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ARTICLE

Parametric Time-to-Event Model for Acute Exacerbations 
in Idiopathic Pulmonary Fibrosis

Fei Tang1,2, Benjamin Weber1, Susanne Stowasser3 and Julia Korell1,*

We describe a parametric time-to-event model for idiopathic pulmonary fibrosis (IPF) exacerbations and identify predictors 
of exacerbation risk using data obtained for the tyrosine-kinase inhibitor nintedanib in two phase III studies (INPULSIS-1/2). 
Parametric survival analysis was performed on time to first exacerbation (censoring on day 372), with univariate analysis to 
select statistically significant covariates (P = 0.05). Multivariate covariate models were developed using stepwise covariate 
modeling with forward inclusion (P = 0.05) and backward elimination (P = 0.01). Sixty-three first exacerbation events were re-
ported across 1,061 subjects in the INPULSIS studies. Baseline and decline of forced vital capacity (FVC)/percent-predicted FVC 
(%pFVC), supplemental oxygen use, baseline CO diffusing capacity and age were statistically significant in the univariate analy-
sis. The final covariate model included decline in FVC to week 52, baseline %pFVC, supplemental oxygen use, and age. The devel-
oped model may be used to identify patients at high risk of IPF exacerbations and accelerate development of novel treatments.

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of 
unknown etiology involving progressive fibrosis of the lungs, 
affecting 10–60 people per 100,000 in the United States.1 IPF 
is of particular clinical interest due to current incomplete under-
standing of its pathobiology, its susceptibility to misdiagnosis 
and inappropriate management, and its poor prognosis with 
a median survival of ~  3  years.1–4 Two approved antifibrotic 
treatments for IPF—nintedanib and pirfenidone—have been 
shown to slow the annual rate of decline in forced vital capac-
ity (FVC) consistent with slowing disease progression,5–8 and 
nintedanib has also been shown to reduce the risk of an acute 
exacerbation in a pooled analysis of phase II and III studies.9

In the INPULSIS trials, on which nintedanib approval 
was based, an acute exacerbation of IPF was defined as 

an event meeting all of the following criteria: unexplained 
worsening or development of dyspnea within the previous 
30  days; new diffuse pulmonary infiltrates visualized on 
chest radiography, high-resolution computed tomography, 
or both, or the development of parenchymal abnormalities 
with no pneumothorax or pleural effusion (new ground-
glass opacities) since the preceding visit.5 The reported 
annual incidence of acute exacerbations in patients with 
IPF ranges between 1% and 20%.3,10,11 It is currently un-
known whether unexplained acute exacerbations occur as 
a response to external insults leading to sudden respiratory 
decline, or due to an intrinsic acceleration of the underly-
ing pathobiological progression.10,11 Multiple studies have 
demonstrated a significant association between acute 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE  
TOPIC?
✔  Acute exacerbations are clinically significant in idi-
opathic pulmonary fibrosis (IPF) and are associated with 
high mortality rates. Risk factors, including decreased 
pulmonary function, have been identified.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  A parametric survival analysis on acute exacerbations 
has never been conducted. This study aimed to charac-
terize the time-dependent profile of exacerbation risk and 
quantify the effect of potential predictors.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  A parametric time-to-event model was developed 
to quantify the risk of acute exacerbations in IPF within 

