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SUMMARY

LOVE, a robust, scalable latent model-based clustering method for biological discovery, can be used

across a range of datasets to generate both overlapping and non-overlapping clusters. In our formu-

lation, a cluster comprises variables associated with the same latent factor and is determined from an

allocation matrix that indexes our latent model. We prove that the allocation matrix and correspond-

ing clusters are uniquely defined. We apply LOVE to biological datasets (gene expression, serological

responses measured from HIV controllers and chronic progressors, vaccine-induced humoral immune

responses) resulting in meaningful biological output. For all three datasets, the clusters generated by

LOVE remain stable across tuning parameters. Finally, we compared LOVE’s performance to that of

13 state-of-the-art methods using previously established benchmarks and found that LOVE outper-

formed these methods across datasets. Our results demonstrate that LOVE can be broadly used

across large-scale biological datasets to generate accurate and meaningful overlapping and non-over-

lapping clusters.

INTRODUCTION

One of the most critical aspects of handling large biological datasets is identifying and accurately quanti-

fying similarities and differences in the data. Clustering is one of the most popular ways to do this, and

many clustering algorithms with specific biological applications have been developed over the last two de-

cades. However, despite the availability of numerous clustering algorithms, three key issues still remain un-

addressed. Most clustering methods use heuristics to assign clusters and do not come with rigorous statis-

tical performance guarantees. Second, existing clustering methods work well only for specific datasets. A

comprehensive benchmarking of 13 well-knownmethods across 24 datasets revealed that there was no uni-

versal best performer; rather, methods typically worked best for the datasets that they were specifically de-

signed for (Wiwie et al., 2015). Even in our own experience, the choice of an appropriate clusteringmethod is

highly specific to the dataset being analyzed (Das et al., 2012, 2013, 2015; Vo et al., 2016). Furthermore, clus-

tering methods typically work for generating either overlapping or non-overlapping clusters, but not both.

These led us to envision a clustering approach that comes with rigorous statistical guarantees regarding

both cluster identification and assignment of variables to clusters. The method would be generically appli-

cable across a wide range of datasets, as there would be no assumptions regarding how the data were

generated. Furthermore, the method is designed to estimate the type of clusters that best fit a dataset,

which in some cases may be overlapping and in other situations non-overlapping. Here, we report LOVE,

a robust and scalable (Table 2) latent factor model-based clustering method with all the above properties.

We apply LOVE to three datasets with very different properties and correlation structures (Table 1) and show

that LOVE generates stable, biologically meaningful, and accurate clusters in all three cases, outperforming

state-of-the-art methods. Furthermore, we demonstrate that LOVE consistently outperforms 13 previously

benchmarked state-of-the-art clustering methods (Wiwie et al., 2015) across datasets (Table 3).

RESULTS

Formulation of LOVE

We consider the following latent factor model,

X = AZ + E

where X ˛ Rp represents p variables (to be clustered); Z ˛ RK denotes K latent, unobservable factors cor-

responding to the K clusters;A˛ RpxK represents themembershipmatrix assigning p variables to K clusters;

and E denotes an error term corresponding to random noise.
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Dataset Number

of Variables

Number

of Measurements

Quantiles of Correlation of Measurements

(0%, 25%, 50%, 75%, 100%)

Gene expression 16,134 114 �0.51 �0.06 �0.01 0.04 1.00

Progressors and controllers 19 72 �0.68 �0.10 0.08 0.30 1.00

Vaccine-induced humoral immune

responses

60 191 �0.99 0.03 0.22 0.44 1.00

Table 1. Applicability of LOVE across Datasets with Different Correlation Structures
Wedefine K clusters based on the K latent factors. Assignment of variables to clusters is based on themem-

bership matrix A, which assigns some variables to only one cluster, to anchor that cluster, and other vari-

ables to multiple clusters.

There are three main steps in LOVE (Figure 1). The first step involves determination of the covariance

network connecting the variables of interest, and the structure of the underlying latent variables (Figure 1A).

The second involves inferring the strongest connections between variables. Based on the strength of these

connections, variables are designated as ‘‘mixed’’ and ‘‘unmixed.’’ Mixed variables are defined as those

that are associated with multiple latent factors, whereas unmixed variables are those that are associated

with a single latent factor. The unmixed variables are then used to identify the unique clusters (Figure 1B).

