins by stromal ligands to initiate pre-BCR signaling [16].
There is also interesting evidence that the adhesion of pre-B lymphoblastic cells to stroma is a biphasic
process, with VLA-4 being the dominant player of the very first phase of adhesion, whereas later
phases of retention are controlled by other players [17].

Although fibronectin, which can bind both VLA-4 and VLA-5, is highly abundant in bone marrow,
the VLA-4-specific ligand VCAM-1, rather than fibronectin, orchestrates the adhesive interactions of B
cell precursors to the bone marrow microenvironment [14]. Data from in vivo homing experiments
also support a primary role of the VCAM-1-VLA-4 rather than the fibronectin-VLA-5 axis in the
pathophysiology of precursor-B acute lymphoblastic leukemia (ALL) cells [18]. However, in vitro
findings indicate that fibronectin also has the capacity to enhance the proliferation of certain malignant
pro-B cells [19]. In any case, high VLA-4 expression is associated with adverse outcome and distinct
gene expression changes in childhood B-cell precursor ALL at first relapse [20]. Whether or not there is
a therapeutic window for blocking VLA-4 in this disease remains to be elucidated. In vitro, a protective
role of stromal cells towards leukemia cells can be observed under chemotherapy, e.g., cytarabine,
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and VLA-4 inhibition was observed to abolish this protection [20]. However, not only childhood ALL
is characterized by VLA-4 expression. For example, unusually high VLA-4 expression was observed
in a case of an adult with aleukemic B-cell ALL presenting with osteolytic bone lesions, and was
particularly prominent in the osteolytic regions of the patient, in conjunction with a high expression of
VCAM-1, CXCL12 and CXCR4 [21]. This observation suggests a role of these molecules in malignant
bone remodeling.

During their differentiation towards the immature and transitional stage, developing B cells
require a dynamic retention to the bone marrow parenchyma, which includes adhesive and de-adhesive
processes. Indeed, the immature B cell stage is characterized by a significant change in positioning within
bone marrow, with up to 50% of immature B cells localizing within sinusoids in a VLA-4-dependent
manner [22]. To adapt to their localization, the B cells migrate in an amoeboid way, regulated by the
interplay of CXCR4 and VLA-4, expressed on their surface with the respective ligands CXCL12 and
VCAM-1, expressed by the environment. The chemokine axis serves to activate the VLA-4 integrin
and to guide the direction of the actual migration. The role of the activated VLA-4 is to withstand
the mechanical shear forces in the microenvironment. Its dynamic activation and de-activation
allow the appropriate balance of retention and migration. For example, VLA-4-mediated adhesion is
temporally reduced when cells are in perisinusoidal compartments, before it is increased again through
cannabinoid receptor 2-induced transactivation within sinusoids to prevent premature cell egress from
bone marrow [23].

3. Marginal Zone B Cells and Other Mature B Cell Subsets

Once out of the bone marrow, B cell differentiation continues in distinct zones of the spleen.
Splenic marginal zone B cells exhibit unique functional characteristics because they contribute to
innate immune responses, in addition to their participation in T-cell-dependent immune responses
by importing blood-borne antigens to follicular areas of the spleen. This means they can mount a
local antibody response against type-2 T-cell-independent (TI-2) antigens and they shuttle between
the blood-filled marginal zone for antigen collection and the follicle for antigen delivery. This shuttle
is regulated by differential usage of the integrins LFA-1 and VLA-4, with VLA-4 being responsible
for adhesion and migration down the flow, while interacting with VCAM-1 [24]. Another highly
integrin-dependent B cell subset populating similar splenic niches to marginal zone B cells are memory
B cells, which, in consequence, also rely on high integrin expression for their proper localization and
function [25].

