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Abstract

Subthreshold signal detection is an important task for animal survival in complex environments, where noise increases both
the external signal response and the spontaneous spiking of neurons. The mechanism by which neurons process the coding
of signals is not well understood. Here, we propose that coincidence detection, one of the ways to describe the functionality
of a single neural cell, can improve the reliability and the precision of signal detection through detection of presynaptic
input synchrony. Using a simplified neuronal network model composed of dozens of integrate-and-fire neurons and a single
coincidence-detector neuron, we show how the network reads out the subthreshold noisy signals reliably and precisely. We
find suitable pairing parameters, the threshold and the detection time window of the coincidence-detector neuron, that
optimize the precision and reliability of the neuron. Furthermore, it is observed that the refractory period induces an
oscillation in the spontaneous firing, but the neuron can inhibit this activity and improve the reliability and precision further.
In the case of intermediate intrinsic states of the input neuron, the network responds to the input more efficiently. These
results present the critical link between spiking synchrony and noisy signal transfer, which is utilized in coincidence
detection, resulting in enhancement of temporally sensitive coding scheme.
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Introduction

Neurons transmit information by complex spike sequences that

reflect both the intrinsic dynamics and the features of stimulus.

However, the coding scheme used in this process is not fully

understood, and is often a highly argued issue [1–6], which is of

critical importance for neuron computation. The traditional view

first advocated in [7] considered the cortical neurons as an

integrate-and-fire device [1,2]. In this simple scheme, how neurons

encode and process the stable propagation of spiking in cortical

neural networks is indicated by their average firing rate [2,6],

which conveys information only with low reliability, and little or

no information is thought to be transferred in the timing of the

spikes [2]. Furthermore, others suggested that neurons in the

cortex work essentially as coincidence detectors [2,8,9], and relay

preferentially synchronized synaptic inputs and the exact timing of

spikes [8,10,11], which has been shown to potentially provide

information in addition to the spike rate as the coding scheme.

Moreover, studies of the visual [9,12] and the somatosensory [5]

systems have shown that neuronal synchronization plays a critical

role in sensory information transmission from one brain region to

another. Thus, coincidence detection might be a prevailing mode

[2], and synchronous inputs are more effective than asynchro-

nously arriving signals. In addition, researchers have argued that

coincidence detection is a highly efficient operation mode, and

that the cortical neurons are naturally sensitive to coincidence

inputs.

Coincidence-detector (CD) neurons have long been studied in a

wide variety of central nervous systems. These neurons were

advocated in the auditory system [13–16], where cells in the

binaural cochlear only discharge when receiving coincidence

spikes from their afferent inputs. Physiologically, neurons in the

medial superior olive are sensitive to their synchronized afferent

signals. Such highly specialized neurons can localize sound by

using the interaural time difference. The octopus cells of the

mammalian cochlear nucleus can detect their synchrony auditory

nerve fiber inputs, because of their anatomical and biophysical

specialization, and synchrony is relevant to the ability of neurons

to encode the temporal features of acoustic stimuli with greater

precision, such that they can convey the information more reliably

[15]. This improvement in accuracy and reliability is the result of

coincidence detection. In addition to the auditory system, it has

observed that other mechanisms also depend on coincidence

detection, such as the ‘inding problem’in visual system [2], which

supports the notion of highly temporal precision [9]. Experimen-

tally, synchronization has been observed in a very large number of

regions, from cortical areas to thalamic nuclei, and even in

cerebral hemispheres [2]. Thus, coincidence detectors indeed play

an important role in neural signaling, and many other neurons can

act as coincidence detectors, such as CA1 pyramidal cells [17],
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which can preserve and even enhance the precise of firing times.

Furthermore, experiment on the rat posteromedial barrel subfield

have suggested that this field may work as a coincidence detector

that processes spatial features.

There are a large number of studies on the properties of CD

neurons in information processing [8,16,18–21]. It is suggested

that neural synchronization is a mechanism for facilitating the

transmission of sensory information [5,9] and that correlated

spikes strongly increase the probability of firing and ensure the

transfer of information from the thalamus to the cortex.

Theoretical analyses have also shown that the processing rate of

CD neuron is faster than the incoming information rate. Thus,

CD neurons are a robust, efficient, and reliable mechanism that

decreases the spontaneous rate, and improves the signal-to-noise

ratio at the same time [21].

However, previous studies have mostly been performed on only

one aspect of single neurons, either integrator devices or

coincidence detection. Can these two distinct operations of

neurons cooperate together? In the primary work on subthreshold

noisy signal detection we found that a single neuron fails, but a

simple neuronal circuit can perform detection more precisely and

reliably [22]. Here, we explore the issue of the reliable transfer of

information in a network model composed of an amount of

integrator neurons and one CD neuron. By using the output spikes

of Leaky Integrate-and-Fire (LIF) neurons to mimic the synaptic

input of the CD neuron, we show how and to what extent the CD

neuron can enhance the reliability of weak signal detection. We

independently varied two parameters, the threshold and the

detection time window, which determine the intrinsic states of the

CD neuron, to study their roles in the control of the precision and

the reliability of the response of the network. Our results show

that, the correlated spikes from multiple presynaptic neurons

strongly increase the firing probability of postsynaptic neurons

[23] and ensure the transfer of signals when the signal is

synthesized by the CD neuron. These results are consistent with

previous theories [9,23,24]. Moreover, the reliability of the spike

output can be predicted using the threshold of the CD neuron,

which is the number of presynaptic inputs required to activate the

CD neuron and is driven by the same input trains within an

optimal time-window that varies in a larger range.

