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Abstract
We study the effect of subtle changes on the evolution in the scale-free (SF) networks.

Three extended models are evolved based on competition and inner anti-preferential dele-

tion in growth and preferential attachment processes. By nonlinear and dynamic controlling

on randomness and determinacy, three models can self-organize into scale-free networks,

and diverse scaling exponents appear. Moreover, the model with more determinacy has

more stringent parameter control than randomness, especially in the edge deletion. Our

results suggest that the nature of the topology universality and dissimilarity in SF networks

may be the subtle changes of randomness and determinacy.

Introduction
Newton and Einstein all said that the nature is simple. The emergence of complex networks
make people pay more attention to the interaction of networks corresponding to the real world
[1–5]. What are the universality and dissimilarity if we look on the real world as interaction
network? How does the real world evolve from simple to complex, and what are the evolution
processes? How does the real world change when it is subjected to external forces?

Is the evolution completely random or artificially controlling, or both coexist? To answer
these questions, we probe into the evolutions of the complex network systems [2]. Meanwhile,
what are their roles in the evolutions as the two important factors in complex networks of ran-
domness and regularity [3]? How does it evolve with randomness and regularity for the real
network of large scale? Is it strictly planning or completely random, or both coexist?

About the universality and dissimilarity of evolving networks [6], researchers have been
searching the key factors for the questions so as to serve the real world quickly and easily. In
order to explore the universality and dissimilarity in complex network evolutions, graph theory
provides a unified tool to describe network structures [7], and nonlinear dynamics gradually
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develops to be one of the fundamental tools for the topology analysis of complex networks in
order to find the interactions between the network behaviors [8].

To complex networks, at first in the 1960s, Erdös and Rényi put forward the random net-
work model and set up the random graph theory [9]. Their analytical results are in line with
the main characteristics of most real networks, so the random graph is the basic and direct
selection for complex networks in the next 40 years. Since the small-world (SW) model [10]
and SF model were demonstrated by Watts-Strogatz and Barabási-Albert (BA) [11] in 1998
and 1999 respectively, the characters of SW and SF to the real systems were revealed. The two
big discoveries make people realize that large numbers of real networks are neither completely
regular networks, nor entirely random networks.

It is well known that the clustering coefficient in regular network is higher and the average
path length in random network is smaller that is in line with the characteristics of the actual
systems by the analysis of regular networks and random networks [1, 9]. The results imply that
the real systems are likely between regular networks and random networks, just like the chaos
of the real world in the 1970s [12], which were the contradiction and unity relationship both
the randomness and the certainty.

Since the real networks are the combination of random and regular characteristics, in fact,
the evolution of SWmodel has indicated a transition from a fully regular network to a
completely random network [10], whether do the results completely correspond to the real
world evolving? However, Anishchenko [13] simulated an auto-associative memory network
by ordered and random connectivity and found that the memory network tended to be mutu-
ally exclusive behaviors with random and regular, not simply related to the notion of SW. For
the SF network model, Amaral regarded it as one of classes of SW networks [14], then whether
are the randomness and the regularity coexisting in SF network, and how do they affect the
topology of SF network?

In the real systems, random represents a common nature based on the results of random
graph theory [9], however, all kinds of external control factors become more and more power-
ful with the development and expansion of the real systems so as to guarantee the healthy
development. External control factors are expressed in many ways, such as determinacy [15],
controllability [16] and stability [17]. Except that, researchers also put forward complexity [18,
19] and trade-off relationship [20] to study the topology characters for complex networks.

From the initial BA network [11] to the late evolution models, researchers have set up a
large number of SF network models with a variety of evolution factors, such as random or
deterministic factors combining with cost [14], aging [21], competition [22], power-hop and
power-hop exponent [23] so as to look for the topology universality and dissimilarity.

In this paper, we still consider the factors of growth, preferential attachment, competition,
aging, resource balance and control [11, 16, 17, 19–22] in order to evolve real world and find
the key factors of the universality and dissimilarity for evolving networks. We evolve the com-
plex network models by adjusting the deterministic or random factors and discuss the effect of
determinacy and randomness on topology characters of SF networks based on our previous
model [24].