The importance of integrins in mediating the precise localization of B cells within the different
splenic compartments is also evident under pathologic conditions. In a murine chronic lymphocytic
leukemia (CLL) model, which is driven by the proliferation of malignant B cells in follicles, the inhibition
of VLA-4-mediated adhesion and CXCL13-mediated follicular homing displaced leukemic cells not only
from the follicle, but also the marginal zone, and reduced leukemia progression [26,27]. Consistently, in B
and T cell lymphoma 3D models, VLA-4 was critical for maintaining the adhesion of the lymphoma
cells to follicular dendritic cells. This interaction upregulated the expression levels of the B cell
receptor, which again supported the survival of lymphomas through a tyrosine kinase Syk in the
upstream BCR pathway [28]. It is likely that marginal zone-specific factors shape the phenotype
of leukemic cells and facilitate their niche-specific retention. In this context, the homeobox protein
NKX2-3, which acts as an oncogene, promotes marginal zone-lymphomagenesis by activating B-cell
receptor signaling [29]. This, in turn, activates relevant adhesion molecules such as VLA-4 and CXCR4,
in a Lyn/Syk-dependent way, eventually driving malignant transformation through triggering NF-κB
and PI3K-AKT pathways. Another regulator of marginal zone B cell development from T1 to T2
transitional B cells is SWAP-70, a Rho GTPase-interacting and F-actin-binding protein with functions in
cell polarization, migration, and adhesion, thus regulating marginal zone B development and marginal
zone formation [30]. SWAP-70 acts as a negative regulator of integrin-dependent adhesion and is
particularly important for the differentiation control of B-cell precursors and their contribution to
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splenic tissue formation [30]. A positive regulator of activation of VLA-4 and other integrins, talin,
is not required for follicular B-cell maturation in the spleen or homeostatic humoral immunity, but was
found to be critical for integrin-dependent B lymphocyte emigration to lymph nodes and for optimal
immunity against T-dependent antigens [31].

The central nervous system (CNS) represents an exceptional challenge for the immune system
due to the blood–brain barrier, which restricts and regulates the access of immune cells to this organ.
B cells can cross the blood–brain barrier in an integrin-dependent manner to ensure CNS immune
surveillance [32,33], and thus it is not surprising that they were also shown to contribute to autoimmune
disease involving the CNS, most prominently to multiple sclerosis (MS). Specifically, B cell recruitment
to the CNS was dependent on VLA-4 and neutrophil-derived CXCL27 [34]. In line with this, the specific
deletion of CD49d on B cells decreased their capacity to infiltrate the CNS and improved outcome
in experimental autoimmune encephalitis (EAE), a mouse model of MS. Decreased B cell infiltration
went along with a decrease in other leukocyte subsets, specifically macrophages and Th17 T cells [35],
suggesting a major role for B cells in the recruitment of these cell types. On the other hand, regulatory B
cells were also affected by CD49d deletion in the EAE model [36], a potentially counterproductive
effect in the treatment of inflammatory diseases which may, however, be beneficial in other settings
involving immune suppression, such as certain cancers.

4. The Peculiar Connection of B Cell Activation and VLA-4 in Chronic Lymphocytic Leukemia

VLA-4 is involved in the acquisition of antigen by B cells and their subsequent activation, lowering the
activation threshold [4,6]. This is achieved by strengthening the adhesive connections between
antigen-presenting cells and B cells, which facilitates antigen uptake. However, the amplification
of BCR signaling via integrin outside-in signals may also play a role. In particular, it has been
shown that the co-expression of VCAM-1 on antigen-bearing membranes enhances antigen-dependent
B-cell activation [5]. Firstly, this is achieved by increasing the adhesion strength of the B cell to the
antigen-presenting substrate by the additional VLA-4-VCAM-1 ligation, which, in turn, increases the
likelihood of a B cell to be activated. Secondly, the VLA-4-VCAM-1 binding supports the docking
structure characteristic of the B-cell immunological synapse and thereby strengthens the bi-cellular
interactions of the antigen-presenting and antigen-recognizing cell partner [5], resulting in enhanced
BCR signaling. This promoting effect of VLA-4 on the BCR is particularly effective when the affinity of
the BCR for the antigen is low. The other way around, BCR activation also alters integrin-mediated
adhesiveness, which is useful during differentiation and maturation because the requirements for
specific adhesive interactions in this process change during the sequential steps. Spaargaren and
colleagues proposed that BCR ligation induces VLA-4 activation by a signaling cascade involving PI3K,
BTK, PLCγ2 and calcium mobilization. Finally, this cascade leads to calpain-mediated release of VLA-4
molecules from cytoskeletal constraint and consequent cluster formation and increased adhesion [37].

