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Abstract
Background  We demonstrate the first self-learning, context-sensitive, autonomous camera-guiding robot applicable to mini-
mally invasive surgery. The majority of surgical robots nowadays are telemanipulators without autonomous capabilities. 
Autonomous systems have been developed for laparoscopic camera guidance, however following simple rules and not adapt-
ing their behavior to specific tasks, procedures, or surgeons.
Methods  The herein presented methodology allows different robot kinematics to perceive their environment, interpret it 
according to a knowledge base and perform context-aware actions. For training, twenty operations were conducted with 
human camera guidance by a single surgeon. Subsequently, we experimentally evaluated the cognitive robotic camera control. 
A VIKY EP system and a KUKA LWR 4 robot were trained on data from manual camera guidance after completion of the 
surgeon’s learning curve. Second, only data from VIKY EP were used to train the LWR and finally data from training with 
the LWR were used to re-train the LWR.
Results  The duration of each operation decreased with the robot’s increasing experience from 1704 s ± 244 s to 1406 s ± 112 s, 
and 1197 s. Camera guidance quality (good/neutral/poor) improved from 38.6/53.4/7.9 to 49.4/46.3/4.1% and 56.2/41.0/2.8%.
Conclusions  The cognitive camera robot improved its performance with experience, laying the foundation for a new genera-
tion of cognitive surgical robots that adapt to a surgeon’s needs.

Keywords  Cognitive surgical robotics · Artificial intelligence · Surgical data science · Colorectal surgery · Machine 
learning

Medical robots have gained increasing popularity as assis-
tive devices for surgical applications throughout the last 
decades [1], especially in laparoscopic surgery. In surgical 
specialties as diverse as urology [2], gynecology [3], and 
general surgery [4] the da Vinci® telemanipulator (Intuitive 
Surgical, Sunnyvale, USA) is leading the field. Whereas the 
da Vinci® combines several robotic arms in an overall sys-
tem to perform a complete operation via robotic telemanipu-
lation, a number of smaller, specialized systems have been 
proposed for specific applications, thus far mainly focusing 
on camera guidance in laparoscopic surgery [5–9]. Learning 
systems have been of particular interest to leverage data for 
learning complex skills [10, 11].

In laparoscopic surgery, camera guidance is of utmost 
importance for clinical outcome and successful avoidance of 
complications as the surgeon’s view of the operating field is 
determined by the quality of images and strongly influenced 
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by camera motion. Nevertheless, in the standard of care, 
camera guidance in laparoscopic surgery is not performed by 
the operating surgeon, but by a surgical assistant. The assis-
tant is required to understand and anticipate the surgeon’s 
activities and intentions to provide the best view render-
ing camera guidance a non-trivial surgical task. To support 
the surgeon, a number of robotic systems have been devel-
oped to precisely guide the camera in laparoscopic surgery. 
Some of them, including systems already employed in clini-
cal use [5–9], are telemanipulated by the surgeon allowing 
full manual control over the field of view at the price of an 
increased mental workload, thus potentially distracting from 
critical tasks. To address the limitations of telemanipulated 
camera guidance, robotic task automation is proposed [12]. 
Whereas some systems try to sense the intent of the surgeon 
by monitoring the eye-gaze [13], most of them track the 
position of the instrument tips and apply basic rules, such 
as steady instrument following [14]. Limitations of these 
systems arise due to their lack of flexibility, particularly, as 
different camera guidance behaviors are required according 
to various surgical situations. With their limited set of rules, 
existing robots are unable to adapt to the surgeon’s need, nor 
do they account for different types of procedures or different 
surgical steps. However, the attempt to elaborate task spe-
cific control schemes requires extensive research even for a 
limited set of tasks [15].