52  weeks. Decline in forced vital capacity, baseline 
percent-predicted forced vital capacity, supplemen-
tal  oxygen, and age were selected in the final covariate 
model incorporating both baseline variables and longitu-
dinal change in pulmonary function.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
✔  Better understanding of predictors of acute exacerba-
tions can contribute to more efficient trial design and pa-
tient selection in clinical studies aiming to reduce acute 
exacerbations in IPF. Identification of patients at high risk 
may aid appropriate patient management and timely ini-
tiation of prevention strategies in clinical practice in this 
vulnerable patient population.
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exacerbations and mortality, with short-term mortality of 
~ 50% reported in patients with acute exacerbations.12–14 In 
IPF, the definition of acute exacerbation may vary between 
studies, and may be expanded to include events for which 
a trigger, such as infection, can be identified.11 Given the 
difficulties in defining exacerbations and risk, incorporation 
of acute exacerbation risk and management into treatment 
guidelines and regulatory thresholds remains suboptimal. In 
the INPULSIS trials, the incidence of acute exacerbations 
(using the definition above, excluding events with a known 
trigger) was a key secondary endpoint.5 With the high vari-
ability in the clinical course of IPF and the unpredictability 
of the occurrence of acute exacerbations,14–16 there is need 
for further understanding of the underlying risk factors, with 
the goal of identifying patients most likely to benefit from 
prevention or treatment of acute exacerbations. A num-
ber of studies have reported various risk factors for acute 
exacerbation of IPF. The most consistently reported risk 
factor is low FVC,11 whereas other proposed predictors in-
clude pulmonary hypertension, dyspnea (Medical Research 
Council dyspnea scale), alveolar to arterial oxygen pressure 
difference (AaDO2), emphysema, and recent decline in FVC. 
Conflicting evidence has been presented on diffusing ca-
pacity of the lung for carbon monoxide (DLCO), emphysema, 
smoking, and body mass index as predictors for acute ex-
acerbations.12,13,17–19 Other candidate predictors include 
the bronchoalveolar lavage cell cytokine profile and pepsin 
level as well as baseline KL-6 level.20–22 Additionally, there 
are data suggesting the presence of identifiable triggers for 
some cases of acute exacerbations, such as cold weather, 
immunosuppression, infection, aspiration, pollution, and 
certain surgical procedures.3 Age and sex have not been 
shown to be predictors of acute exacerbations.12,15,18,20–22

Although numerous studies have investigated risk factors 
for acute exacerbations, conflicting evidence exists with many 
different proposed factors. Furthermore, many analyses were 
limited by their small sample sizes. To our knowledge, para-
metric time-to-event (TTE) survival analysis has never been 
performed to quantify the hazard for development of acute 
exacerbations with consideration of potential risk factors. The 
phase III INPULSIS-1 and 2 studies demonstrated efficacy of 
nintedanib in slowing progression in patients with IPF.5 In ad-
dition, nintedanib numerically reduced the risk of a first acute 
exacerbation by 36% vs. placebo (hazard ratio (HR) 0.64; 95% 
confidence interval (CI) 0.39, 1.05) in a prespecified pooled 
analysis.5 [Correction added on 4th February, 2020, after first 
online publication: In the preceding sentence, punctuation 
was missing in between the values 0.39  1.05, it should be 
0.39, 1.05]. The aim of this study was to develop a parametric 
TTE model to quantitatively characterize the hazard for acute 
exacerbations and assess the effect of potential predictors 
using pooled data from the INPULSIS-1 and 2 studies, and 
to investigate the association between longitudinal changes 
in pulmonary function and exacerbation risk within the frame-
work of TTE analysis.

METHODS
Subjects
This analysis included all patients who received at least one 
dose of nintedanib or placebo in either of two randomized, 

double-blind, placebo-controlled phase III trials—INPULSIS-1 
and 2 (NCT01335464 and NCT01335477).5 Patients in these 
two trials were randomized in a 3:2 ratio to receive nintedanib 
150  mg twice daily or placebo for 52  weeks. The dose of 
nintedanib could be interrupted or reduced to 100 mg twice 
daily to manage adverse events. Spirometric tests were 
performed at baseline, at 2, 4, 6, 12, 24, 36, and 52 weeks, 
and at the follow-up visit 4 weeks after the treatment period 
ended. Patients who discontinued treatment prior to the end 
of 52 weeks were asked to attend all visits as planned except 
for the follow-up visit. The protocol for the INPULSIS trials 
was approved by an ethics committee or institutional review 
board at every participating center, and informed consent 
was obtained from all participants.

Base model development
All investigator-reported acute exacerbations up to 
372 days were used for the parametric TTE analysis, and 
patients who did not experience an acute exacerbation 
were censored at day 372. Data  set processing, explor-
atory analysis, and graphical analysis were conducted in R 
(version 3.4.3; The R Foundation for Statistical Computing, 
Vienna, Austria). Models were developed using the 
Laplace estimation method in NONMEM (version 7.4.3; 
ICON Development Solutions, San Antonio, TX).