Methods

Model formulation
It has been shown that the synchronous firing of groups of

neurons is a mechanism by which sensory information is processed

[25–27]. It is possible for information to propagate stably if the

number of firing neurons in a small time window is sufficiently

large and the initial variability is sufficiently small.

Here we investigate the enhancement of the precision and the

reliability of spikes at a single CD neuron that receives convergent

input as its presynaptic signals. We construct a simplified neural

network model to study the properties of the CD neuron (see

Figure 1). The neuron receives the input train from dozens of LIF

neurons with Gaussian white noise that are stimulated simulta-

neously. The LIF neuron is a point neuron [28,29], neglecting the

special dendritic structure of the neuron, because we do not

consider the dendritic processing in those cells. The CD neuron

fires one spike for the first time when its input spikes exceed the

threshold h during a proceeding time window Tw. Additionally,

the output of the network is emitted at the moment of the last

input spike. The stimulation (Is) is subthreshold for LIF neurons,

but each neuron can fire a spike randomly under the noise. The

firing probability of these neurons can be solved using the proper

approximate method (for details see [29]).

LIF neuron model. The LIF model is simple, but it is

sufficiently complex to capture the information processing

capabilities of neurons. It usually describes the subthreshold

properties of the membrane voltage, whereas the generation of

action potential is generally not considered as an intrinsic part of

the model. The membrane potential Vi(t) of each LIF neuron is

described by the following differential equation [28]

tm
dVi(t)

dt
~{½Vi(t){Vr�zRi½Is(t)zji(t)�, ð1Þ

where tm and R are the membrane time constant and the

resistance of the neuron, respectively, and they are identical for all

LIF neurons. Vr is the rest potential, and ji(t) is the Gaussian

white noisy due to background synaptic input, with zero mean

Sji(t)T~0 and autocorrelation Sji(t)ji(t
0
)T~s2d(t{t

0
). When

Vi(t) reaches the threshold Vth, the neuron sends out an action

potential or a spike to the connected CD neuron and resets its

membrane potential to the reset potential Vr. We choose an

absolute refractory period for all LIF neurons, tr~10 ms. In the

simulation, a refractory period tr of CD neuron is also defined by

V (tztr)~Vr. For convenience, the initial potential is set to the

rest potential, V0~Vr.

The current Is(t) is given by

Is(t)~
S0, for 0ƒtƒDts

0, for t§Dts

�
ð2Þ

where S0 is the pulse intensity and Dts is its stimuli duration. For a

small duration, the intensity must be sufficiently large to cause the

Figure 1. Sketch of the neural network model. Is is the
subthreshold input pulse. There are N independent LIF neurons with
Gaussian white noise stimulated simultaneously. Each LIF neuron
generates a spike randomly and projects it to a targeted the CD neuron.
If the input spikes of CD neuron achieve the threshold h within time
window Tw, it fires one spike.
doi:10.1371/journal.pone.0056822.g001
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neuron firing at least once, while for small input, a longer duration

is needed. The distribution of the first passage time can be

observed using simulations by applying a current pulse repeatedly

to a neuron and accumulating the firing times into a peristimulus

time histogram (PSTH) [30,31].

CD neuron model. Coincidence detection is one way to

describe the functionality of a single neuron. If the integration

interval, over which neurons summate the presynaptic inputs

effectively, is short compared with the interspike interval, neurons

act as coincidence detectors [2]. CD cells are frequently found in

different neural structure [32]. Experimentally, in the auditory

system the medial olive (MSO) and the lateral superior olive

(LSO), the first nuclei in the sound localization pathway, are the

highest spike precision in mammalian central nervous systems

[15]. To achieve sufficient time precision, the coincidence

detection mechanism must be used to compute the direction of

sound [15,33]. CD neurons have been studied in other different

levels of the auditory system [34–38]. Moreover, CD neurons have

also been investigated in neocortical pyramidal neurons [17,39,40]

in experiments and theories. The CD neuron receives converging

synaptic inputs, where each input is subthreshold. The neuron will

not fire unless these inputs are temporally sufficiently close

together. That is to say, the synchronous arrival of the synaptic

inputs may push the membrane potential of the CD neuron over

the threshold and generate an output spike.

The aim of the present work is to determine directly the

reliability of weak signals response and temporal precision with

which the CD neurons are capable encoding a stimulus into a

spike train. A simplified logical CD neuron model is introduced to

characterize directly the main properties of the CD neuron to

convert a temporal code into a rate code. The presynaptic

potential is generalized by multiply LIF neurons, which are simple

but are sufficient for our work. Here, we are not concerned with

the mechanism of action potential both for presynaptic and

postsynaptic neuron. As a result, we didn’t care about here what

the intrinsic mechanism for the CD neuron to realize the functions

of the integration and synchronization. We just use two

parameters, the size of detection windows (Tw) and the number

of synchronous input spikes h, to describe the properties of CD

neurons. In this work, we manly focus on whether the task of

subthreshold signals detection can be done by a simple neural

network.

The issue of how coincidence detection can be performed and

what is the modulate mechanism have been discussed by several

groups [41–43]. In this article, we found that there exits an

optimal threshold of h for the CD neuron with best performance.