The limited utilization of autonomous camera guidance 
during laparoscopic surgery [16] has motivated us to explore 
the potential of cognitive robotics for surgery. Cognitive 
robots refer to robotic systems capable of sensing their envi-
ronment and reacting in a way that is adaptive to the specific 
situation. Additionally, these robots learn from experience 
and change their behavior over time [17] with previous 
applications in service robotics, such as vacuum cleaning 
[18], or autonomous driving [19]. However, until today this 
paradigm has not been applied to surgical robotics.

In this work, we demonstrate a novel concept to realize 
a cognitive model in a surgical robot resulting in cognitive 
camera control for laparoscopic surgery. Further, we provide 
proof of robot learning in a surgical scenario leading to the 
robot improving its performance over time with increased 
experience. The robotic system is shown to learn not only 
from human surgical activities, but also from other robots. 
Additionally, we present an experimental validation of this 
methodology with two different robot kinematics.

Materials and methods

Cognitive model

The developed cognitive model combines four elements. 
The robot perceived its environment, interpreted it 

according to a knowledge base and performed a context-
aware surgical action. By incorporating feedback from that 
action into its knowledge base, the robot was enabled to 
learn from experience (Fig. 1A). In the following we will 
give an overview of the system architecture from a surgical 
perspective. Further technical details can be found in [20].

Fig. 1   Learning camera robot. In the present study the robot real-
izes a cognitive model (A). Here, the robot perceives its environment, 
interprets it according to a knowledge base and performs a context-
aware action. Feedback from that action is incorporated into the 
knowledge base and enables the robot to learn from experience. For 
the experimental setup (B) either a Light Weight Robot 4 by KUKA 
Roboter GmbH Augsburg, Germany (LWR, left) or a VIKY EP by 
TRUMPF Medizin Systeme GmbH+Co. KG, Saalfeld, Germany 
(right) was used. The surgeon (i) controls the instruments, the robot 
(ii) controls the minimally invasive camera. Surgery is performed 
on operation phantom OpenHELP (iii), the endoscopic video is dis-
played on a screen (iv) while six ceiling mounted cameras track the 
positions of instruments and minimally invasive camera (vi). The 
experiments were performed (C) with human camera guidance dur-
ing the surgeon’s learning curve (H1, n = 8) and after completion of 
the surgeon’s learning curve (H2, n = 12), Then, learning of the robot 
occurred during four different experiments in three consecutive steps 
(adapted from [20]): first, VIKY EP and LWR learned from human 
demonstration (i). Then, the robot learned from another robot’s expe-
rience only (ii). Finally, the robot learned from its own combined 
experience in two different experiments (iii)
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Perception

The robot perceived information about its environ-
ment from various sensors as well as from a multimodal 
human–machine-interface (Fig. 2). Utilized sensors include 
the laparoscopic camera that captures surgical images inside 
the abdomen, the angle settings in the robot’s joints, as well 
as external optical tracking to obtain spatial position infor-
mation of the laparoscopic camera, surgical instruments, and 
the robot. The human–machine-interface comprised a web 
interface for mobile devices and the hands-on-robot-mode. 
The web interface provided means for choosing the surgical 
step, as well as rating camera guidance quality (see section 
“Knowledge base”). Additionally, the interface allowed for 
changing between control modes (cognitive camera control/
manual/hands-on) and entering manual movement com-
mands, provided the robot was in manual mode.

Knowledge base

The knowledge base constitutes the core element of the cog-
nitive model by replacing the set of movement rules pre-
viously used in other autonomous systems, such as visual 
servoing [21–23]. The knowledge base comprises two types 
of knowledge, namely factual knowledge and surgical expe-
rience (see section “Learning”). For the factual knowledge, 
three different camera guidance qualities were defined, as 
summarized in Table 1. Furthermore, the surgical proce-
dure was analyzed similarly to previous work in pancreatic 
surgery [24]. A surgical process model was created that 
reflects the experimental setup and comprised of four surgi-
cal phases and thirteen surgical steps (Table 2). Additionally, 
general rules for effective camera guidance were incorpo-
rated into the knowledge base, such as the surgical need for 
a stable horizon.