Exponential, Weibull, Gompertz, and log-logistic dis-
tributions, among the most commonly used parametric 
hazard distributions, were tested for the base hazard model. 
Parameterization for each of the distributions is shown in 
Eqs. 1–4, respectively:

where h0(t) represents the base hazard at time t, while λ and 
γ represent estimated parameters. The base model was se-
lected based on the objective function value (OFV) between 
nested models, where a decrease in OFV of > 3.84 (corre-
sponding to a P value < 0.05) was needed to select a more 
complex model. Akaike information criterion (AIC) was used 
to compare non-nested models. In addition, a base model 
was accepted only if adequate precision of the parameter 
estimates could be achieved. Predictive performance of 
the selected base model was evaluated with the visual pre-
dictive check (VPC) plot produced by PsN (version 4.8.1; 
Uppsala University, Uppsala, Sweden), which consists of 
the Kaplan–Meier curve of the observed data overlaid with 
the 95% prediction interval derived from 100 simulations, 
with censoring applied at 372 days.

Univariate analysis
The following variables were evaluated as predictors in covari-
ate model building: (i) demographic factors (age, sex, height, 

(1)h0(t)=λ

(2)h0(t)=λeγ ln(t) orh0 (t)= λtγ

(3)h0(t)=λeγt

(4)h0(t)=
λ γtγ−1

(1+λtγ)
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body mass index, body surface area, race, smoking sta-
tus, and alcohol consumption), (ii) treatment-related factors 
(study arm, comedication of systemic corticosteroids, bron-
chodilators, supplemental oxygen, proton pump inhibitor, 
or histamine receptor-2 (H2) inhibitor), and (iii) disease-re-
lated factors (baseline FVC, baseline percent-predicted FVC 
(%pFVC), baseline percent-predicted DLCO (%pDLCO), em-
physema, and predicted changes in FVC or %pFVC from 
baseline to 4, 6, 12, 24, 36, and 52 weeks).

All variables were available at baseline except for pre-
dicted changes in FVC and %pFVC values from baseline to 
4, 6, 12, 24, 36, and 52 weeks. These predicted variables 
were obtained from two linear disease progression mod-
els (simplified from Schmid et al.23), which were previously 
developed from spirometry data from a nintedanib phase II 
study (TOMORROW)6 and INPULSIS5 (Table S1).

Initial screening of potential predictors was performed 
using stratified VPC plots of the selected base model. In the 
univariate analysis, predictors identified as influential in this 
graphical evaluation were incorporated in the hazard model 
assuming proportional hazards following Eqs. 5 and 6 for 
categorical and continuous variables, respectively:

where h0(t) is the baseline hazard as a function of t, hi (t) 
represents the hazard at time t for the ith individual, covi is 
the value of a covariate for the ith individual, θ represents 
the effect of the covariate on the hazard of developing 
acute exacerbation, and covmedian represents the median 
value of a continuous covariate. All categorical variables 

were coded as dichotomous variables with values of 0 or 1.  
Missing continuous variables were imputed with the me-
dian value, and missing categorical variables were imputed 
with the value of the most common category. A decrease 
in OFV  >  3.84, corresponding to a P value  <  0.05, was 
used as the cutoff for determining statistical significance 
of a covariate. HRs and their CIs were computed based 
on the point estimate and standard error of the coefficient 
θ produced by NONMEM. Variables that were statistically 
significant in the univariate analysis were subsequently 
tested in a multivariate analysis.

Covariate model development
Two multivariate covariate models were developed using 
the stepwise covariate modeling (SCM) procedure in PsN: 
one with baseline variables available at time t = 0, and the 
other with baseline variables and variable(s) representing 
longitudinal change in pulmonary function. A value of 0.05 
was used as the P value for the forward selection, and 0.01 
as the P value for the backward elimination. Predictive per-
formance of the covariate TTE models was evaluated with 
VPC plots produced by PsN, as described above. One thou-
sand bootstraps conducted in PsN were used to estimate 
uncertainty in the parameter estimates and the associated 
HRs in the covariate models.