1 The extendedmodels

1.1 The model M
In our previous model [24], we optimized the SF model with competition and anti-preferential
deletion so as to reflect the competition ability, aging degree, resource balance and control abil-
ity based on the mechanisms of growth and preferential attachment. For comparison, our
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optimized model is called model M where the evolution includes three steps, initialization,
growth and optimization. Briefly as follows:

1. Initialization: Starting withm0 isolated nodes and then addingm new edges. Every edge is
selected with random and preferential [11, 22, 24]. The preferential probability of the node i is

Qðki; ZiÞ ¼
ZikiP
jZjkj

ð1Þ

2. Growth: Adding a new node with n new edges. The node i wins the new edges by its proba-
bility ∏(ki, ηi).

3. Optimization: Deleting q edges. The start and the end of the edges of the node i are deleted
by its anti-preferential probability ∏�(ki, ηi) [25],

Q �ðki; ZiÞ ¼
1

NðtÞ � 1
1�

Y
ðki; ZiÞ

� �
ð2Þ

1.2 The model R
Based on the model M, we evolve a new network model by increasing the randomness in order
to explore the effect of the determinacy and the randomness on SF network in topology univer-
sality and dissimilarity, named model R for short. With the similar evolutionary processes, the
model R begins withm0 isolated nodes, and at each time step comparing with the model M, (i)
Initialization is the same but (ii) Growth is from competition to random, i.e., the node i wins
the new edges randomly when a new node with n new edges is added. In (iii) Optimization, the
deleting edges of the node i decrease the determinacy, that is, with random and anti-preferen-
tial probability ∏�(ki, ηi).

1.3 The model D
Similarly, we evolve the model D by increasing the determinacy. The model D has the same
processes of (ii) Growth and (iii) Optimization with the model M, but (i) Initialization
improves the competition, i.e., a node i wins the start and the end points of a new edge all by its
probability ∏(ki, ηi) when addingm new edges to the model.

1.4 The model C
Similarly, we evolve the model C in order to improve the comparability. In the model C, (i) Ini-
tialization and (ii) Growth are the same as the model M. In (iii) Optimization, the deleting
edges of the node i are selected by random and anti-preferential probability ∏�(ki, ηi).

In all the models, ηi is the fitness [21] and ki is the connectivity of the node i. N(t) is the size
of the network andm� 0,m�m0, n> 0, q� 0,m + n> q. Meanwhile, no nodes are recon-
necting or self-join on the selection of the edge.

2 Degree distribution

By the discussion of the degree distribution P(k) in the model M [24], we got PðkÞ ¼ 1
A

nþB
Að Þ1A

kþB
Að Þ1Aþ1

and 1 < g ¼ 1
A
þ 1 � 3.
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2.1 Degree distribution of the model R
With the same processes by the continuum theory [11], the connectivity ki is the sum of three
parts, initialization, growth and optimization. The expressions are as follows:

@ki
@t

� �
ðiÞ
¼ m

1

N
þm 1� 1

N

� �
ZikiP
jZjkj

ð3Þ

@ki
@t

� �
ðiiÞ

¼ n
1

N
ð4Þ

@ki
@t

� �
ðiiiÞ

¼ �q
1

N
þ 1� 1

N

� �Y�
ðkiÞ

� �
ð5Þ

@ki
@t

¼ mþ n� 3q
N

þ mþ q�m
N

� � ZikiP
jZjkj

ð6Þ

The network size N is N(t) =m0 + t with time t goes on andm0 + t� t for the large t [24], thus

@ki
@t

� mþ n� 3q
t

þ mþ q�m
t

� � ZikiP
jZjkj

ð7Þ

We know that ∑j ηj kj approximates to C(m + n − q)t for the large t from the references [22, 24],
thus

@ki
@t

� mþ n� 3q
t

þ mZi
Cðmþ n� qÞt ki þ

ðq�mÞZi
Cðmþ n� qÞt2 ki ð8Þ

1
t2
can be neglected for the large t, so

@ki
@t

� mþ n� 3q
t

þ mZi

Cðmþ n� qÞt ki ð9Þ

The expression becomes a unified format by the same transformation and similar definition
with A ¼ m