Fig. 2   Classification of camera guidance quality. For the percep-
tion endoscopic image data are collected during the experiments on 
operation phantom OpenHELP and annotated live with the web inter-
face (i) to generate image labels rating the camera guidance quality 
“good”, “medium” or “poor” (ii). These image labels (iii) together 

with the corresponding instrument poses (iv) are used for machine 
learning. Random forests are used to train camera guidance classifiers 
(v). The robot applies these classifiers to new images (vi) to calculate 
camera guidance quality for potential next camera positions for robot 
motion (vii)

Table 1   Definition of camera 
guidance quality and evaluation 
criteria to rate the robot’s 
performance as feedback for 
learning

Camera guid-
ance quality

Comfort of surgery Region of interest Camera motion

“Good” Surgeon can perform task comfortably Central in picture Not required
“Neutral” Surgeon can perform task In picture, not central Favorable
“Poor” Surgeon cannot perform task Not in picture Required



5368	 Surgical Endoscopy (2021) 35:5365–5374

1 3

Learning

To enable the robot to learn camera guidance from gained 
experience, and thus, improving its performance, we 
designed a three-step learning procedure comprising per-
ception of data, annotation of data, and machine learning 
(Fig. 2). The robot was pre-trained with data obtained from 
manual camera guidance as performed by a human surgeon 
(see section “Experimental procedure”). The acquired data 
for training contained the spatial position of instruments 
and the camera as well as the camera images. Addition-
ally, a surgical expert retrospectively annotated the data 
semantically to specify camera guidance quality (Table 1), 
surgical phase and surgical step (Table 2) for each camera 
image. Supervised machine learning was then performed 
on these semantically annotated data to train camera guid-
ance classifiers as models of camera guidance quality [20]. 
These models were stored as experience within the knowl-
edge base and later used to classify the current camera 
guidance quality during surgery (see section “Interpreta-
tion”). Subsequently, during robotic camera guidance the 
current surgical step was annotated automatically during 
robot-assisted cognitive camera control by choosing a 
camera guidance classifier specific to the respective sur-
gical step. Additionally, the camera guidance quality was 
rated during the surgery by the surgical expert through the 
web-interface on a mobile device not interfering with the 
operating surgeon and the operation itself. New data were 
used to repeat machine learning to improve camera guid-
ance classifiers and subsequently the robot’s performance.

Interpretation

Interpretation included preprocessing of sensor data and 
classification of camera guidance quality using the camera 
guidance classifiers in the knowledge base. The instruments’ 
positions in the camera image were identified via external 
optical tracking of spatial positions of the laparoscopic cam-
era and surgical instruments. In addition, the endoscope tip 
position was obtained through the robot’s forward kinemat-
ics after hand–eye–calibration as calculated from the joint 
angle settings. Subsequently, various possible positions of 
the camera were classified as “good”, “neutral” or “poor” 
utilizing the previously trained camera guidance classi-
fiers from the knowledge base. Adaptive sampling was 
performed to make optimal use of the available computing 
performance. When the current camera position was rated 
“good”, sampling density was high around this position and 
only neighboring positions were evaluated. On the contrary, 
when the camera position was not rated “good”, sampling 
density was lowered to achieve a higher coverage with the 
same computational power.

Action

The action module actively controlled the robot, i.e. planned 
the optimal path according to the interpretation of the current 
situation and executed the planned movements. To smoothen 
the trajectory and eliminate cyclic camera motions, a time-
decaying motion hysteresis was implemented to suppress 
proposed endoscope positions that were in close proximity 
to previous ones. Constraining robot motion based on work-
space data from human camera guidance ensured avoidance 
of contact between the camera and the phantom wall. The 
robot’s control was implemented utilizing the Robot Oper-
ating System (ROS) as middleware [25]. During hands-on 
mode the control software compensated for gravity forces 
on the robot, however recognizing forces applied by the sur-
geon’s hand as commands [26]. Furthermore, our implemen-
tation allowed operating robots with different kinematics and 
varying degrees of freedom (DoF) with robots ranging from 
kinematically deficient (3 DoF) to kinematically redundant 
(7 DoF).