RESULTS
Base hazard model
All 1,061 patients from the treated set of the INPULSIS 
studies were included in the parametric TTE analysis. The 
baseline demographics summarized in Table 1 were com-
parable between the placebo and active treatment group. 
Overall, 63 first acute exacerbations were reported until 

(5)hi (t)=h0(t)×e
θ×covi

(6)hi (t)=h0(t)×e
θ×(covi−covmedian)

Table 1 Baseline demographics in the INPULSIS studies

  Placebo (N = 423) Nintedanib (N = 638) Total (N = 1061)

Age, years 67.00 ± 7.88 66.6 ± 8.13 66.80 ± 8.03

Male 334 (78.96%) 507 (79.47%) 841 (79.26%)

Race

Asian 128 (30.26%) 194 (30.41%) 322 (30.35%)

Others (white/black/missing) 295 (69.74%) 444 (69.59%) 739 (69.65%)

Height, cm 168.00 ± 9.11 167.00 ± 9.31 168.00 ± 9.24

BMI, kg/m2 27.60 ± 4.58 28.10 ± 4.56 27.90 ± 4.57

BSA, m2 1.88 ± 0.22 1.88 ± 0.22 1.88 ± 0.22

Ex-smoker or current smoker 301 (71.16%) 464 (72.73%) 765 (72.10%)

Alcohol use 238 (56. 26%) 379 (59.40%) 617 (58.15%)

FVC, L 2.73 ± 0.81 2.71 ± 0.76 2.72 ± 0.78

FVC (% predicted) 79.30 ± 18.20 79.70 ± 17.60 79.60 ± 17.80

DLCO (% predicted) 47.00 ± 13.40 47.40 ± 13.50 47.20 ± 13.50

Emphysema 166 (39.24%) 254 (39.81%) 420 (39.59%)

Supplemental oxygen 35 (8.27%) 57 (8.93%) 92 (8.67%)

Bronchodilators 72 (17.02%) 129 (20.22%) 201 (18.94%)

Systemic corticosteroids 89 (21.04%) 136 (21.32%) 225 (21.21%)

PPI/H2 inhibitor 162 (38.29%) 244 (38.24%) 406 (38.27%)

BMI, body mass index; BSA, body surface area; DLCO, diffusing capacity of the lung for carbon monoxide; FVC, forced vital capacity; H2, histamine recep-
tor-2; PPI, proton pump inhibitor.
Continuous variables are presented as mean ± SD, and categorical variables are presented as numbers (percentage).
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the censoring time point of 372  days, and the observed 
Kaplan–Meier plot with CI is shown in Figure 1a.

Table 2 summarizes the parameter estimates for four 
base hazard models evaluated with their OFV and AIC val-
ues. Differences in OFV values for the Weibull and Gompertz 
models compared with the nested exponential model were 
not statistically significant, and the parameter γ was poorly 
estimated for both the Weibull and Gompertz models. When 
comparing the non-nested exponential and log-logistic 
models, the AIC value favored the selection of the expo-
nential model as the base hazard model, and, therefore, t 
the exponential model was selected. The overall VPC plot of 

the base exponential hazard model presented in Figure 1b 
shows an adequate prediction of the observed data. Visual 
screening of VPC plots stratified by potential predictors of 
exacerbations (Figure S1) found apparent discrepancies 
among observed data and 95% prediction intervals for 
supplemental oxygen use, baseline FVC/%pFVC, and ab-
solute decline in %pFVC (the largest decline from baseline 
recorded at any visit during 52 weeks).