Although the CD neuron model in our work is simplified, it is the

same as the other models such as Hodgkin-Huxley (HH) and LIF

neuron model in calculating the output firing rate of a single

neuron. For example, a CD neuron could be realized by a LIF or

HH neuron with a very small value of tm so that the neuron would

be able to integrate effectively only the spike arriving at a temporal

window tm (which here would play the role of Tw, as we will

describe in the following). For the HH neuron model the value of

the threshold is fixed and cannot be varied. Therefore we can vary

the strength of the presynaptic inputs in the simulation. This

thresholds have the similar meaning in our CD neuron model.

In this work, each neural input is represented by sets of spikes

that occur at instances and are generated by N independent LIF

neurons (Figure 1). If the mean firing probability of each LIF

neuron during time Dt is p, then for the independent inputs with a

mean rate of p=Dt, the probability of receiving at least h
synchronous input spikes for the CD neuron to produce an

output spike is [22,44]

Pout~
N!h

h!(N{h)!
PIF (t)½ �h{1

1{PIF (t)½ �N{h
p(t), ð3Þ

where PIF is the cumulative distribution function of the firing

probability of the individual LIF neuron, PIF ~
Ð Tw

0
p(z)dz. Tw is

the detection window of the CD neuron and N is the total number

of LIF neurons.

Note that Equation (3) is an idealization of biological firing

because the action potential depends on the recent history of cell

firing but there is no refractoriness in this equation. After firing a

spike, it may be virtually impossible to initiate another spike, which

is called absolute refractory period. In our simulation, we set the

firing rate of CD neuron to zero immediately after a spike is

triggered.

Analysis
Post stimulus time histogram. In our simulation, the post

stimulus time histogram (PSTH) is measured as follows. The

rectangular current pulse is in the form of Equation (2) at time

t~0 with a width size Dts~1 ms, and the time duration of every

trials is 100 ms. Thus, the firing probability of the neuron under

Ns stimuli is given by

P(t)~ lim
Dt?0

1

Dt

nspike(t; tzDt)

Ns

: ð4Þ

Here, nspike(t; tzDt) is the number of spikes emitted between t

and tzDt.
Interspike interval distance. A spike train can be defined

as sum of d functions

ST~
Xn

i~1

d(t{ti), ð5Þ

where ti denotes the initial time of the ith pulse and n is the

number of pulses. Accordingly, tin
i and tout

i are the input and

output spike times of the network, respectively.

Then, for a input train, the interspike interval (ISI) can be

calculated with [45]

STin
isi(t)~ min (tin

i jtin
i wt){ max (tin

i jtin
i vt), tin

i vtvtin
n ð6Þ

Similarly, one can calculate STout
isi for the output train. The

synchronous measure between two spike trains is

M(t)~

STin
isi(t)

STout
isi (t)

{1 if STin
isiƒSTout

isi

{
STout

isi (t)

STin
isi(t)

{1 otherwise:

8>>><
>>>:

ð7Þ

M(t) becomes zero when the input and output trains have the

same frequency but approaches to {1 or 1 if the CD cannot

respond properly or more than once for one input. Using the

spike-weighted normalization, we obtain

Coincidence Detection in Noisy Subthreshold Signal
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Ds
M~

Xn

i~1

jM(ti)j: ð8Þ

Actually, this method has been widely used to quantify the

similarity between the spike trains from the recording of cortical

cells in vitro [45]. Furthermore, it does not involve any parameters

and is self-adaptive.

Results

The firing-rate response of the CD neuron
To examine the temporal properties of the CD neuron, we find

the firing probability of the CD neuron obtained from the PSTH.

Here, for simplicity, the CD neuron works as a logical judgment

device, and its convergent presynaptic inputs are independent. We

extract the PSTHs from 5000 trials (time duration is 100 ms) with

a bin size of 0:1 ms. At time t~0, a rectangular current pulse is

injected.

As shown in Figure 2, when the current transient occurs, the

neuron discharge increases sharply from its spontaneous firing rate

until reaching the maximal firing rate, the peak of the PSTH.

Then there is a rapid decrease in the firing probability and the

duration of the response restraint is approximately 10 ms, due to

the refractory period of its presynaptic LIF neurons.

To evaluate the role of the time window and threshold on the

detection of the presynaptic spike synchrony, we compare the

spike responses elicited by the CD neuron with a constant Tw~1:0
ms and a variable h (Figure 2A) or, alternatively, a variable Tw and

a constant h~10 (Figure 2B). In all cases, the synaptic inputs are

independent and the number of LIF neuron is N~100. Figure 2A

depicts the firing probability of the CD neuron with three

detection time windows (Tw~1:0, 2:0, 5:0 ms) for responses

evolved with rectangular subthreshold stimuli. The PSTH for

smaller Tw has a lower baseline than those for a larger time

window, which indicates that the narrower Tw inhibits the

spontaneous firing rate (the baseline of the PSTH) but has no

effect on the firing rate (the peak of the PSTH). However,the effect

of a larger Tw on the firing rate is weaker. For a threshold (see

h~10), there is a critical Tw value after which it no longer

influences the shape of the PSTH anymore. In the following text,

we will observe that for a given firing threshold, there is an optimal

detection time window, and, in this state, the neuron can detect

the input signals with both high precision and high reliability.