Experimental procedure

Figure 1B gives an overview of the experimental setup.

Phantom model

Minimally invasive rectal resection with total mesorectal 
excision was chosen to experimentally evaluate cognitive 
camera guidance, as this surgical procedure places high 
demands on camera control. Surgery takes place in three 

Table 2   Surgical process model for minimally invasive rectal resec-
tion with total mesorectal excision in Open Heidelberg Laparoscopy 
Phantom (OpenHELP)

Surgical phase Surgical step

Mobilization of colon Mobilization of sigmoid
Mobilization of descending colon
Mobilization of splenic flexure
Inspection of colon

Dissection of vessels Lancing retroperitoneum
Delineating vessels
Division of artery
Division of vein

Dissection of rectum Opening lesser pelvic peritoneum
Dissection of rectum

Resection of rectum Transection of rectum
Salvage of rectum
Inspection of lesser pelvis
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quadrants of the abdomen and in the lesser pelvis requiring 
different types of camera guidance. For example, the “mobi-
lization of sigmoid” requires steady, but long movements in 
one direction, whereas the “dissection of rectum” requires a 
rather dynamic camera guidance following the instruments 
in the narrow space of the lesser pelvis. The procedure was 
executed on a previously introduced standardized, human-
sized model for minimally invasive surgery (Open Heidel-
berg Laparoscopy Phantom, OpenHELP) [27]. In our experi-
ments the original torso, liver, spleen, kidney, bladder, pelvic 
floor muscles, and rectum were modeled and included in the 
OpenHELP. Additionally, a colon was created from cloth, 
filled with cotton wool and covered with latex sheets simu-
lating visceral peritoneum and mesocolon. Furthermore, 
aorta, inferior mesenteric artery and vein with connective 
tissue, ureter and peritoneum covering these structures were 
added. Several of these structures, including mesocolon, per-
itoneum, inferior mesenteric artery and vein, were cut during 
experimental surgery, and thus, were rendered replaceable. 
The 3D printed abdominal wall mimicked the pneumoperito-
neum and laparoscopy was performed through a set of holes 
representing standard trocars.

Medical devices and instrument tracking

For experimentation, we utilized one of two minimally inva-
sive cameras with 0° optics (TIPCAM1 3D with IMAGE1 
camera control, KARL STORZ GmbH & Co. KG, Tuttlin-
gen, Germany and R. Wolf Endocam Logic HD, Richard 
Wolf GmbH, Knittlingen, Germany). Surgical instruments 
included a minimally invasive bowel grasper, bowel grasper 
with gauze, scissors, and single clip applier (KARL STORZ 
GmbH & Co. KG, Tuttlingen, Germany). Images from the 
minimally invasive camera were recorded with an average 
frame rate of 27 Hz on a personal computer (Intel Core 
i5-4590, 32GB RAM, SSD HDs, Blackmagic DeckLink 
Mini Recorder) connected to the respective camera control 
unit. Optical tracking devices tracked the positions of surgi-
cal instruments and robot through external, passive optical 
tracking. We either applied two Polaris® systems (Northern 
Digital Inc., Ontario, Canada) with one dynamic reference 
frame for registration of both coordinate frames, or an ART​
TRA​CK system (Advanced Realtime Tracking GmbH, Weil-
heim i.OB, Germany) with six ceiling-mounted cameras.

Robot kinematics

During experiments, generalizability of our cognitive model 
was conveyed through utilizing two different robot kinemat-
ics. The VIKY EP (TRUMPF Medizin Systeme GmbH+Co. 
KG, Saalfeld, Germany) was used with a modified control 
unit to enable remote control of the robot. This 3 DoF robot 
with no additional sensors is certified for medical usage. 