Univariate analysis
HRs for key variables in the univariate analysis are sum-
marized in Figure 2. Significant baseline variables 

Figure 1 Observed data and base model prediction. (a) Kaplan–Meier plot with 95% confidence interval (dashed lines) for the observed 
time to first acute exacerbation data in INPULSIS. (b) Visual predictive check of the base exponential hazard model. The solid line 
represents the Kaplan-Meier curve of the observed data and the shaded area represents the 95% prediction interval.
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included baseline %pFVC (ΔOFV  =  26.705), baseline FVC 
(ΔOFV = 22.015), supplemental oxygen use (ΔOFV = 13.823), 
%pDLCO (ΔOFV = 9.481), and age (ΔOFV = 6.779). Change in 
FVC or %pFVC from baseline at prespecified time points (4, 
6, 12, 24, 36, and 52 weeks) were all significant predictors. 
Incorporating changes in FVC or %pFVC from baseline to 4, 
6, and 12 weeks was associated with less significant drop in 
ΔOFV (ranging from 4.837 to 14.89) than incorporating base-
line FVC into the model, whereas changes in FVC or %pFVC 
from baseline to 24, 36, and 52 weeks improved the model 
fit more significantly (ΔOFV ranging from 26.426 to 55.728) 
than baseline FVC. Of all variables, the most significant drop 
in OFV was seen with change in FVC from baseline to week 
52 (ΔFVCbaseline→wk52, ΔOFV  =  55.728), followed by change 
in %pFVC from baseline to week 52 (Δ%pFVCbaseline→wk52, 

ΔOFV = 55.133). The effect of nintedanib treatment was as-
sociated with a HR of 0.64; however, this reduction in hazard 
was not statistically significant.

Multivariate analysis
Model with baseline variables. Baseline %pFVC, baseline 
FVC, supplemental oxygen use, %pDLCO, and age were 
baseline variables that were significant in univariate analysis. 
As baseline %pFVC and baseline FVC were highly correlated 
(R2 = 0.6) and baseline %pFVC was associated with a more 
significant decrease in OFV; only baseline %pFVC, oxygen 
use, %pDLCO, and age were included in the SCM.

In the forward inclusion step, age, baseline %pFVC, and 
oxygen use were selected. Oxygen was removed in the 
backward elimination step, with age and baseline %pFVC 
retained in the model.

Stratified VPC plots of this model on supplemental oxy-
gen revealed that the prediction interval did not cover the 
observed data for subjects receiving supplemental oxygen 
toward the end of the study (Figure S2). This observation 
supported the incorporation of supplemental oxygen use 
into the final baseline covariate model despite the lack of 
statistical significance in the backward step of the SCM.

The final baseline covariate model is, therefore, described 
according to Eq. 7:

where AGE represents age in years, B0FVCPP represents 
baseline %pFVC, and OXYGEN equals 1 for supplemen-
tal oxygen use and 0 for no supplemental oxygen use. 
Stratified VPCs for the included baseline covariates shown 
in Figure 3 demonstrate an adequate predictive perfor-
mance of the model.

(7)h(t)=λeθAGE×(AGE−67)+θB0FVCPP×(B0FVCPP−77.36)+θOXYGEN×OXYGEN

Table 2 Parameter estimates of the four tested base hazard models

Parameter Estimate RSE (%) OFV AIC

Exponential model

λ (year−1) 0.0612 12.6 477.966 479.966

Weibull model

λ (year−1) 0.0708 18.0 476.693 480.693

γ 0.155 95.6

Gompertz model

λ (year−1) 0.0441 28.6 475.859 479.859

γ 0.625 74.3

Log-logistic model

λ (year−1) 0.0632 13.0 476.851 480.851

γ 1.17 12.8

AIC, Akaike information criterion; OFV, objective function value; RSE, rela-
tive standard error.

Figure 2 Associations of covariates with risk of acute exacerbations in the univariate analysis. For a dichotomous variable, the hazard 
ratio (HR) represents the change in probability of event for a patient with the variable compared with a patient without the variable. 
For a continuous variable, the HR represents the change in probability of event for every unit of increase above the median value. 
BMI, body mass index; BSA, body surface area; CI, confidence interval obtained from standard error of parameter estimates; H2I, 
histamine receptor-2 inhibitor; %pDLCO, percent-predicted diffusing capacity of the lung for carbon monoxide; FVC, forced vital 
capacity; %pFVC, percent-predicted forced vital capacity; PPI, proton pump inhibitor.