The final step comprises assignment of the mixed variables to multiple clusters based on the membership

matrixA (Figure 1C). There are three primary tuning parameters in LOVE—determination of cluster anchors

using delta, membership matrix determination using lambda, and thresholding during assignment of vari-

ables to clusters using mu. The mathematical details of each step, as well as the associated parameter tun-

ing, are provided in the Transparent Methods. We also provide code to implement each step of LOVE as

well as associated detailed documentation (Data S1). LOVE is highly scalable as a method. The determina-

tion of pure and mixed variables is an O(n^2) algorithm, where n is the number of variables to be clustered.

The estimation of the membership matrix A involves solving K linear programs (where K is the number of

latent factors). To practically test the scalability of LOVE across datasets with different numbers of variables,

we tested LOVE on a wide range of datasets from a few hundred (10^2) to a million variables (10^6). Run-

times on a single core ranged from under a second to �140 h (Table 2). Thus even for the largest dataset of

a million variables, this extrapolates to a runtime of a few hours on a typical server or cluster node. Thus

LOVE is highly scalable and can efficiently cluster even ultralarge datasets in hours.
Overlapping Clustering Using LOVE

To test overlapping clustering using LOVE, we used a previously described compendium of human gene

expression data (Das et al., 2012). The dataset corresponds to expression measurements for 16,134 genes

across 114 different points in the cell cycle. Using LOVE, we obtained >1,000 overlapping clusters, which

corresponded well with prior biological expectation. For example, we obtained three overlapping clusters,

where cluster 1 contained the genes RWDD3, BRD30S, and IRF2; cluster 2 contained the genes BRF3OS,

IRF2, CTGF, INHBA, and INHBB; and cluster 3 contained the genes INHBA, INHBB, and COLA1A2 (Fig-

ure 2A). Based on KEGG pathway annotations, RWDD3 is associated with nuclear factor (NF)-kB signaling

and CTGF is associated with leishmaniasis, whereas the genes shared between clusters 1 and 2—BRD3OS

and IRF2—are known to be associated with both NF-kB signaling and leishmaniasis (Figure 2A). CTGF is

also associated with the KEGG inflammatory bowel disease (IBD) pathway, and COL1A2, the only gene

in cluster 3, is in the KEGG pathogenic E. coli infection pathway. Completely consistent with this, the genes

shared between LOVE clusters 2 and 3—INHBA and INHBB—are associated with both the IBD and the

pathogenic E. coli pathways. These results show that the clusters detected by LOVE correspond to specific

functions, illustrating that the latent factors in our modeling formulation are not only mathematical entities

but also have underlying biological significance. Genes that are only in one cluster, but not others, define

the biological relevance of the clusters; this perfectly matches our mathematical latent factor formulation.

Furthermore, LOVE is very specific at detecting meaningful overlaps based on shared biological func-

tions—different sets of genes were detected as overlapping between clusters 1 and 2 and 2 and 3, and

both sets were consistent with prior biological expectations based on genes that are present in only one

of the clusters. The clusters presented in Figure 2A, and the corresponding overlaps, serve as examples
126 iScience 14, 125–135, April 26, 2019
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Figure 1. Overview of LOVE

(A–C) Schematic illustrating the steps of the LOVE algorithm. (A) Estimation of the covariance network and latent variable

structure, (B) cluster inference based on strength of connections, and (C) final assignment of clusters based on estimation

of the membership matrix.
of how LOVE detects biologically meaningful relationships in an unsupervised framework. Next, we system-

atically examine the quality of all the clusters and the corresponding overlaps.

As clusters correspond to biological functions, one expects pleiotropic genes to be overlapping across

clusters as these carry out several functions. We defined pleiotropic genes based on the network degree

of the proteins encoded by these genes, i.e., protein-protein interaction network hubs were defined as

pleiotropic. This is a standard way to characterize multiplicity of function as proteins perform their functions

by interacting with other proteins (Rolland et al., 2014; Vo et al., 2016; Yu et al., 2008) and previous studies

have shown that network hubs are the most functionally important genes (Albert et al., 2000; Jeong et al.,
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Dataset Number of Variables Number of Measurements Runtime