Cðmþn�qÞ Zi and B =m + n − 3q from the model M [24],

@ki
@t

� A
t
ki ¼

B
t

ð10Þ

We get the same form of degree distribution by the same analysis and computations in the
model M from (17) to (26) in the reference [24], that is,

PðkÞ ¼ @ðki < kÞ
@k

¼ t
m0 þ t

1

A

nþ B
A

� 	1
A

kþ B
A

� 	1
Aþ1

ð11Þ

We get

PðkÞ � 1

A

nþ B
A

� 	1
A

kþ B
A

� 	1
Aþ1

ð12Þ
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2.2 Degree distribution of the model D
By the similar analysis of the model D with the model R, we get

@ki
@t

� �
ðiÞ
¼ m

ZikiP
jZjkj

þm 1� ZikiP
jZjkj

 !
ZikiP
jZjkj

ð13Þ

@ki
@t

� �
ðiiÞ

¼ n
ZikiP
jZjkj

ð14Þ

@ki
@t

� �
ðiiiÞ

¼ �q
Y�

ðkiÞ � 1þ
X
j6¼i

Y�
ðkjÞ
Y�

ðkiÞ
" #

ð15Þ

@ki
@t

¼ � 2q
N � 1

þ 2mþ nþ 2q
N � 1

� �
ZikiP
jZjkj

�m
ZikiP
jZjkj

 !2

þ q
1� ZikiP

j
Zjkj

N � 1

0
B@

1
CA

2

ð16Þ

@ki
@t

� � 2q
t
þ ð2mþ nÞZi
Cðmþ n� qÞt ki ð17Þ

The expressions become the unified form Eq (10) and degree distribution form Eq (12) given
A ¼ 2mþn

Cðmþn�qÞ Zi and B = −2q.

2.3 Degree distribution of the model C
By the similar analysis processes, we obtain

@ki
@t

� �
ðiÞ
¼ m

1

N
þm 1� 1

N

� �
ZikiP
jZjkj

ð18Þ

@ki
@t

� �
ðiiÞ

¼ n
ZikiP
jZjkj

ð19Þ

@ki
@t

� �
ðiiiÞ

¼ �q
1

N
þ 1� 1

N

� �Y�
ðkiÞ

� �
ð20Þ

@ki
@t

¼ m� 2q
N

þ mþ nþ q�m
N

� � ZikiP
jZjkj

ð21Þ

@ki
@t

� m� 2q
t

þ ðmþ nÞZi
Cðmþ n� qÞt ki ð22Þ

We find that the model C is exactly the same with model M for the large time comparing the
expression Eq (22).

3 Numerical simulation
We set different variable values to observe the changes of P(k) in different models in order to
verify the correctness of theoretical prediction for degree distribution formula and demonstrate
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the degree distribution better. The setting basis of variable values refer to the constraint
conditions.

From the processes of analysis in the models, we know that the actual and practical calcula-
tion formula expression is Eq (11), and the theoretical prediction of degree distribution for-
mula is Eq (12).

Fig 1 shows the numerical simulation of the model R and Fig 2 shows the numerical simula-
tion of the model D. The numerical simulation of the model C is just as the model M [24]
because of the same expressions for the model C with the model M.

In Fig 1(a), three group situations are A ¼ 4
5
, B = −1, g ¼ 9

4
; A ¼ 1

2
, B = 1, γ = 3; A ¼ 4

11
, B = 1,

g ¼ 15
4
respectively. In Fig 1(b), three group situations are A ¼ 4

5
, B = 7, g ¼ 9

4
; A ¼ 1

2
, B = 4, γ =

3; A ¼ 4
11
, B = 9, g ¼ 15

4
respectively. In Fig 1(c), two groups are A = 1, B = −4, γ = 2; A ¼ 1

2
, B =

−4, γ = 3 respectively. In Fig 1(d), the B = 2 and A and γ vary with η.
In Fig 2(a), five group situations are A = 2, B = −8, g ¼ 3

2
; A = 1, B = −2, γ = 2; A ¼ 2

3
, B = −2,

g ¼ 5
2
; A ¼ 1

2
, B = 0, γ = 3; A ¼ 2

5
, B = −2, g ¼ 7

2
respectively. In Fig 2(b), the B = −2 and A and γ

vary with η.
By the simulation results, we get that the degree distribution P(k) of numerical simulations

are in good agreement with theoretical predictions for all the extended models.