The second utilized robot was the LWR 4 (KUKA Roboter 
GmbH, Augsburg, Germany) with 7 DoF and additional kin-
ematic sensors for safety and hands-on mode, however not 
certified for medical usage. During experimental evaluation, 
both robots were attached to the operation table by metal 
brackets opposite to the surgeon, thus preventing collision 
with the surgeon.

Experimental evaluation

A number of different experiments consisting of several 
operations each were performed to train the robot based on 
human camera guidance, allow it to learn from experience, 
and investigate improvements in the robot’s performance 
with additional experience. All surgeries were performed 
by the same surgeon who had completed his learning curve 
with the operative procedure in the phantom model prior to 
robot usage. As illustrated in Fig. 1C, a total of n = 20 opera-
tions were performed with human camera guidance by the 
same camera assistant. Experiments H1 (n = 8) and H2 (n 
= 12) refer to procedures prior to and after completing the 
learning curve, respectively. Human camera guidance was 
followed by experiment Viky (n = 5) and experiment L1 (n 
= 5) investigating cognitive camera control and using the 
knowledge base of H1 and H2. Subsequently, experiment L2 
(n = 5) was conducted with LWR, however, only utilizing 
data generated with VIKY EP (experiment Viky) for learn-
ing camera guidance classifiers. Hereby, we demonstrated 
cross-robot learning, i.e. the robot’s ability to learn from 
another robot’s experience with varying kinematics instead 
of human training. Finally, for experiment L3 (n = 1), data 
from all previous procedures with LWR (experiments L1 
and L2) were used for learning to demonstrate continuous 
learning.

An approval by our institutional review board and written 
informed consent were not necessary, as there was no study 
on human or animal subjects performed.

Statistical analysis

We evaluated the robot’s performance during each opera-
tion through the objective parameters “duration of the sur-
gery”, “proportion of cognitive camera control as opposed 
to manual or hands-on mode”, as well as “required amount 
of alternating between cognitive camera control to manual 
or hands-on mode”. As a subjective parameter “camera 
guidance quality” was used by calculating the proportion 
of good/neutral/poor. For all parameters, mean and stand-
ard deviation were calculated. To investigate robot learn-
ing between experiments L1, L2 and L3, Levine’s test for 
homogeneity was performed, followed by a one-way analysis 
of variance (ANOVA). To test our hypothesis of a learning 
robot, contrasts for L2 versus L1 and L3 versus L2 were 



5370	 Surgical Endoscopy (2021) 35:5365–5374

1 3

provided with a p value < 0.05 considered to prove statistical 
significance. Data analysis and visualization were performed 
with R statistics [28].

Results

The cognitive camera control was realized successfully as 
demonstrated in movie S1. In total n = 36 operations over a 
duration of 977 mins, 807’816 frames and 1’845’607 spatial 
positions of camera and instruments were recorded. Addi-
tionally, 22’628’255 synthetic 3D positions of the camera 
were generated as training samples.

The duration of the operation was influenced by an ini-
tial learning curve of the operating surgeon during human 
camera guidance (H1, operations 1–8). The learning curve 
was determined based on a distribution of durations with 
a maximum of 4265 s (operation 1) decreasing to 1465 s 

(operation 8) and an average duration of 2090 ± 919 s. After 
completion of this learning curve, the average duration of 
one operation procedure was 1325 s ± 144 s for human 
guidance (H2, operations 9–20). The duration of the opera-
tion supported by cognitive camera control decreased with 
increasing experience of the robot from L1 (1704 s ± 244 s) 
over L2 (1406 s ± 112 s) to L3 (1197 s), indicating a learn-
ing curve for the robot. Here, Levine’s test shows homoge-
neity of variances for experiments L1, L2 and L3. One-way 
ANOVA resulted in a significant difference between the 
individual experiments (F-value = 4.7, p = 0.045). However, 
the comparison between operation duration for L1 and L2 
did not reach statistical significance (p = 0.1). The resulting 
durations for human and robotic camera guidance are sum-
marized in Fig. 3A.