Figure 2B presents the PSTHs for different h~5, 10 and 15
with a fixed Tw~1:0 ms. The PSTH for a larger threshold has a

lower peak and a lower spontaneous firing rate than smaller

thresholds. Moreover, the width of the peak tends to narrow with

increasing h, which means that information is encoded more

accurately for a larger threshold than for a lower one. Thus this

network is able to achieve a high firing rate (the high peak in

PSTH) and a low spontaneous firing rate(the low baseline of

PSTH) in response to stimuli with appropriate parameters. In

other words, it is possible for the CD neuron to facilitate more

reliable neuronal operation by improving the firing rate and

depressing spontaneous spikes [21].

It is well known that spike timing can react the presence of

information [26]. Normally, two measures, reliability and precision,

are extracted from PSTHs [46]. Reliability is defined as the

fraction of the total spikes during the first peak of the PSTH, and

precision is the standard deviation of this peak. By manipulating

the detection time window Tw and computing the reliability or

precision, one can identify the optimal firing threshold when the

information is best encoded. For example, the optimal h for a

given Tw, or alternatively, the optimal Tw for a given h can be

identified. That is to say, there exists a appropriate pair of Tw and

h that provide the optimal encoding of the input information.

Figure 3A plots the reliability as a function of the threshold h
and the detection time window Tw. There exists a regime (warm

color, the bottom right in Figure 3A) in which the reliability

reaches the maximal value, and is approximately equal to one.

The reliability is enlarged over a wide parameter range, which

indicates that the CD neuron enhances the signal reliability as a

general rule. However, this enhancement is not always efficient,

  

 

Figure 2. PSTH of the CD neuron. The neuron network responds to a rectangular current for (A) various Tw values with fixed h~10 and (B)
various thresholds h with the time window Tw~1:0 ms. In all cases, the input on the LIF neurons in the first layer is below the threshold Vth and the
embedded noisy current input is Gaussian white noise with a noise intensity D~20 mV/ms. The PSTH is obtained from 5000 trials. Simulation
parameters: the LIF neruon threshold, the resting potential and the membrane time constant are Vth~{40 mV, Vr~{65 mV and tm~10 ms
respectively; the number of LIF neuron is N~100; the time step 0:01 ms.
doi:10.1371/journal.pone.0056822.g002

Coincidence Detection in Noisy Subthreshold Signal

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e56822



and there exists a boundary. That is to say, although the reliability

reaches approximately one within the warm-color regime, the

encoding is not efficient for the neuron. For example, when h~10,

Tw~1:0 ms is sufficiently large for the CD neuron to encode all of

the information reliably, and increasing Tw will not improve the

reliability. As shown in Figure 2A, for values larger than the

optimal pair of values of Tw and h, the firing rate does not change

with Tw. Thus, when Tw increases, its restriction has less effect,

and the reliability attains the best value on the boundary.

Figure 3B illustrates the reliability versus the detection time

window Tw for h~5, 10 and 15 to demonstrate the role of Tw in

detail. For small Tw, the delay of the response is not large enough

for the neuron to fire spikes for all inputs, and its spontaneous

activity is extremely inhibited (a zero baseline and low peak in the

PSTHs, see Figure 2A). Therefore, the reliability has a maximal

value for any firing thresholds. For example, the reliability is equal

to 1 for h~10, but it is 0:5 for h~5. It is clear that the maximal

reliability will be very small if h is too small because a much

smaller firing threshold cannot inhibit the spontaneous firing and

may even have no effect on this activity. That is to say, although

the peak of the firing rate is very high (Figure 2C, h~5), the

reliability of the neuron response does not reach its optimal value.

There must be a proper h for which the neuron best transfers

information for any Tw. In Figure 3A, it is shown that the

reliability may reach the optimal value, 1, for hw5. When Tw~1

ms, h~10 is sufficient for the neuron to fire best, similarly for

h~15 (see Figure 3B). However, in terms of the coding efficiency,

using 15 or more synchronous synaptic inputs is a waste. In

contrast, when Tw is much larger (for example, Tw~6:0 ms), the

neuron has fired all of its spikes. The larger time window neither

induces the neuron to fire more nor increases the spontaneous

firing. Thus, the reliability decreases and has a much smaller value

for any thresholds.

Figure 3C plots the relation between the reliability and h for

Tw~1:0, 2:0 and 5:0 ms. The reliability is enhanced with

increasing h and tends to 1. For example, h~10 can transfer the

information with a reliability close to 1, and the spontaneous firing

is completely inhibited. With further increases in h, the reliability

remains at the same value, and only the firing rate and the peak of

the PSTHs are reduced. Thus, Figure 3C shows a sigmoidal

function curve with h, and the slope is determined by the degree of

the input synchrony, Tw.

The results above demonstrate the following significant findings

on the reliability of coincidence detection for excitatory synchro-

nous input. First, there exists a sharp transition in reliability for

both h and Tw. By choosing Tw and h properly, it is possible to

maintain a the reliability of 1 (or the detection reliability is 100%).

Second, neurons with too high a threshold or too small a time

window cannot fire evenly. However, for too low a threshold or

too large a time window, the reliability is close to zero because the

spike firing is overwhelmed by spontaneous firing activity. Finally,

for a given detection window, there is an optimal threshold at

which neurons have the maximal reliability, and a larger threshold

is unnecessary. Similarly, for a given threshold, there exists an

optimal detection time window, and a larger size of window has no

effect. The neuron is not required to wait a longer time before

firing.