Fig 1. (a)—(c) With different conditions and parameters to compare the numerical simulation and the
theoretical prediction of the degree distribution P(k) for the model R. (a) With the condition q = n and after
time t = 1000, three groups of the parameters are Z

C ¼ 4
5
,m0 =m = 3, q = n = 2; Z

C ¼ 1
2
,m0 =m = 3, q = n = 1; Z

C ¼ 4
11
,

m0 =m = 3, q = n = 2. Blue, red and black solid lines stand for the theoretical degree distribution P(k); red plus,
black asterisk and blue diamond stand for the numerical simulation of degree distribution P(k) of three groups
respectively. (b) With the condition q < n and after time t = 1000, three groups of the parameters are Z

C ¼ 7
10
,m0 =

m = 8, n = 2, q = 1; Z
C ¼ 3

4
,m0 =m = 4, n = 3, q = 1; Z

C ¼ 1
2
,m0 =m = 8, n = 4, q = 1. Blue, red and black solid lines

stand for the theoretical degree distribution P(k); red plus, black asterisk and blue diamond stand for the
numerical simulation of degree distribution P(k) of three groups respectively. (c) With the condition q > n and
after time t = 1000, two groups of the parameters are Z

C ¼ 1
2
,m0 =m = 4, n = 1, q = 3; Z

C ¼ 1
4
,m0 =m = 3, n = 1,

q = 3. Blue and red solid lines stand for the theoretical degree distribution P(k); red plus and black asterisk stand
for the numerical simulation of degree distribution P(k) of two groups respectively. (d) The numerical simulations
of degree distribution P(k) with different competition abilities η and the static parametersC = 2,m = 3, n = 2,
q = 1.

doi:10.1371/journal.pone.0161653.g001
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Discussion
From the expressions of all the extended models, the degree distribution formula Eq (12) has
the same form of the model M [24], and is also similar to BA model, i.e., the extended models,
the model R, the model D and the model C, all can self-organize into a kind of SF network.

Next we discuss the scaling exponent in all the extended models. We get the scaling expo-
nent g ¼ 1

A
þ 1 from the degree distribution formula Eq (12) and ηmax < C� 2ηmax by the

results from the references [22, 24].

3.1 The model R

For every i, 1
A
¼ mþn�q

m
C
Z.

(1) If η = ηmax, 1 < C
Z � 2. Asm� 0, n> 0, q� 0,m + n> q, we have to discuss the relation

between n and q.
(i) If n = q, 1

A
¼ mþn�q

m
C
Z ¼ C

Z 2 ð1; 2� and 2 < g ¼ 1
A
þ 1 � 3. The result is consistent with

other SF network models.
(ii) If n< q, asm + n> q, mþn�q

m
2 ð0; 1Þ and 1

A
¼ mþn�q

m
C
Z 2 ð0; 2Þ, so 1 < g ¼ 1

A
þ 1 < 3.

Given γ = 2:
If C = 2ηmax, 1A ¼ mþn�q

m
C
Z ¼ 1, mþn�q

m
¼ 1

2
. We get q ¼ nþ m

2
. γ 2 (1, 2) if q > nþ m

2
and γ 2

(2, 3) if q < nþ m
2
.

If C ¼ 3
2
Zmax,

mþn�q
m

¼ 2
3
. We get q ¼ nþ m

3
. γ 2 (1, 2) if q > nþ m

3
and γ 2 (2, 3) if q < nþ m

3
.

In these conditions, we infer that the bigger the q is, the more the scaling exponents fall into
this range γ 2 (1, 2), and the smaller the q is, the more the scaling exponents fall into this range
γ 2 (2, 3).