In contrast to normal mature B cells, which constitutively express VLA-4, its expression is absent
or low on approximately 50% of CLL cases. CD49d expression in CLL is epigenetically driven
and associated with certain types of genetic lesions, like trisomy 12 [38] and Notch1 mutations [39].
Overall, CD49d expression on more than 30% of CLL cells represents a robust negative prognostic
marker for treatment-free and overall survival [40–43].

Recently, we reported that BCR-engagement induces VLA-4 activation in CLL. CLL is a malignancy
of mature B cells that harbor a characteristic CD5 expression as well as memory features. The malignant
B lymphocytes proliferate in lymphoid organs and require signals from this peculiar microenvironment
to maintain the disease (for review, see [44]). The considerable therapeutic potential in disrupting
these CLL cell–microenvironment interactions and the need to understand the molecular basis of
these signaling axes is underscored by recent clinical developments. One important example is
ibrutinib, an orally administered covalent inhibitor of BTK, which had been approved in 2014 for
CLL patients who have received at least one previous therapy, and is meanwhile approved for all
CLL indications due to its remarkable clinical efficacy [45]. From the point of view of biological
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signaling cascades, BTK can be located downstream of BCR engagement but also downstream
of other microenvironment-relevant receptors, such as toll-like receptors or adhesion molecules.
A characteristic capacity of ibrutinib is to dislocate leukemic cells from the lymphoid organs into
the periphery, so that the patients present with a transient leukocytosis. We observed that VLA-4
activation interferes with this characteristic [46]. This means that CD49d expression has also a predictive
role for inferior patient outcome under ibrutinib [43,46]. CD49d-positive and CD49d-negative CLL
patients, i.e., harboring VLA-4 or not on their leukemia cells, were followed under ibrutinib treatment.
In CD49d-negative patients treated with ibrutinib, a rapid reduction in lymphadenopathy was observed,
paralleled by a transient lymphocytosis. However, this pattern was less prominent in CD49d-positive
CLL samples. Mechanistically, this observation was due to the residual inside-out activation of
VLA-4 by BCR stimulation in lymphoid organs [46]. The data imply that BTK inhibition might not be
sufficient to block BCR-dependent VLA-4 activation and to induce a strong initial lymphocytosis in
this patient cohort, which further influences therapy outcome. In other words, the signaling axis from
the BCR towards the VLA-4 integrin might be able to bypass BTK. Of interest, BCR-induced inside-out
activation of the second major lymphocyte integrin, LFA-1, has been reported to occur through a
BTK-independent pathway involving phosphatidylinositide 3-kinase (PI3K) [47]). Because we observed
residual phosphorylation of the downstream PI3K target AKT in ibrutinib-treated CLL cells upon BCR
stimulation, we subsequently studied the effects of combined BTK and PI3K inhibition on BCR-induced
VLA-4 activation and could confirm an involvement of PI3K in this pathway [46].

In a follow-up study, this was further preclinically validated. By using the TCL1-tg mouse model,
which resembles the clinical CD49d high-risk group for CLL, PI3K, rather than BTK, was found as
an essential part of the signaling between the BCR and VLA-4 [48], supporting the observation made
in humans. Furthermore, therapeutically targeting VLA-4 in this mouse model in a transplantation
setup confirmed the important role of this molecule for CLL pathogenesis and resulted in a reduced
tumor load in lymphoid organs of the treated mice. The data suggest that in future clinical trials and
real-world clinical application, the monitoring of CD49d expression should be incorporated to further
elucidate and confirm these findings. In long-term, VLA-4 inhibition or the additional targeting of BCR
pathway molecules (e.g., by other inhibitors of PI3K than idelalisib to avoid its severe side effects [49])
might be explored as additions to ibrutinib therapy for high-risk CD49d-high CLL patients.