Next, we focus on how the intrinsic state of the CD neuron

influences the detection precision. Figure 3D shows the detection

precision versus Tw and h. The output of the CD neuron becomes

more accurate as h increases. For moderate Tw and h, the peak

width of the PSTHs becomes very narrow, and the baseline is zero

(Figure 2). This improvement in the detection precision increase

when h is somewhat larger than 25 (the blue region in Figure 3D).

To show the improvement in precision in detail, we vary Tw

(Figure 3E) or h (Figure 3F). The neuron with a small Tw but a

large h processes the input information more precisely, for

example Tw~0:5 ms and h~15 in Figure 3E. The precision

decreases with Tw, when it is not too large. Indeed, the larger

detection time windows easily lead to spontaneous firing.

However, a much larger Tw fails to decrease the precision because

the firing has been saturated. In addition, the precision increases

 

 

 

 

 

 

 

 

Figure 3. Influences of the detection time window Tw and the threshold h of the CD neuron on the detection reliability and
precision. (A) The reliability as a function of Tw and h. Note that there exits a clear boundary for high and low reliability. Almost 100% detection
reliability can be achieved for proper pairing of Tw and h. (B, C) Detailed views of parts of (A) with different h~5, 10, 15 and Tw~1:0, 2:0, 5:0 ms,
respectively. (D) The detection precision as a function of Tw and h. (E, F) Detailed views of parts of (D). It is clear that h has a significant effect on the
precision for any time windows. The parameters are Vth~{40 mV, Vr~{65 mV, tm~10 ms, and D~20 mV/ms.
doi:10.1371/journal.pone.0056822.g003
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with h in all ranges of Tw considered (Figure 3F). Although a

higher threshold increase the accuracy, when h is too high,it will

reduce the regular firing rate. Thus, only the CD neuron at an

intermediate state can encode the inputs with highest precision. In

addition, there even exits fully synchronized status. Therefore,the

dependence of precision on h reflects the output spread, but the

threshold can also represent the precision, which leads to a higher

temporal precision for larger threshold. Moreover, there is a point

of intersection in the precision-h curves for different Tw at

approximately h~8*9. These results suggest that the spike time

can be sufficiently accurate by combining Tw and h properly.

As we discussed above, there exists a boundary between high

and low reliability/precision. By combining Figure 3A and D, it is

clear that the reliability can reach almost 1 and the precision can

be raised to 0:01 ms simultaneously for a higher threshold and a

narrower time window. Moreover, the correlation between the

detection time window and the precision is weak, but the

correlation is strong for h. However, there exists a strong

correlation between the reliability and Tw as well as h, which

indicates that the effect of the input synchrony might not be

related to the time distribution of synaptic inputs.

Coincidence detection is an efficient pattern [2,3,5] where a

single neuron can determine the essential state properly. The

intrinsic properties of CD neuron depict the magnitude and

intensity of synaptic synchrony. CD neurons are more sensitive to

the input synchrony. In a word, CD neurons significantly enhance

reliability and precision.

Effect of the refractory period
The refractory period is an intrinsic neuronal psychological

phenomenon. The firing probability of a neuron relies stringently

on the history of previous spikes [47]. The average firing rate and

the instantaneous firing rate are deeply affected by the refractory

period. For example, the spontaneous firing rate exhibits

oscillation in Figure 4. Especially in the cochlear afferent the

refractory period was found to inhibit the firing rate relative to the

free firing rate [48].

Figure 4 plots the PSTHs of a CD neuron with a refractory

period of TrCD~5:0 ms. With the presence of the refractory

period, the firing probability shows a subtle but noticeable change

in the peak and baseline of the PSTH. Compared with the free

state (the case of no refractory), the firing rate decreases as

reflected by the lower peak in the PSTH. Moreover, there are

some periods in which the spontaneous firing rate is close to zero

in repeated trials due to the refractory period. During such

periodic oscillations, the firing probability increases from zero to a

local maximum and then falls back to zero. In some cases, the

spontaneous activity clearly becomes jitter, which is modulated by

the free spontaneous firing activities. However, with a moderate

threshold h or Tw, the neuron fires without oscillation. For small

Tw, the CD neuron fires with high probability, yielding a PSTH

with a narrow peak width and a low oscillating baseline (see Figure

4A). For larger h, the firing rate shows the same changes, including

a small peak width and a low baseline oscillation (Figure 4B).

Moreover, the peak width of the PSTH is actually smaller than

that for no refractory period. In Figure 2B, we illustrate the

PSTHs of the CD neuron without refractory period for different h
= 5, 10 and 15 with a fixed Tw~1:0 ms. With increasing h, the

peak width of the PSTH shrinks. In Eq. (3), the firing probability

density function of the CD neuron is given by the order statistics,

which is derived from the joint density of the firing probability of

the LIF neurons. When h increases, the number of the probability

function of input signals increases. As a result, the joint density

decreases. So the peak value of PSTH decreases and its width

shrinks.