Fig 2. (a)—(b) With different parameters to compare the numerical simulations and the theoretical
prediction of the degree distribution P(k) for the model D. (a) After time t = 1000, five groups of the
parameters are Z

C ¼ 5
6
,m0 =m = 3, n = 6, q = 4; Z

C ¼ 4
7
,m0 =m = 5, n = 4, q = 1; Z

C ¼ 8
21
,m0 =m = 5, n = 4, q = 1;

Z
C ¼ 1

2
,m0 = 3, n = 2,m = q = 0; Z

C ¼ 3
13
,m0 =m = 10, n = 6, q = 1;. Blue, black, red, green and fuchsine solid lines

stand for the theoretical degree distribution P(k); green plus, red asterisk, black circle, fuchsine diamond and
blue lower triangle stand for the numerical simulation of degree distribution P(k) of five groups respectively. (b)
The numerical simulations of degree distribution P(k) with different competition abilities and the static
parameters C = 2,m = 8, n = 5, q = 1.

doi:10.1371/journal.pone.0161653.g002
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(iii) If n> q, 1
A
¼ mþn�q

m
C
Z > 1 and g ¼ 1

A
þ 1 > 2.

If C ¼ 7
4
Zmax, we get γ = 3 when q ¼ n� 5

7
m. γ 2 (2, 3) if n� 5

7
m < q < n and γ> 3 if

q < n� 5
7
m.

If C ¼ 5
4
Zmax, we get γ = 3 when q ¼ n� 7

5
m. γ 2 (2, 3) if n� 7

5
m < q < n and γ> 3 if

q < n� 7
5
m.

In these conditions and given that the q is greater than 0, we infer that the bigger the q is,
i.e., more close to n, the more the scaling exponents fall into this range γ 2 (2, 3), and the
smaller the q is, the more the scaling exponents will be away from 3, i.e., γ> 3.

(2) IF η< ηmax, as ηmax < C� 2ηmax, so C
Z > 1. Similarly we discuss the γ by the relation

between n and q.
(i) If n = q, 1

A
¼ C

Z, so
1
A
> 1 and γ> 2. We get g ¼ C

Z þ 1 and the γ depends on the C
Z.

Given γ = 3, CZ ¼ 2 and C = 2η.

If Z ¼ 1
2
Zmax, as ηmax < C� 2ηmax, 2 < C

Z � 4 and 3< γ� 5. That is, γ> 3 if Z ¼ 1
2
Zmax. If

Z < 1
2
Zmax,

C
Z and γ will be bigger, and the scaling exponents will be away from 3 with η being

smaller and smaller. In this condition only Z > 1
2
Zmax, γ is likely γ = 3 or γmore falls into the

range γ 2 (2, 3).
(ii) If n< q, asm + n> q, mþn�q

m
> 0, so 1

A
¼ mþn�q

m
C
Z > 0 and g ¼ 1

A
þ 1 > 1.

(a) Given γ = 3, 1
A
¼ 2.

Given Z ¼ 1
2
Zmax , 2 < C

Z � 4.

If C
Z ¼ 4, q ¼ nþ m

2
. γ will be smaller if q > nþ m

2
, i.e., γ< 3, conversely γ will become bigger

if q < nþ m
2
, i.e., γ> 3.

If C
Z ¼ 5

2
, q ¼ nþ m

5
. γ will be smaller if q > nþ m

5
, i.e., γ< 3, conversely γ will become bigger

if q < nþ m
5
, i.e., γ> 3.

(b) Given γ = 2, 1
A
¼ 1.

Given Z ¼ 1
2
Zmax , 2 < C

Z � 4.

If C
Z ¼ 4, q ¼ nþ 3m

4
. γ will be smaller if q > nþ 3m

4
, i.e., γ 2 (1, 2), conversely γ will become

bigger if q < nþ 3m
4
, i.e., γ> 2.

If C
Z ¼ 5

2
, q ¼ nþ 3m

5
. γ will be smaller if q > nþ 3m

5
, i.e., γ 2 (1, 2), conversely γ will become

bigger if q < nþ 3m
5
, i.e., γ 2 (2, 3).