Increased exacerbation riskDecreased exacerbation risk
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Model with baseline variables and longitudinal change 
in pulmonary function. Model predicted changes in FVC 
or %pFVC from baseline to prespecified time points could 
be divided into two groups based on their correlations: 
changes in FVC or %pFVC from baseline to weeks 4, 6, and 

12 were highly correlated, and changes in FVC or %pFVC 
from baseline to weeks 24, 36, and 52 were highly correlated 
(R2 > 0.5). The most significant predictor in the first group 
(ΔFVCbaseline→wk6) and the most significant predictor in 
the second group (ΔFVCbaseline→wk52) were included in the 

SCM in addition to baseline variables included in the final 
baseline covariate model.

In the forward inclusion step, age, baseline %pFVC, sup-
plemental oxygen use, and ΔFVCbaseline→wk52 were selected, 
and no covariate was removed in the backward elimination 
step. This final covariate model is described in Eq. 8:

where PFW52 represents ΔFVCbaseline→wk52 in liters.  The 
corresponding  NONMEM control stream is provided as 
Supplementary Material.

Stratified VPC plots for this covariate displayed in Figure 4 
demonstrated that incorporating ΔFVCbaseline→wk52 into the 
covariate model further improved the model’s predictive 

(8)
h(t)=λeθAGE×(AGE−67)+θB0FVCPP×(B0FVCPP−77.36)+θOXYGEN×OXYGEN+θPFW52×(PFW52−0.15)

Figure 3 Stratified visual predictive check plots for the baseline covariate model. Continuous covariates were stratified based on 
quartiles of the observed demographics. The solid line represents the Kaplan–Meier curve of the observed data and the shaded 
area represents the 95% prediction interval. %pFVC, percent-predicted forced vital capacity. (a) Stratification by observed baseline 
%pFVC quartiles, (b) stratification by age quartiles, (c) stratification by use of supplemental oxygen. 

(a)

(c)

(b)
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performance. Stratified VPCs for all baseline demographics 
are shown in Figure S3. No discrepancies between ob-
served data and predictions from the final model are seen 
in these plots.

Parameter estimates for both covariate models described 
in Eqs. 7 and 8 are summarized in Table 3. The 95% CIs 
of the parameter estimates were obtained from 1,000 boot-
strap estimations. Based on these parameter estimates, a 
67-year-old patient with IPF who has no supplemental oxy-
gen use at baseline, has a baseline %pFVC of 77.36% and 
a decline of FVC of 150 mL from baseline to 52 weeks, and 
has a 3% risk of experiencing an acute exacerbation within 
the first year. The risk of acute exacerbations increases by 
46% with every 100 mL increase of FVC decline in 52 weeks 
above 150 mL, decreases by 3.7% with every percent in-
crease in baseline %pFVC above 77.36%, and increases 
by 5% with every year increase in age above 67  years. 
Additionally, the risk of acute exacerbations increases by 
182% for a patient who had supplemental oxygen use at 
baseline compared with one who did not, when adjusting for 
baseline %pFVC, the amount of FVC declines in 52 weeks 
and age.

DISCUSSION

In this work, the hazard of acute exacerbations in IPF was 
quantified and the effect of potential predictors was eval-
uated in a parametric TTE analysis. An exponential model 
was selected as the base hazard model based on prede-
termined criteria. The base hazard was estimated to be 
~ 0.06  year–1 from an observed 1-year incidence of 6% 
in our study population. The fact that the observed data 
from INPULSIS supported a constant hazard model was 
consistent with the clinical observation that acute exac-
erbation could occur at any point of time in the course of 
disease.4

Of the significant baseline variables in univariate analysis, 
the most predictive variable was baseline %pFVC, followed 
by absolute baseline FVC, %pDLCO, supplemental oxygen 
use, and age. This study confirmed the predictive value of 
absolute baseline FVC or %pFVC, which has been consis-
tently shown in the literature.11 This finding suggested that 
acute exacerbations are more likely to occur in patients with 
more advanced disease, and a similar conclusion was drawn 
from a meta-analysis of placebo-controlled trials that acute 