Comparing Figure 4A with Figure 2A, the peaks of the PSTHs

exhibit some similar changes in the case of increasing h that the

peak reduces and the width shrinks. Considering the refrac-

tory period of the CD neuron, the firing probability of CD

neurons can be calculated as a joint density function,

PtrCD
out ~Pout

Ð tsztrCD

ts
Poutdt

� �
. Here, ts and trCD are the last firing

 

 

 

 

Figure 4. Influences of the refractory period on the PSTH of the CD neuron. The spontaneous firing rate exhibits a highly oscillation but it
can be suppressed by the suitable intrinsic properties of the CD neuron. (A) The PSTHs of the CD neuron for h~10 and Tw~1:0, 2:0 and 5:0 ms. The
first peak width of the PSTH becomes narrower and narrower with decreasing Tw, and the fluctuation of the baseline disappears when Twv0:5 ms.
(B) The PSTHs for Tw~1:0 ms and varying h~5, 10 and 15. With increasing h, the time delay of the first peak of the PSTH becomes longer. When
hw15, the CD neuron depresses the oscillation. The PSTHs are obtained from 5000 trials with time steps of 0:01 ms averaged to 0:1 ms. The refractory
period of the CD neuron is TrCD~5:0 ms. The other parameters are, N~100, Dts~1 ms, S0~20 mV/ms, Vth~{40 mV, Vr~{65 mV, and tm~10
ms, D~20 mV/ms.
doi:10.1371/journal.pone.0056822.g004
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time and the refractory period of the CD neuron respectively. In

the simulation, trCD~5 ms. So the peak reduces and its width

narrows. Thus we concluded that, in the present of refractory

period trCD, the effective firing threshold is enhanced and the

performance of CD neuron is more efficient.

The refractory period leads to a leftward shift in the firing rate

curve (see Figures 4A and 2A). The peak value of the initial firing

rate of the CD neuron is reduced sharply by the refractory in the

case of a smaller firing threshold. For example, when h~5 (the red

curves in Figures 2B and 4B) the peak values changes from 0.6 to

0.4. Thus 0.4 is the maximal firing probability for the CD neuron

with refractory, and the neuron doesn’t need a longer time to fire

more spikes, because it has already fired all the spikes and the

refractory period inhibited the next firing. Consequently, the firing

variability of the CD neuron is reduced due to the refractory

period.

For some detection time window, increasing firing threshold

leads to a rightward shift in the firing rate curve (see Figures 4B

and 2B). This is because, for larger h the CD neuron requires more

time to reach its firing threshold. The refractory period facilitate

this rightward shift since it depresses the next firing and improves

the effective firing threshold of the CD neuron.

It is well-known that the refractory periods enable a low spike-

count variability at moderate firing rates [24,49]. In Figure 5A, we

plot the reliability of the network output in terms of the refractory

period. The improvement in the reliability is demonstrated when

the firing thresholds are somewhat high (hw6) because the

refractory period of the CD neuron inhibits the high spontaneous

firing (see Figure 4). The high reliability is also restricted to a small

detection time windows, 0.1 ms vTwv 3.0 ms (warm color).

When Tw is outside of this range, the reliability decreases

dramatically (for example Tw~6:0*10:0 ms, from the red range

to the blue range), and the signal detection (in the blue range) is

difficult due to high spontaneous firing and jitter (Figure 4).

Further, the reliability decreases with h after the firing threshold

exceeds its optimal value (at which CD neuron has the optimal

reliability), instead of increasing as in the free state (see Figure 4A).

Furthermore, we illustrate the reliability versus h for Tw~1:0,

2:0, and 5:0 ms, and versus Tw for h~5, 10 and 15 in Figures 5B

and C, respectively. The dependence of the reliability-Tw curve

(Figure 5 B) is similar to that for the free state (Figure 4B).

However, for a slightly low threshold such as h~5 (red curve), the

reliability decreases quickly from 0:5 to 0:2 (Figure 5B). Even in

this situation, the optimal reliability can be reached with a proper

pairing of Tw and h. In addition, the relation between the

reliability and h clearly changes. There exists a peak in each curve

at which the reliability reaches the maximal value which is much

smaller than that of the free state. Thus, the refractory period of

the CD neuron narrows the high reliability region compared with

Figure 3A. Therefore, although the refractory period reduces the

firing probability, it is still possible to transfer information

correctly.

The numerical analysis indicated that the absolute refractory

period serves to improve the response precision and increases the

information transmission rate [47]. Our simulation results shown

in Figure 5(D-F), are in agreement with these studies. In Figure

5D, the high precision scope is larger than that for no refractory

period. Thus, the refractory period of the CD neuron improves the

detection precision (narrows the peak width in Figure 4) of the

response to the afferent inputs. This result is consistent with the

phenomenon observed in the auditory system where the refrac-

toriness reduces the variance of the cochlear afferent to vowel

sounds from the corresponding value with no refractoriness [48].

Furthermore, if we preset the precision, for example, a precision of

0:02 ms, the number of the required synchronous synaptic inputs

is reduced due to the refractory, from h~10 to 2. Thus, the

refractory period improves the efficiency of neuron coding. Thus,

for different stimulus patterns, the CD neuron can perform the

subthreshold signal detection reliably and precisely by adjusting its

internal status appropriately. Although the refractoriness induces

the fluctuations in the spontaneous activity, it is conjectured that

the effect of the refractory period can be suppressed by selecting

the intrinsic parameters of the CD neuron. That is to say, CD

 

 

 

 

 

 

 

 

Figure 5. Influence of the refractory period on the detection reliability and precision. (A) The reliability as a function of Tw and h. (B, C) h
and Tw dependence of the detection reliability respectively. (D) The detection precision as a function of Tw and h. (E, F) h and Tw dependence of the
precision respectively. The refractory period TrCD~5:0 ms. The parameters for the LIF neuron are Vth~{40 mV, Vr~{65 mV and tm~10 ms. Other
parameters are N~100 and D~20 mV/ms.
doi:10.1371/journal.pone.0056822.g005
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neurons essentially inhibit the oscillation caused by the refractory

period and improve the detection of neural signals [47].