From (a) and (b), under the condition of C
Z ¼ 4, γ 2 (1, 2) if nþ 3m

4
< q < mþ n; γ = 2 if

q ¼ nþ 3m
4
; γ 2 (2, 3) if nþ m

2
< q < nþ 3m

4
; γ = 3 if q ¼ nþ m

2
; γ> 3 if n < q < nþ m

2
. Under

the condition of C
Z ¼ 5

2
, γ 2 (1, 2) if nþ 3m

5
< q < mþ n; γ = 2 if q ¼ nþ 3m

5
; γ 2 (2, 3) if

nþ m
5
< q < nþ 3m

5
; γ = 3 if q ¼ nþ m

5
; γ> 3 if n < q < nþ m

5
. In these conditions, the scaling

exponents will continue to change in the three intervals as long as q> n.
Meanwhile, CZ will be bigger if Z < 1

2
Zmax. We get that the interval γ 2 (2, 3) will be smaller,

and the intervals γ 2 (1, 2) and γ> 3 will be bigger by the same discussion similar to (a) and
(b). Conversely, CZ will be smaller if Z > 1

2
Zmax. We get that the interval γ 2 (2, 3) will be bigger,

and the intervals γ 2 (1, 2) and γ> 3 will be smaller by the same discussion similar to (a)
and (b).

(iii) If n> q, as C
Z > 1, 1

A
¼ mþn�q

m
C
Z > 1 and g ¼ 1

A
þ 1 > 2.

Given γ = 3, 1
A
¼ mþn�q

m
C
Z ¼ 2.

Given Z ¼ 1
2
Zmax , 2 < C

Z � 4. The result of the expression 1
A
¼ 2 is no solution because of

mþn�q
m

> 1.
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Given Z ¼ 3
4
Zmax ,

C
Z 2 4

3
; 8
3

� 

, but only the C

Z 2 4
3
; 2

� 

is possible because of mþn�q

m
> 1. That is,

it is possible for 1
A
¼ 2 only the C

Z < 2.

Given C
Z ¼ 5

3
, q ¼ n� m

5
and γ = 3. γ will become smaller and more likely falls into the range

γ 2 (2, 3) when q < n� m
5
, of course it will become bigger and more likely bigger than 3 when

q > n� m
5
, γ, i.e., γ> 3.

Given C
Z ¼ 3

2
, q ¼ n� m

3
and γ = 3. γ will become smaller and more likely falls into the range

γ 2 (2, 3) when q < n� m
3
, of course it will become bigger and more likely bigger than 3 when

q > n� m
3
, γ, i.e., γ> 3.

By the different values of C
Z, we infer that the bigger the η is, the smaller C

Z is, and there will be

a small range of q values that the scaling exponents fall into the range γ 2 (2, 3), that is more
stringent requirements for q. When the value of q is a little larger, the scaling exponents will be
easy bigger than 3, i.e., γ> 3. Conversely, the smaller η is, the bigger C

Z is, and there will be a big

range of q values that the scaling exponents fall into the range γ 2 (2, 3), i.e., the value of q is
relatively loose.

In these conditions and given that the q is greater than 0, we infer that the smaller the q is,
the more the scaling exponents fall into the range γ 2 (2, 3), and the bigger the q is, the more
the scaling exponents will be away from 3, i.e., γ> 3.

If Z < 1
2
Zmax,

C
Z will be easy bigger than 2 and 1

A
¼ mþn�q

m
C
Z > 2, that is, γ> 3. Moreover, as η

becomes smaller, the γ becomes larger.

3.2 The model D

For every i, 1
A
¼ mþn�q

2mþn
C
Z.

(1) If η = ηmax, 1 < C
Z � 2. Asm� 0, n> 0, q� 0,m + n> q and mþn�q

2mþn
¼ mþn�q

mþnþm
2 ð0; 1�,

1
A
¼ mþn�q

2mþn
C
Z 2 ð0; 2� and 1 < g ¼ 1

A
þ 1 � 3.