5. The Inside-Out VLA-4 Activation Cascade in Detail

The data outlined above suggest VLA-4 as a potential therapeutic target structure for the treatment
of B cell malignancies. In this context, it has to be considered that integrin function depends on a
complex activation process that involves other cellular receptors and signaling pathways.

VLA-4 activation has two dimensions, “inside-out” and “outside-in”. The term inside-out
signaling encompasses a number of possible pathways and processes, with several basic mechanisms
in common. It starts with the activation of a cell surface receptor, e.g., a cytokine-, chemokine- or
antigen receptor, initiating an intracellular signaling cascade, the core elements of which are PI3K
and PLCγ (Scheme 2). These signaling events entail conformational changes in the integrin molecule
as well as the altered spatial distribution of integrin molecules on the cell, which regulates avidity.
The various outcomes concerning integrin conformation and -distribution can occur separately or
interdependently, depending on the cellular and microenvironmental context, yet the result is always
increased cellular adhesiveness. Among the relevant activation pathways in B cells, chemokine-induced
VLA-4 activation is the most rapid and involves conformational changes towards higher affinity within
fractions of a second. BCR-induced integrin activation is somewhat slower and longer lasting.
Within seconds/minutes, integrin clustering can be observed, and this enhances the avidity of ligand
binding. Differences in integrin activation also lie in the different kinetics of activation. The α4
subunit of VLA-4 does not contain a regulatory I-domain, which results in a much faster kinetics of
ligand binding compared to α-I-domain-containing integrins such as LFA-1. In consequence, VLA-4
(in contrast to LFA-1) can mediate selectin-independent rolling on VCAM substrates, and firm arrest



Int. J. Mol. Sci. 2020, 21, 2206 7 of 16

to VCAM-1 under shear flow is possible even in the absence of inside-out activation, albeit at low
levels [50]. On a biochemical level, the overall binding potential of a cell to VLA-4 ligands is determined
by the speed at which receptor–ligand bonds form and dissociate (kinetics) and by the lifetime of those
bonds (thermodynamic equilibrium).
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 16 

 

 
Scheme 2. Integrin signaling pathways in B cells. Affinity upregulation can be initiated by various 
cellular receptors, e.g., chemokine receptors or the B cell receptor (BCR). The signaling cascades 
commonly converge on PI3K and PLCγ, and at the end of the cascade, adaptor proteins, in leukocytes 
talin-1 and kindlin-3, bind to the intracellular domain of the integrin beta chain. This leads to affinity 
upregulation and/or extension and/or clustering, with the result of increased cellular adhesiveness. 
BCR: B cell receptor; GPCR: G protein-coupled receptor; BTK: Bruton’s tyrosine kinase; PI3K: 
Phosphatidylinositide 3-Kinase; PLCγ: Phospholipase Cγ; SFKs: Src family kinases; Syk: Spleen 
tyrosine kinase; FAK: Focal adhesion kinase; Pyk2: Proline-rich tyrosine kinase 2. 

To alter the equilibria of bond formation and dissociation, the VLA-4 integrin can adopt several 
different conformations, depending on a) molecular extension b) the affinity of the ligand binding 
pocket. Inside-out activation goes along with profound changes in the arrangement of all domains of 
the integrin molecule. Ligand binding then induces further conformational changes, with the 
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Scheme 2. Integrin signaling pathways in B cells. Affinity upregulation can be initiated by
various cellular receptors, e.g., chemokine receptors or the B cell receptor (BCR). The signaling
cascades commonly converge on PI3K and PLCγ, and at the end of the cascade, adaptor proteins,
in leukocytes talin-1 and kindlin-3, bind to the intracellular domain of the integrin beta chain.
This leads to affinity upregulation and/or extension and/or clustering, with the result of increased
cellular adhesiveness. BCR: B cell receptor; GPCR: G protein-coupled receptor; BTK: Bruton’s tyrosine
kinase; PI3K: Phosphatidylinositide 3-Kinase; PLCγ: Phospholipase Cγ; SFKs: Src family kinases;
Syk: Spleen tyrosine kinase; FAK: Focal adhesion kinase; Pyk2: Proline-rich tyrosine kinase 2.