Pulse detection
Synchronization has been proposed to allow neurons to

communicate and cooperate with each other and may plays an

important role in binding problem [50], therefore making

information transfer between neurons reliable. For many years,

investigators have shown that if the number of presynaptic inputs

is sufficiently large and the spike timing deviation between neurons

is sufficiently small, reliable propagation can be achieved.

To illustrate visually the ability of the CD neuron in

subthreshold signal detection, we calculate the relative timing of

input and output trains, by using the ISI-distance (for a

description of the method see [45] or the analysis section) to

study whether the timing of responses of CD neuron is locked to

the timing of the stimulus and whether the locking degree

depends on the intrinsic states of the CD neuron. The ISI-

distance is defined as a quantity representing the following

properties of CD neurons. The state with zero ISI-distance for a

particular stimulus allows the neuron to accurately read out the

timing of the input. As described above, by manipulating the

parameters of the intrinsic status of the CD neuron, one can

identify the optimal detection time window in which information

is best encoded. For example, there exists an optimal Tw for a

given threshold h. Alternatively, the optimal threshold can be

achieved for a given Tw.

In Figure 6, the ISI-distance of the CD neuron is calculated for

input-output spike trains with a 50 s duration in the case of

Tw~2:0 ms and h~25 for CD neuron. The middle panel of

Figure 6 plots the input spike trains (blue) and the output spike

trains (red). The top and bottom panels depict the normalized ISI-

distances where Ds
M~0:0033 and the input and output spike

trains are 1 : 1 synchronized. This synchronization indicates that

the CD neuron can detect the network input precisely under the

given parameters. However, in other cases, there is some deviation

and the outputs no longer follow the input but are faster (the

positive ISI-ratio marked with blue color in Figure 7). Obviously,

the spontaneous firing of the network due to the noise cannot be

suppressed by the CD neuron, and the neuron is not in the optimal

detection states.

However, this does not mean that the higher the threshold is,

the less is the normalized synchronous measurement Ds
M . Figure 8

illustrates the example of a much higher firing threshold. The

output is slower than the input, and the neuron no longer responds

properly to the input. The primary reason is that the CD neuron

with a higher threshold depresses not only the spontaneous firing

but also the regular firing. In the case of Tw~2:0 ms and h~30,

the reliability equals 1 (the Warm-colored regime in Figure 3A).

Thus, the optimal pairing parameters correspond to the cases

where the neuron inhibits the spontaneous activity completely.

These parameters are located on the boundary of the red color in

Figure 3A.

Furthermore, for the CD neuron with a refractory periods of

TrCD~5:0 ms, the locking phenomenon emerges for smaller

thresholds (figures are not shown at here). We suggest that the

CD neuron improve the time precision of the network and that

the refractoriness further enhances the neuron’s efficiency by

decreasing the firing threshold. Moreover, coincidence detection

can inhibit the spontaneous firing induced by the intrinsic noise

of the network and detect the subthreshold signals precisely. This

process is performed by moderating the intrinsic states of the

neuron itself.

To examine the synchrony between the input and output trains

as a function of Tw and h, we investigate the behavior of Ds
M with

a number of presynaptic inputs of N~100. In Figure 9A, as h
increases, Tw for the small ISI-distance increases significantly, and

the range of Tw becomes wider and wider. In the case of values

that are too large or small for h, the ISI-distance is large. The

normalized synchronous measurement reaches the optimal value,

approximately zero, in the black blue range in the figure.

To understand this phenomenon in detail, we plot the Ds
M as a

function of Tw or h. When Tw is very small but h is high (see h~15
and Tw~0:5 ms in Figure 9B), Ds

M drops significantly to almost

zero. However, when Tw is much larger, the responses of the CD

neuron are saturated for all firing thresholds (h~5, 10, and 15). In

the range of higher Ds
M (Figure 9A), the spontaneous activity is too

strong for the neuron to detect the signals properly, or the firing

threshold is too high for it to fire a spike following each pulse input.

Figure 9C presents the Ds
M as a function of h. As h increases, Ds

M

drops to zero. However, Ds
M increases with further increase in h,

which indicates that the neuron has to be in an intermediate state

to response reliably and precisely.

Discussion

The synchronization of excitatory synaptic inputs onto a target

neuron leads to a higher firing rate [51,52]. However, how this

synchronous behavior can be read out is not fully understood. In

this paper, we investigate how the CD neuron enhances the

reliability and precision in detecting subthreshold noisy signals.

The results show that the CD neuron can reliably detect the

synchronous spike arriving from different afferent spikes. We also

determine the ranges of parameters that defined the neural

dynamics of a CD neuron within which the performance of the

network model is improved.

We examined the modification of the CD neuron for

presynaptic inputs elicited with different degrees of synchrony by

independent Integrate-and-Fire neurons. The functional conse-

quence of this modification is analyzed for the precision and

reliability in information processing by varying the intrinsic states

of the CD neuron defined by three indices: the threshold h, the

detection time window Tw and the refractory period. It is shown

that the CD neuron enhance the accuracy of firing times, which is

related to the intrinsic properties of the neuron. We interpret the

occurrence of a narrow time window and a high threshold (high

precision and reliability Figure 4) as evidence of synchronous

excitatory inputs. It is conjectured that the CD neuron can predict

the synchrony level of presynaptic inputs, and coincidence

detection is more reliable than the temporal integration. It was

hypothesized that coincidence detection can serve as a mecha-

nisms to bind distributed neuronal activity. For example, in CA1

pyramidal neurons could combined the spatial and temporal

context and act as coincidence detectors [17]. Thus, the

coincidence detector neuron plays a very important role in

reading out and transferring information that may be encoded by

synchrony of excitatory inputs.