Gene expression 16,134 114 4 min

Progressors and controllers 19 72 0.021 s

Vaccine-induced humoral immune

responses

60 191 0.023 s

TCGAa,b 293 293 0.064 s

Cassinib 250 2 0.027 s

Synthetic_1 100,000 100 1.4 h

Synthetic_2 1,000,000 100 142.4 h

Table 2. Runtimes of LOVE for Different Datasets

We record the running time of LOVE on different datasets with one specified value for each tuning parameter on a single core

of a machine (2.2 GHz Intel Core i7) with 16GB RAM.
aFor the TCGA dataset, we have a pairwise similarity matrix of dimension n x n where, n = number of variables (n = 293).
bThe TCGA and Cassini datasets are obtained from Wiwie et al. (2015).
2000; Yu et al., 2008). We used a consensus high-quality protein interaction network to define hubs

(Das and Yu, 2012) and found that hubs belonged to significantly more clusters than non-hubs (Figure 2B,

p = 1.2 3 10�10 using a Mann-Whitney U test). Thus the assignment of overlapping clusters was consistent

with biological expectation—pleotropic genes were more likely to be assigned to multiple clusters than

non-pleotropic genes. We then compared our results with two existing clustering methods—fuzzy Cmeans

clustering (Bezdek et al., 1984) and ClusterOne (Nepusz et al., 2012). Fuzzy Cmeans clustering is a well-es-

tablished and widely used distance-metric-based algorithm. ClusterOne is graph based and has recently

been demonstrated to be superior to several similar approaches (Nepusz et al., 2012). Thus fuzzy Cmeans

clustering and ClusterOne are two state-of-the-art methods, use orthogonal concepts, and serve as excel-

lent benchmarks to compare against. We found that hubs were assigned to significantly more clusters by

LOVE than they were by Cmeans clustering or ClusterOne (Figure 2C, p < 10�10 using a Mann-Whitney U

test), suggesting that the overlaps detected by LOVE are more consistent with prior biological expectation

than the overlaps detected by other methods.

We also checked whether overlapping genes are also assigned to appropriate clusters, i.e., the clusters

from LOVE coincide with prior biological expectation as defined by protein network modules. We found

that the network distances (i.e., minimum path length between the two nodes) between overlapping genes

and non-overlapping genes from the same cluster were low. This distribution of network distances had a

median of 3.3, and 75% of network distances were under 3.6. Thus most overlapping and non-overlapping

genes from the same cluster are within four hops (<25% of the network diameter) away in the protein

network.

Although the above analyses show that genes with multiple functions are correctly assigned by LOVE to

multiple appropriate clusters, a good clustering method should also not assign genes with similar expres-

sion levels to multiple clusters. To test this, we looked at how housekeeping genes, as defined by stable

expression across 16 human tissue types (Eisenberg and Levanon, 2013), were distributed across the clus-

ters generated by LOVE. As housekeeping genes are uniformly expressed, i.e., have low variability in their

expression levels, ideally these should only be assigned to one or a few clusters and not the other clusters.

To systematically test this, we calculated the under-representation of housekeeping genes in the clusters

generated by LOVE and quantified this using an under-representation index (see Transparent Methods).

We found that housekeeping genes were under-represented across most LOVE clusters (Figure 2D) and

the corresponding index was significantly higher (p < 10�10 using a Mann-Whitney U test) for LOVE

compared with fuzzy Cmeans clustering and ClusterOne (Figure 2D). These results illustrate that LOVE

not only accurately identifies overlaps but also effectively discriminates between basally expressed genes

and genes with specific expression profiles.

We then explored how biologically relevant the clusters discovered by LOVE are. To define relevance, we

examined whether a cluster was over-represented for at least one known Gene Ontology biological
128 iScience 14, 125–135, April 26, 2019
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Figure 2. Overlapping Clustering Using LOVE

(A) An example of how overlapping clusters detected by LOVE are consistent with known biological pathways, both in

terms of the genes assigned to single clusters and the genes shared between clusters.

(B) Median number of LOVE clusters that protein network hubs and non-hubs belong to. Error bars correspond to a decile

around the median. P value calculated using a Mann-Whitney U test.

(C) Distributions of the number of clusters protein network hubs belong to, for each of the three methods—LOVE, fuzzy

Cmeans clustering, and ClusterOne. P values calculated using aMann-Whitney U test (P < 10-10 for LOVE vs Fuzzy Cmeans

and LOVE vs Cluster One).