Camera guidance quality rated as “good”, “neutral”, 
“poor” by a surgical expert improved with increasing expe-
rience of the robot, such that a higher proportion of “good” 

Fig. 3   Experimental results. Human camera guidance (n = 20) is 
divided to account for the initial learning curve of the surgeon with 
the phantom setup (H1, operations 1–8) and human camera guid-
ance after completion of the learning curve (H2, operations 9–20). 
The other groups represent robotic camera guidance with VIKY EP 
learned from human (Viky), Light Weight Robot 4 (LWR) learned 

from human (L1), LWR learned from Viky (L2) and LWR learned 
from L1 and L2 (L3). The upper boxplot displays the duration of the 
experiments (adapted from [20]), the lower boxplot displays the cam-
era guidance quality (CGQ) of the experiments, i.e. the proportion of 
camera guidance being rated good/neutral/poor by a surgical expert. p 
values have been determined by one-way analysis of variance
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and lower proportion of “poor” was observed from L1 over 
L2 to L3. Levine’s test showed homogeneity of variances for 
L1, L2 and L3 for both, “good” and “poor” camera guidance. 
One-way ANOVA showed a significant difference between 
the experiments (“good”: F-value = 5.52, p = 0.031; “poor”: 
F-value = 14.58, p = 0.002). However, for the proportion of 
“good” camera guidance the difference between experiments 
L1 and L2 did not reach statistical significance. The result-
ing camera guidance quality for human and robotic camera 
guidance is summarized in Fig. 3B.

For the proportion of cognitive camera control compared 
to manual or hands-on mode Levine’s test showed homo-
geneity of variances for L1, L2 and L3. One-way ANOVA 
showed a significant difference between the experiments 
(F-value = 34.2, p < 0.001). The proportion of cognitive 
camera control increased with increasing experience from 
L1 (62.4% ± 4.9%) to L2 (85.4% ± 4.2%, p < 0.001) and L3 
(85.1%, p = 0.002). Accordingly, the number of times the 
surgeon had to change to manual or hands-on mode to allow 
for manual commands to the robot during surgery decreased 
from L1 (21.8 ± 3.7) to L2 (10.4 ± 2.1, p < 0.001), but not 
for L3 (14, p = 0.45). Levine’s test showed homogeneity 
of variances for L1, L2 and L3. One-way ANOVA showed 
a significant difference between L1, L2 and L3 (F-value = 
18.3, p = 0.001).

Discussion

Our primary achievement is the demonstration of a meth-
odology that represents a paradigm shift from previously 
programmed robots not suitable to adapt to a surgeon’s needs 
to a new generation of cognitive robots that will be able to 
adapt to different surgeons, surgical situations and surgi-
cal procedures. Our methodology enables cognitive camera 
control for a learning robot in minimally invasive surgery. 
The methodology is applicable to various robot kinemat-
ics as demonstrated during experimental validation. Our 
experiments showed the robot’s ability to learn from human 
surgeons, from other robots, and on its own.

As early as 2008 the SAGES-MIRA Robotic Surgery 
Consensus Group envisioned that “Robots could use arti-
ficial intelligence to learn from the surgeon operating the 
device” [29]. In our study the robot positioned itself autono-
mously after having learned the desired spatial relation of 
surgical instruments and camera, depending on the phase of 
a surgical procedure. This autonomy of the robot to position 
the camera enabled the surgeon to focus on essential surgi-
cal tasks, without the need to guide the camera. If the cam-
era position was unsatisfactory to the surgeon, he was able 
to correct it manually using one of different input methods 
(touch display or hands-on mode on the LWR). In contrast 
to previous systems, the robot extended its knowledge base 