To alter the equilibria of bond formation and dissociation, the VLA-4 integrin can adopt several
different conformations, depending on a) molecular extension b) the affinity of the ligand binding
pocket. Inside-out activation goes along with profound changes in the arrangement of all domains
of the integrin molecule. Ligand binding then induces further conformational changes, with the
consequence of hybrid domain exposure, which has thus been proposed as an easily detectable
surrogate marker for ligand binding [51] (Scheme 3). However, there are also hints that hybrid domain
movement may precede and facilitate the rearrangement of the βA domain, and thus the high-affinity
conformation of the ligand-binding pocket [52]. The exact molecular mechanisms of activation can
differ between integrins and depends on the cellular context.
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Scheme 3. Affinity states of VLA-4. Activation of the receptor by intracellular signaling (so-called
inside-out activation) can induce affinity upregulation and/or extension; ligand-binding leads to
exposure of the hybrid domain.

Methods to detect the variable conformation states include the use of FRET probes at the integrin
head and the plasma membrane to detect bended or extended conformations [53]. In the specific case
of VLA-4, the affinity of the binding pocket can be determined by measuring the binding kinetics
of a synthetic small molecule ligand based on the LDV sequence of fibronectin [54], and hybrid
domain exposure can be detected using the monoclonal antibody HUTS-21 [51,55]. Combining these
tools revealed that VLA-4 molecules occur on resting lymphocytes mainly in a low-affinity bent
confirmation with a hidden hybrid domain. Inside-out signals via G-protein–coupled receptors
(GPCRs) induce both extension and affinity upregulation, while ligand-binding induces hybrid domain
exposure. However, extension and affinity upregulation can also take place independently of each
other. PMA, an activator of the protein kinase C (PKC)-Rap axis, induces high-affinity integrins
without causing extension. On the other hand, the high ligand affinity induced by GPCR signaling is
rapidly desensitized, while the VLA-4 extended form prevails for much longer [53]. On a functional
level, extended integrins enable the fast formation of receptor–ligand bonds, while the stability of
those bonds depends on the affinity state [3] (Scheme 4A,B). Of note, this applies to physiological,
surface-bound ligands only, while the binding of monovalent, small molecule ligands such as LDV is
exclusively dependent on regulation of the dissociation rate by ligand affinity [54,56].

Besides the conformation of single integrin molecules, the adhesive properties of a cell are further
modulated by their spatial distribution on the cell surface. The overall avidity of an integrin-expressing
cell to an integrin-ligand presenting surface can thus be enhanced by the formation of adhesive spots
via integrin clustering [57] (Scheme 4C). This requires cytoskeletal re-organization enabling the lateral
mobility of the molecules on the cell surface, and can happen in addition to or independent of the
conformational changes. Experimentally, integrin clustering can be detected using confocal microscopy.
The physiological activation of integrins via chemokine receptors commonly engages all of the above
mentioned mechanisms, as reviewed by Laudanna et al. [58]. Which of the mechanisms described are
initiated by a certain activating stimulus, however, is highly dependent on the specific integrin, the cell
type on which it is expressed and other conditions such as the activation or metabolic state of the cell.
Furthermore, the exact signaling pathways leading to the different outcomes of inside-out activation
are highly context-specific.
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Scheme 4. Modes of VLA-4 activation. An overall increase in cellular adhesiveness can be achieved by
either of the following processes: (A) affinity modulation of the ligand binding domain, leading to
increased stability of receptor-ligand bonds (B) extension of the integrin molecule, leading to an
increased accessibility of the ligand-binding site for surface-bound ligands or (C) clustering of integrins
on the cell surface, leading to a local increase in the number of receptor–ligand bonds. Cellular activation
often involves a combination of two or three of these processes; however, they can also occur separately.