Given γ = 3, q =m = 0.
Given γ = 2, mþn�q

2mþn
C
Z ¼ 1.

If C
Z ¼ 2, q ¼ n

2
. γ 2 (2, 3) if q < n

2
and γ 2 (1, 2) if q > n

2
.

If C
Z ¼ 6

5
, q ¼ 4m�n

6
. γ 2 (2, 3) if q < 4m�n

6
and γ 2 (1, 2) if q > 4m�n

6
.

In these conditions and given that the q is greater than 0, we infer that no matter how the
value of C

Z changes, the bigger the q is, the more the scaling exponents fall into the range γ 2 (1,

2), and the smaller the q is, the more the scaling exponents fall into the range γ 2 (2, 3).
(2) If η< ηmax, CZ > 1. As mþn�q

2mþn
2 ð0; 1�, 1

A
¼ mþn�q

2mþn
C
Z > 0 and g ¼ 1

A
þ 1 > 1.

Given γ = 2, mþn�q
2mþn

C
Z ¼ 1.

Given Z ¼ 1
2
Zmax , 2 < C

Z � 4.

If C
Z ¼ 4, q ¼ 3n

4
þ m

2
. The scaling exponents will be farther from 2 within the range of less

than 2 if q > 3n
4
þ m

2
, i.e., γ 2 (1, 2), conversely they will be more close to 2 within the range of

less than 2 if q < 3n
4
þ m

2
, i.e., γ 2 (1, 2).

If C
Z ¼ 5

2
, q ¼ 3nþm

5
. The scaling exponents will be farther from 2 within the range of less than

2 if q > 3nþm
5
, i.e., γ 2 (1, 2), conversely they will be more close to 2 within the range of less than

2 if q < 3nþm
5
, i.e., γ 2 (1, 2).

Given γ = 3, mþn�q
2mþn

C
Z ¼ 2.

Given Z ¼ 1
2
Zmax , 2 < C

Z � 4.
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If C
Z ¼ 4, q ¼ n

2
. The scaling exponents will be farther from 3 within the range of less than 3 if

q > n
2
, i.e., γ 2 (2, 3), conversely they will be more close to 3 within the range of less than 3 if

q < n
2
, i.e., γ 2 (2, 3).

If C
Z ¼ 5

2
, q ¼ n�3m

5
. The scaling exponents will be farther from 3 within the range of less than

3 if q > n�3m
5
, i.e., γ 2 (2, 3), conversely they will be more close to 3 within the range of less than

3 if q < n�3m
5
, i.e., γ 2 (2, 3).

In these conditions by the different values of C
Z, we infer that the bigger the η is, the smaller C

Z

is, and there will be a small range of q values that the scaling exponents are close to the critical
value 2 or 3, that is more stringent requirements for q. Conversely, the smaller the η is, the big-
ger C

Z is, and there will be a big range of q values that the scaling exponents are close to the criti-

cal value 2 or 3, i.e., the value of q is relatively loose.
Given γ> 3, mþn�q

2mþn
C
Z > 2. The bigger the q is, the smaller mþn�q

2mþn
is because of mþn�q

2mþn
2 ð0; 1�.

Only the smaller the q is, the more likely the scaling exponents are to fall into the range from 2
to 3. Conversely, the bigger the q is, the more impossible the scaling exponents are to fall into
the range from 2 to 3.

3.3 The model C
Comparing with the model M, there are subtle differences in their evolution although the

expression @ki
@t
and P(k) are the same for the large t. The difference is reflected in the deletion of

the edge, that is q in @ki
@t

� 	
ðiiiÞ. For the model M,

@ki
@t

� �
ðiiiÞ

¼ �q
2

t � 1
1� ZikiP

jZjkj

 !
� 1

t � 1
1� ZikiP

jZjkj

 ! !2" #
ð23Þ

For the model C, the randomness replaces part of the competition,

@ki
@t

� �
ðiiiÞ

¼ �q
1

t
2� ZikiP

jZjkj

 !" #
ð24Þ

Comparing the parameters of q in the two models, we infer that the ideal network state can
quickly reach by the removal of a smaller edge in a competitive model, but it will come slower
and need remove more edges in a randomness model.