Computational studies of searching over information transmis-

sion have discovered some parameter sets that facilitate the

information processing, highlighting the existence of optimal firing

threshold for CD neuron [20,41–43]. Pantic et al. investigated,

analytically and numerically, different types of coincidence

detection tasks containing both the coincidence detection of

presynaptic cells, synchrony bursts, as well as the synchronous

increase of firing rate. They showed that with synaptic depression

there exits a range of threshold values which enable the

coincidence detection over the large range of input frequencies.
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Here we showed that CD neurons can process the subthreshold

signals with high precision and reliability by modulating its

intrinsic states, but we didn’t present what is the modulation

mechanism due to the simplified model of CD neuron. We also

reported that there is an optimal threshold for the CD neuron to

transform information at best. This is consistent with Ref. [42].

The only difference is that we use the detection time window (Tw)

instead of the frequency in [42]. Clearly, these two parameters

play the same roles. Indeed, increasing Tw of the CD neuron

means more spikes arrive within the window, and it is the same as

if we just increased the presynaptic frequency. In addition, though

we use the more simplified model to illustrate the main properties

of the CD neuron, the less parameters is benefit to do analysis

more directly. The presynaptic inputs in our model is realized by

multiple LIF neurons, which is more realistic for biological

neurons. We believe that our results are solid and it is confirmed

further that the coincidence-detection ability of the neuron is

independent on the neuron model [42].

Other studies [20,41,43] also showed in theory and simulation

that there is an optimal threshold for the neuron to detect the

temporal correlations between different presynaptic neurons. It is

shown that the synaptic facilitation mechanism enhances the

coincidence detection of the neurons compared with the case of

only depressing synapse [43]. In [41], the authors demonstrated

that the coincidence detection properties of the IF neuron depend

on the location of the threshold relative to the mean voltage. And

there exists an optimal threshold for coincidence detection, at

which both spike rate and the coherence gain are high. Moreover

they showed that shorter neural time constant yields better

coincidence detectors for each of the optimal threshold.

Our findings not only confirm these previous results but also

illustrate that when the neuron is at the optimal threshold it can

read out the subthreshod signals with high reliability and precision.

Moreover, the neuron has potentially the chance to adapt itself to

the optimal states for best coincidence detection [41,42].

Furthermore, the optimal threshold is a general rule for the CD

neurons to read out the noisy signals and it is not relevant to the

specific modulation mechanisms due to this simplified neuron

model. We believe that these conclusions are still reliable by more

biologically modeling CD neurons, such as synaptic nature [42] or

synaptic facilitation parameters [43].

According to the domains shown in Figure 3 and 5, where

different pairs of Tw and h have the highest precision and

reliability, it is found that a single neuron can justify its essential

states due to the environment to perform information processing

with high efficiency. The relationships between the input and

output trains are illustrated in Figure 6, 7, and 8. The outputs of

the network follow the inputs closely, which indicates that the

response timing of the CD neuron is much more accurate when

the neuron is in the proper states.

In our model, we did not consider the time course of the

excitatory postsynaptic potential, with rise and decay times that

have a strong influence on the spike time precision and reliability

[53]. We only considered the sub-threshold membrane voltage

because the generation of presynaptic inputs of a single neuron is

not included in the intrinsic part of the IF model. Furthermore, it

is valuable to attach the linear and nonlinear mechanisms in the

Figure 6. CD neuron with modulated state performs one to one locking. The detected output spikes are marked in red and the blue is the
input. The top panel depicts the ISI-distance and the bottom one is the corresponding renormalized ISI-distance. For this pair of spike trains, Tw~2:0
ms and h~25, and the ISI-distance is Ds

M~0:00338. The other parameters for the input and the LIF neurons are the same as in Figure 3.
doi:10.1371/journal.pone.0056822.g006
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Figure 7. CD neuron fails to respond to the network input. For Tw~2:0 ms and h~20, the blue color denotes that the CD neuron cannot
detect the synchrony of its inputs properly and the response is faster.
doi:10.1371/journal.pone.0056822.g007

Figure 8. CD neuron fails to follow the network input. For Tw~2:0 ms and h~30, the red color denotes that CD neuron cannot detect the
synchrony of its inputs properly but is slower than the input of the network.
doi:10.1371/journal.pone.0056822.g008
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dendrite tree in the model with respect to the properties of a real

neuron and its performance. In such realistic models, it is very

hard to suitably address the corresponding nonlinear dynamic

behavior and the following large number of parameters. There-

fore, in this paper, we mainly concentrated solely on the function

of the CD neuron in the uncoupled network.
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Figure 9. ISI-distance as a function of the time windows Tw and the threshold h of the CD neuron under the pulse input. (A) Ds
M as a

function of Tw and h. There exists a clear boundary for large and small Ds
M , and it can reach approximately 0 for appropriate pairing of Tw and h. (B, C)

h and Tw dependence of Ds
M , respectively. The parameters are N~100, Vth~{40 mV, Vr~{65 mV, tm~10 ms, and D~20 mV/ms.

doi:10.1371/journal.pone.0056822.g009
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