In experiments using cells from Waldenström macroglobulinemia (WM, a lymphoplasmacytic
lymphoma) patients, ibrutinib and idelalisib both display inhibitory characteristics towards
BCR-controlled integrin-mediated adhesion, whereas chemokine (CXCL12/CXCR4)-controlled
signaling, adhesion and migration are not affected by drugs blocking BTK and PI3K [59]. In the CLL
context, it was hypothesized that only chemokines, but not BCR signals, trigger JAK protein tyrosine
kinases that boost full BTK activity in terms of integrin activation [60]. This suggests a selective
use of the JAK-BTK axis upstream of integrins, which is dependent on the microenvironment signal.
Focusing on the second lymphocyte integrin LFA-1, rather than on VLA-4, and not stratifying the
used patient samples for CD49d (VLA-4) expression in this study, the authors also reported that
BCR-induced LFA activation did not involve affinity regulation, but rather integrin clustering (avidity
regulation). In the case of VLA-4, we have observed both avidity and affinity regulation upon BCR
engagement in CLL [46]. These processes might differently be stabilized by separate upstream kinases.
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For example, by using a VLA-4-positive CLL-derived cell line model and genetic modulation of ZAP-70,
Laufer et al. recently reported that integrin avidity regulation upon chemokine stimulation involved
ZAP-70 expression, whereas high-affinity regulation of integrins was independent of ZAP70 [61].
An exact understanding of the involved kinases upstream of VLA-4 and how these kinases are triggered
by the various stimuli remains to be elucidated.

Avidity regulation might also take place downstream of initial VLA-4 inside-out activation.
The stabilization of integrin activation requires the binding of intracellular adaptor molecules, such as
talins and kindlins, to the short intracellular part of theβ subunit. This, in turn, enables the linkage of the
integrin to the actin cytoskeleton, thus enabling force-induced adhesion strengthening. In experiments
using CLL and multiple myeloma cell lines, both tumor entities shared a dependence on kindlin-3 and
talin, and both adaptors cooperatively stimulated a high-affinity and strength of VLA-4-dependent
attachment to bone marrow endothelium [62]. Integrin Cytoplasmic domain-Associated Protein-1
(ICAP-1), a specific adaptor of the β1 integrin subunit cytoplasmic domain, was described as a negative
regulator of adhesion in this study. In another study, the elevation of cytoplasmic cyclic nucleotides
was suggested as another main mechanism of decreasing VLA-4 activation [63]. It will be interesting
to elucidate the association of these individual components.

Overall, an assessment of the activation state of VLA-4, rather than its mere surface expression,
may help to gain prognostic and functional information. For therapeutic intervention, upstream pathways
like PKC or PI3K are considerable targets. Direct targeting of the integrin may overrule complexity
from upstream inside-out activation, but has some drawbacks, as will be outlined in the next paragraph.