For the model R and the model D, comparing the same parameters in the range γ 2 (2, 3),
we find that the value space of q is small in the model D, that is more strict for q, and in the
model R, q is easier to come to γ 2 (2, 3), that is looser for q. Based on the discussion, we infer
that the network falls into the ideal range more quickly with the increase in the control of
determinacy, and the value of q is needed smaller and smaller. Comparing to the real world of
the network, it is more in line with the needs of rational use for resources in the actual system.
Meanwhile, by the discussion of η, the smaller η is, the more unreasonable in accordance with
the reality whether the model R or the model D.

Comparing to our four models from the randomness and determinacy, the strongest ran-
domness is the model R where has the most extensive and average scale of exponents and is
looser in the parameters. The strongest determinacy is the model D where has also the exten-
sive scale of exponents, but the scaling exponents are easier to converge to γ 2 (2, 3), mean-
while the model D is more strict in the parameters. The model C and the model M are in the
middle of them, and the scale exponents are similar and have the average control degree in the
parameters comparing with the mode R and the model D.

TUDSFN

PLOSONE | DOI:10.1371/journal.pone.0161653 August 25, 2016 10 / 13



Bianconi [22] ever put forward that some restrictions affected the SF network topologies,
and adjusted the power-law distribution and the scaling exponents by deterministic control
with competition, which is an example leading to multiscaling in SF network of full competi-
tion. Albert [6] pointed that the universality of SF network, if exist, depended on the subtle
changes of the network’s parameters, which is a capacity model of SF network with full random
in processes. Except that, Chen [25] demonstrated two capacity and SF network models with
the similar processes of the model R and the model D, but the results had a better scale of expo-
nent which was full SF state except a small scale in the parameters. Overall, our models are in
line with the results of SF networks researches.

For special cases, it is actually existing for γ 2 (1, 2) or γ> 3. For example, the airplane net-
work still needs to keep an site if the airplane site is in the military stronghold, even though it is
not competitive, that is η	 ηmax and γ> 3. Meanwhile, the state n� q also can appear if the
sum of resources is fixed.

Based on the discussion above, let’s focus on the topology universality and dissimilarity of
SF evolving networks. From our model M [24], we know that the model M has a comprehen-
sive and universal scale for the real world evolving. Then we get three different models by mod-
ifying the subtle changes in network evolution on three steps, and all the models can self-
organize into SF state and have the same scale ranges with the model M, i.e., they are all more
comprehensive and universal scale for the real world evolving. However, they present different
parameter control abilities for the comprehensive and universal scales, despite the topology
universality is similar. In particular, the effects on SF network topologies are different when we
modify the determinacy and randomness in evolving, i.e., topology dissimilarity is affected by
some subtle changes, meanwhile, the degrees of dissimilarity are not the same.

By the topology universality and dissimilarity in SF network models, we can conclude that
the subtle changes on randomness and determinacy affect the nature of the topology universal-
ity and dissimilarity, and the change is nonlinear and dynamic.

Conclusion
Summary of our models and other SF models, many networks in real world can eventually
evolve into SF state as long as following the growth and preferential attachment, regardless of
the middle process of random or deterministic, including a variety of competition, aging, opti-
mization, cost, capacity, controllability, stability, trade-off relationship and local events.

From the the complex network developments we know that the control of determinacy is
becoming more and more important in the evolutions although the randomness is in line with
the characteristics of most of the real network evolutions, especially in SW networks and SF
networks. From our models, we know that the ideal state comes more quickly and less cost by
deterministic control although the model R can also eventually evolve to an ideal state and will
be more cost in n� q.

Of course, in our models, every model stands for a kind of real networks, and every network
can evolve to the last ideal state or balance state by the parameter modifications ofm, n, q, η.
Meanwhile, the sub-SF network γ 2 (1, 2] and γ> 3 also contain a lot of very interesting con-
clusions and findings. In the future, we will continue to pay close attention to these special net-
work states.

Supporting Information
S1 File. Program for data. The program data for Fig 2, which need to run by matlab.
(PDF)
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