and learned from this experience for future interventions. 
Thus, the robot changed its behavior over time and improved 
its performance with every additional procedure resulting 
in adaptation of the robot to the surgeon and not vice versa. 
Thereby, different behavioral patterns and individual pref-
erences of various surgeons may be learned by the robot, 
presenting a matter for future investigation. In addition, due 
to the provided surgical process model, it was possible to 
train camera guidance classifiers tailored for each surgical 
step. The classifiers may also be tailored to the individual 
surgeon’s preferences over the course of several interven-
tions. Based on the duration of procedures with human cam-
era guidance, we can assume that the learning curve for the 
surgeon had been completed before initiating the robotic 
experiments. Thus, a difference in the overall performance 
of the team “surgeon plus robot” was likely to be caused 
by the improved robot performance. Here, we focused on 
the robot learning curve as the difference between the three 
experiments L1, L2 and L3. The resulting learning curve 
was characterized by decreasing duration of the surgery 
with higher proportion of “good” camera guidance quality 
and lower proportion of “poor” camera guidance quality. 
Furthermore, less manual corrective feedback was required 
for L2 and L3 compared to L1. Moreover, apart from the 
quantitative results the robot proved learning in a qualitative 
way as perceived by the surgeon. Initially, during several 
surgical steps, such as opening the lesser pelvic peritoneum, 
the zooming motion (i.e., moving the camera in or out) was 
“trained” explicitly, because during experiments Viky and 
L1 no zooming was conducted by the cognitive camera con-
trol. Instead, the robot was manually directed to zoom in 
when required by the surgeon. Subsequently, in experiments 
L2 and L3, the robot zoomed in autonomously as it had 
learned the necessity for this movement from data collected 
during Viky and L1.

Metrics to measure the quality of the camera guidance 
and the robot’s learning progress limit the evaluation of 
learning camera robots. Moreover, only few of these met-
rics can be utilized as a learning feedback for the robot. Still, 
feedback to the robot is of utmost importance as better feed-
back results in better surgical training of the robot [30, 31]. 
The objective metrics overall procedure time and setup time 
are a common standard for evaluation of surgical robots. 
These metrics can be calculated automatically by the robot’s 
software and are easily comparable (at least for simple sur-
gical procedures). Their main disadvantage is the lack of 
specificity in the feedback for a learning robot. Thus, in our 
approach, duration of the surgical procedure was not imple-
mented as a feedback for the robot, but only to measure and 
evaluate its performance. However, reduced procedure time 
may also result from the surgeon learning to work with the 
robot. Subjective metrics, such as questionnaires focusing on 
the surgeon’s user experience are crucial for user acceptance, 
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and thus, the translation into practice. Unfortunately, most 
criteria are not well defined and the results of these crite-
ria are not entirely representative for all surgeons as they 
strongly depend on personal preferences. Additionally, these 
criteria have to be obtained after the surgical intervention 
increasing the workload of the surgeon and feedback often 
is not detailed enough to improve the system’s performance 
in specific situations. To overcome some of these limita-
tions, we used camera guidance quality as an additional met-
ric. During experimentation, an additional surgical expert 
assessed the camera guidance quality, rendering it a direct 
subjective metric. Nevertheless, this metric has proven to be 
suitable as feedback to a learning robot. The disadvantage of 
rating the camera quality during experiments is the neces-
sity of a surgical expert in addition to the surgeon, because 
annotation by the surgeon would interfere with the surgical 
workflow. Thus, the number of interactions of the surgeon 
with the system was logged and evaluated, indicating the 
surgeon’s satisfaction with the (autonomous) camera guid-
ance with less interaction (or correction) representing better 
outcomes. In future investigations we would like to use these 
corrective commands directly as a feedback for the learning 
robot. This would also diminish the time-consuming anno-
tation of camera guidance quality be an additional surgical 
expert.