6. Lessons Learned from Natalizumab

A therapeutic potential of VLA-4 inhibition in cancer could be most reasonable as a combination
approach. VLA-4 inhibition will most likely dislocate CD49d-positive tumor cells from bone marrow
and lymphoid organs, and thereby improve the effectiveness of the combination drug or even overcome
drug resistance. Most therapeutic approaches focus on targeting the CD49d (α4) subunit, leading to
the inhibition of both VLA-4 and α4β7. Therapeutic options range from antisense approaches and
small molecule antagonists to antibody therapies. A limitation of VLA-4 as a therapeutic target is
its broad expression on immune cells. Indeed, use of the monoclonal humanized IgG4 anti-CD49d
antibody Natalizumab (tysabri) requires a careful risk management. Natalizumab has been developed
in the context of inflammation-mediated diseases and autoimmune conditions and is currently used
for the treatment of MS [64] and Crohn’s disease [65]. In patients treated with Natalizumab [33],
impaired immune surveillance of the CNS can be observed, along with an increased risk of opportunistic
infections. Indeed, among the adverse effects occurring mainly after long-term treatment, is progressive
multifocal leukoencephalopathy (PML), a rare but severe and often fatal condition caused by John
Cunningham (JC)-virus infection [66]. This resulted in a voluntary withdrawal of the drug from
the market in 2005. Remarkably, advocacy groups for patients lobbied the FDA to make this drug
available again due to its unique efficacy (reviewed in [67]) and Natalizumab was re-approved in 2006.
Nowadays, a detailed standardized risk management program is established, including comprehensive
laboratory testing and immune monitoring of complete blood count, peripheral immune cell status,
and serological parameters, as well as JC-virus testing, before the start of therapy. Leukocytosis is
monitored due to the mobilizing potential of VLA-4 inhibition. Indeed, hematopoietic stem cells are
mobilized from the bone marrow by Natalizumab, with high levels of circulating stem- and progenitor
cells maintained over time [68,69]. Of note, Natalizumab-intrinsic side effects might be related not only
to the broad immune cell expression of VLA-4, but also to pharmacokinetics, i.e., with a high stability
and plasma half-life of 16 ± 4 days after infusion [70]. This characteristic could be ameliorated using
small molecule inhibitors with faster pharmacokinetics (half-life of about 3–5 h). Among the developed
inhibitors, firategrast (e.g., NCT00395317) is the most advanced, with the completion of phase I and II
trials. Firategrast was observed to reduce disease activity, but to a lesser extent than Natalizumab.
The further development of this inhibitor might benefit from different formulations. AJM300 (INN;
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Carotegrast methyl) is another small-molecule α4-integrin antagonist that can be administered orally
and is almost non-immunogenic. The previous results of a phase II study on ulcerative colitis have
been encouraging [71] and, currently, a Phase III Study is recruiting (NCT03531892). In addition,
an antisense therapy to CD49d (ATL1102) has recently brought encouraging results in a phase II trial
in patients with Duchenne Muscular Dystrophy (clinical trial registry number ACTRN12618000970246,
active trial).

Whether or not VLA-4 targeting substances will find their way into the treatment of hematological
diseases is not yet clear. Successful clinical development will require a reduced risk and toxicity profile
of the inhibitors that allows the combination of VLA-4 antagonists with other drug with a high efficacy
of the drug. If this is achieved, not only patients with autoimmune- and other inflammatory diseases,
but also those with hematologic malignancies, could greatly benefit from VLA-4 inhibition.

7. Conclusion and Future Perspectives of VLA-4 as a Therapeutic Target

VLA-4 has been known for a long time as an essential homing and retention factor of hematopoietic
stem- and progenitor cells. Its adhesive properties are modulated by a complex network of regulation,
leading to a great functional versatility. This versatility presents a great challenge to researchers
working on VLA-4, as its functions do not only depend on the cell type on which it is expressed
and its developmental stage, but also on the composition of the environment regarding other cells,
extracellular matrix elements and soluble factors. This needs to be considered when drawing
conclusions from data acquired from isolated cells, which, in the case of leukemia patients, are usually
derived from peripheral blood. This insight, together with valuable data gained from more systemic
analyses that are possible in animal models, may reveal more functions of VLA-4 and further enhance
its prognostic and predictive potential for B cell- and other malignancies in the future. A better
understanding on VLA-4 biology and/or more specific inhibitors blocking defined functions may also
be a means to enhance the value of VLA-4 as a direct therapeutic target.
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Abbreviations

ALL Acute Lymphoblastic Leukemia
APC Antigen Presenting Cell
BCR B Cell Receptor
BTK Bruton’s Tyrosine Kinase
CLL Chronic Lymphocytic Leukemia
CNS Central Nervous System
EAE Experimental Autoimmune Encephalitis
FAK Focal Adhesion Kinase
GPCR G-Protein–Coupled Receptor
ICAP-1 Integrin Cytoplasmic Domain-Associated Protein-1
JCV John Cunningham Virus
LFA-1 Lymphocyte Function-associated Antigen 1
MS Multiple Sclerosis
PI3K Phosphatidylinositide 3-Kinase
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PKC Protein Kinase C
PLCγ Phospholipase Cγ

PML Progressive Multifocal Leukoencephalopathy
Pyk2 Proline-rich Tyrosine Kinase 2
SFK Src Family Kinase
Syk Spleen Tyosine Kinase
VLA-4 Very Late Antigen-4
WM Waldenström Macroglobulinemia
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