Figure 4 Visual predictive check plot stratified by quartiles of the absolute decline of %pFVC from baseline for the final covariate 
model. The solid line represents the Kaplan–Meier curve of the observed data and the shaded area represents the 95% prediction 
interval. %pFVC, baseline percent-predicted forced vital capacity.
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exacerbations were less commonly observed in trials that 
excluded severe disease than those that did not.24 The pa-
rameter %pDLCO was shown to be a significant predictor of 
acute exacerbations in some studies, although this finding 
was not confirmed in several other reports.12,13,15,21 In our 
multivariate analysis, %pDLCO did not significantly improve 
the model fit when added on top of baseline %pFVC. The 
most likely interpretation for the significance of supplemen-
tal oxygen use in our analysis is that it serves an indicator 
for low oxygenation level at baseline, which was consistent 
with the observation that higher AaDO2 has been previously 
reported as a significant risk factor for acute exacerba-
tions.13,18 In contrast to previous studies, age was shown to 
be a significant factor in our study, albeit with a smaller effect 
on exacerbation risk than other significant baseline variables. 
Some of the previously proposed predictive clinical factors 
and biomarkers (e.g., dyspnea, AaDO2, and the baseline KL-6 
level) were not available in the current data set, so they were 
not tested for their predictive performance in this analysis.

Univariate analysis also showed changes in FVC/%pFVC 
from baseline to specified time points were significant risk fac-
tors. Comparison of OFV indicated that decline in FVC/%pFVC 
within the first 12 weeks might not be as informative as baseline 
FVC/%pFVC values. In comparison, decline in FVC/%pFVC 
from baseline to 24 weeks and later time points improved the 
model fit more significantly than baseline FVC. However, it 
must be noted that although the decline in FVC/%pFVC from 
baseline to 52 weeks was the most informative factor among 
all significant predictors, using this information to predict acute 
exacerbations that occurred within the same time frame could 
be considered self-fulfilling as exacerbations could be a driver 
for increased decline in lung function.

Randomization to nintedanib treatment was associated 
with a trend toward lower exacerbation risk, although this 
effect was not statistically significant in this analysis (HR 
0.640; 95% CI 0.387, 1.06). [Correction added on 4th 
February, 2020, after first online publication: In the pre-
ceding sentence, punctuation was missing in between 
the values 0.387  1.06, it should be 0.387, 1.06]. One 

possible explanation is that, as mentioned earlier, occur-
rence of acute exacerbations can be affected by disease 
severity and, therefore, be sensitive to the specific patient 
population in the analysis. For instance, significant differ-
ence in time to the first acute exacerbation was found in 
INPULSIS-2 but not INPULSIS-1, whereas a pooled anal-
ysis of TOMORROW and both INPULSIS trials reported 
significant benefit of nintedanib (150 mg twice daily) on time 
to the first acute exacerbation.9 Nonetheless, our analysis 
indirectly supports an effect of nintedanib treatment on the 
exacerbation risk as nintedanib has been shown to reduce 
the annual rate of FVC decline significantly.5

Collard et al.25 have previously published a risk factor 
analysis on time to first acute exacerbation also using data 
from the INPULSIS trials. Their final Cox proportional hazard 
model included baseline %pFVC, supplemental oxygen, use 
of antacid medications, and randomization to nintedanib as 
risk factors for investigator-reported acute exacerbations. 
Although their findings were in general agreement with ours, 
there are several important differences between the two stud-
ies. First, Cox proportional hazard models were developed in 
the previous study, whereas a parametric TTE analysis was 
adopted in this study to allow characterization of the base 
hazard of acute exacerbations over time. In contrast to Cox 
regression, parametric TTE analysis enables calculation of 
survival time distribution and simulation of outcomes in fu-
ture clinical trials. Second, right censoring was applied at 
372 days in this analysis but not in the previous study. Third, 
Collard et al. used forward stepwise selection with a cutoff P 
value of 0.2, resulting in the inclusion of antacid medication 
(P = 0.0873) and randomization to nintedanib (P = 0.115) in 
their final model. In this analysis, more stringent P values of 
0.05 and 0.01 were used in forward selection and backward 
elimination of SCM, respectively. Fourth, in addition to the 
baseline variables that were included in the previous study, 
longitudinal changes in FVC/%pFVC were also considered in 
this analysis.