Main limitation of our study is its limited number of 
participants. For this feasibility study a single surgeon per-
formed all operations rendering the procedures standard-
ized and easy to compare, especially for investigating the 
robot’s learning curve, at the expense of generalization of 
the results. Additionally, the robot’s capabilities were only 
evaluated during one surgical procedure. Even though lapa-
roscopic rectal resection is a rather complex procedure, it 
has yet to be proven, whether the approach is applicable to 
other procedures (cholecystectomy, hernia repair, pancre-
atic surgery etc.). Finally, our study is limited to a medical 
phantom setuo awaiting translation into animal lab studies 
and subsequent clinical trials. Furthermore, although most 
surgeons prefer a 30°-optic for laparoscopic anterior rectal 
resection with total mesorectal excision, in our study we 
utilized a 0°-optic. Usage of a 30°-optic would result in 
an additional degree of freedom in camera control posing 
another major challenge for the machine learning algorithm. 
Thus, further engineering and computer science research are 
necessary to fulfill this surgical requirement in future work. 
In addition, our approach has to proof not only feasibility, 
but also advantages over previous approaches of visual ser-
voing, i.e. simply following the instrument tip with the cam-
era. Nevertheless, the present study not only demonstrates 
a completely novel cognitive approach to camera guidance 
robots and their application in a surgical setting, but also 
demonstrates the robot’s learning progress and improvement 
in performance.

Cognitive surgical robots may have a huge clinical impact 
in the future because of their ability to perceive their envi-
ronment, interpret the situation based on a knowledge base, 
and act accordingly. These robots can learn and improve 
their performance by incorporating new experiences into 
their knowledge base adapting to different surgeons, different 
surgical procedures and different patient anatomies. Future 
research may focus on incorporation of existing or novel 
technologies, such as surgical phase detection and autono-
mous manipulation of tissue. In the present study, external 
cameras continuously track the instruments, however, it has 
previously been shown that instruments as well as organs 
can be tracked directly in the laparoscopic video by means of 
computer vision [32]. Whereas we defined the phase of the 
operation manually during the operation, research suggests 
that skilled surgeons can extract it from surgical device data 
alone [33] leaving room for further automated detection of 
the surgical phase. For simple procedures, such as cholecys-
tectomy, the phase can even be automatically recovered from 
the video using deep learning algorithms [34] and procedure 
duration can be recovered from medical device data in real 
time [35]. Furthermore, reinforcement learning algorithms 
are a current trend to solve complex motion tasks in robotics. 
However, employing reinforcement learning algorithms, that 
require interaction between learning robot and environment, 
poses a severe safety issue in medical robotics. Clinical 
translation of the proposed learning camera guidance system 
may lay the foundation to gather high quality and quantity of 
labeled data to employ offline reinforcement learning algo-
rithms to the task of robotic camera guidance to gradually 
learn and represent more complex behaviors [36]. In a recent 
review of machine learning techniques in surgical robotics 
Kassahun et al. describe a number of applications for learn-
ing surgical robots, such as tying a knot or steering of vas-
cular catheters [37]. They conclude that machine learning 
may help to extract human skill and transfer it to surgical 
robots emphasizing the potential of cognitive surgical robots 
as demonstrated in our study. Furthermore, the concept of 
a robot learning from another robot’s experience that we 
demonstrated in our study, may help to transfer experience 
easily from one surgical center to another via data transfer 
instead of having to train the robot all over again.

In the future, cognitive surgical robots and automated 
systems may become the center of a fully integrated cogni-
tive operating room. They will not only guide the camera 
or steer catheters, but may also expose tissue with the right 
force, cut in the correct surgical plane [38], and reconstruct 
anastomoses after resection [39]. Perception may not only 
be based on visual information in the laparoscopic image, 
but also on multimodal data from medical devices and vital 
parameters from patient monitoring. If the combination of 
these data with powerful machine learning algorithms con-
tinues as outlined in the concept of Surgical Data Science 
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[40], within 15 years cognitive surgical robots will not only 
enhance human surgeons’ capabilities. They will likely 
perform autonomous tasks and may even perform simple 
surgical procedures autonomously, thus changing the face 
of surgery.
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