There were several limitations to this study. First, a lin-
ear disease progression model developed from all available 

Table 3 Parameter estimates for covariate models

Parameter Parameter estimate (RSE (%)) Bootstrap resultsa  Median (95% CI) HR (95% CI)

Model with baseline variables (OFV = 435.411)

λ (year−1) 0.0458 (16.5%) 0.0454 (0.0313, 0.0590)  

θAGE (year−1) 0.0431 (34.4%) 0.0428 (0.0122, 0.0744) 1.04 (1.01, 1.08)

θB0FVCPP (%−1) −0.0435 (23.3%) −0.0429 (−0.0667, −0.0253) 0.958 (0.935, 0.975)

θOXYGEN 0.763 (38.2%) 0.0755 (0.156, 1.32) 2.13 (1.17, 3.74)

Model with baseline variables + ΔFVC (OFV = 378.511)

λ (year−1) 0.0300 (17.8%) 0.0286 (0.0193, 0.0391)  

θAGE (year−1) 0.0474 (36.2%) 0.0493 (0.0120, 0.0857) 1.05 (1.01, 1.09)

θOXYGEN 1.06 (28.7%) 1.04 (0.373, 1.65) 2.82 (1.45, 5.21)

θB0FVCPP (%−1) −0.0366 (28.5%) −0.0372 (−0.0616, −0.0175) 0.963 (0.940, 0.983)

θPFW52 (dL−1) 0.369 (12.3%) 0.378 (0.293, 0.480) 1.46 (1.34, 1.62)

λ, base hazard; CI, confidence interval; FVC, forced vital capacity; θAGE, effect of age (per year above the median of 67 years) on hazard; θB0FVCPP, effect of 
baseline percent-predicted forced vital capacity (per percent above the median of 77.36%) on hazard; θOXYGEN, effect of supplemental oxygen use on hazard; 
θPFW52, effect of model predicted change in forced vital capacity from baseline to week 52 (per deciliter above the median of 1.5 dL) on hazard; HR, hazard 
ratio; OFV, objective function value; RSE, relative standard error.
aObtained from 1,000 bootstrap runs; 983 and 995 runs out of 1,000 bootstrap runs terminated successfully for the baseline covariate and final covariate 
model, respectively.
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phase II and III nintedanib data was used to simulate indi-
vidual subject level FVC and %pFVC response and calculate 
FVC/%pFVC decline over time at discrete predetermined 
time points to avoid missing values and to eliminate re-
sidual unexplained variability from the observed FVC data. 
However, a more rigorous approach might be to combine 
the longitudinal FVC disease progression model in IPF di-
rectly with the parametric TTE model and to evaluate the 
longitudinal change in FVC as time-varying covariate on the 
risk of acute exacerbations. Second, the study duration in 
this analysis was 52 weeks, so the characterization of ex-
acerbation risk and predictors in this study might not be 
extrapolated to longer periods of time. Studies with longer 
follow-up may be needed to quantify how the base hazard of 
acute exacerbations changes in the long-term and to evalu-
ate the long-term effect of potential predictors.

In summary, a parametric TTE model was developed 
to quantify the risk of developing acute exacerbations in 
IPF within 52  weeks. In a multivariate analysis, decline 
in FVC, baseline %pFVC, supplemental oxygen use, and 
age were identified as significant predictors. At present, 
there is no treatment that has proven efficacy for acute 
exacerbations in IPF,11 in part due to the lack of random-
ized clinical trials comparing different treatment agents.26 
Whereas managing acute exacerbations has been rec-
ognized as an important unmet medical need,11 due to 
their relatively low incidence in IPF, conducting clinical 
trials that target reduction of these events can be very 
challenging because of the limited power to detect effect 
of potential treatments.3 It can be foreseen that better 
understanding of predictors of acute exacerbations could 
greatly contribute to more efficient clinical trial design 
and patient selection. In addition, as prevention of acute 
exacerbations is vital given the high risk of morbidity 
and mortality and the poor efficacy of current treatment 
options,3 identification of patients at high risk of acute 
exacerbations will aid patient management and timely 
initiation of prevention strategies in clinical practice in 
this vulnerable patient population.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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