(D) Distribution of under-representation indices corresponding to how under-represented housekeeping genes are

across clusters generated by the three methods—LOVE, fuzzy Cmeans clustering, and ClusterOne. P values calculated

using a Mann-Whitney U test (P < 10-10 for LOVE vs Fuzzy Cmeans and LOVE vs ClusterOne).

(E) Fraction of clusters enriched for GO BP categories across a range of delta values, the cluster anchor tuning parameter.

(F) Fraction of clusters enriched for GO BP categories across a range of lambda values, the cluster membership matrix

tuning parameter.

(G) Fraction of clusters enriched for GO BP categories across a range of mu values, the assignment threshold tuning

parameter.
process (GO BP) category (Ashburner et al., 2000). Significant over-representation was defined using a

false discovery rate cutoff of 0.05 (p value calculated from a hypergeometric test followed by Benjamini-

Hochberg multiple testing correction) and computed using WebGestalt (Wang et al., 2013). The

number of biologically relevant clusters identified using this approach represents a lower bound on

the actual number of biologically relevant clusters as current GO annotations are not complete. Thus

any cluster enriched for at least one GO BP category is definitely biologically relevant, whereas clusters

not enriched for a GO BP category may still be meaningful. Despite this stringent evaluation criterion,

we found that at optimal parameter settings, >30% of clusters detected by LOVE are enriched for a

GO BP category (Figures 2E–2G), suggesting that the latent variables and corresponding clusters

detected by LOVE are highly relevant biologically. Furthermore, several clusters are enriched for multiple

GO categories, suggesting that we accurately recapitulate an even higher fraction of functional similarity

relationships. Overall, we found 1,723 over-represented GO categories across 1,222 clusters.

Finally, we tested how the relevance of the clusters discovered by LOVE changed when key tuning param-

eters of the method are varied. We first performed a grid search around the optimal delta, the parameter

that determines cluster anchors, i.e., which ‘‘unmixed’’ variables will serve to define clusters. We found that

across a range of parameter values around the optimal delta, the fraction of clusters known to be biolog-

ically relevant remained stable (Figure 2E). Next, we performed a similar analysis with lambda—the
iScience 14, 125–135, April 26, 2019 129



parameter used to tune the membership matrix based on the conditional independence structure of the

variables. Again, the fraction of clusters known to be biologically relevant remained stable around the

optimal lambda (Figure 2F). We also observed similar results with a grid search around the optimal

mu—the thresholding parameter that determines tuning of the latent variables (Figure 2G). Thus LOVE dis-

covers biologically meaningful clusters across a range of parameter choices.
Non-overlapping Clustering Using LOVE

Most methods are good at either generating overlapping or non-overlapping clusters (Wiwie et al., 2015).

However, due to the inherent formulation of LOVE, it can be used for either purpose. To test the effective-

ness of LOVE in generating non-overlapping clusters, we chose a recently published dataset of humoral

immune measurements from 19 human subjects from two distinct clinical phenotypes—long-term HIV con-

trollers and chronic progressors (Sadanand et al., 2018). For each subject, 18 different measurements of

antibody-effector functions and titers were available at four different time points, corresponding to a total

of 72measurements (Sadanand et al., 2018). This dataset is different with regard to several key aspects from

the earlier gene expression dataset. First, the desired clusters here are non-overlapping as HIV controllers

and chronic progressors are clinically distinct groups and are known to be very different in terms of their

humoral responses (Alter et al., 2018; Sadanand et al., 2018). Second, the sources of biological and tech-

nical variance in the two datasets are different. In terms of biological variability, themodulation of transcript

expression levels across time points in the cell cycle is structurally very different from variation across hu-

man subjects with different clinical phenotypes. The extent of technical noise is also different as microarray

measurements are relatively noisy, whereas this dataset comprises serological measurements collected us-

ingmodernmethods. Finally, the number of entities being clustered (number of input variables for LOVE) is

also very different. The gene expression dataset had >16,000 genes profiled over 114 different points in the

cell cycle. The dataset of controllers and progressors have 19 human subjects. The differences across these

two datasets reveal the inherent variation across different biological datasets. Testing LOVE on two ex-

tremes provides an opportunity to benchmark how the clustering method performs at different ends of

the spectrum.

The 19 human subjects were split into two clusters—one of that comprised eight progressors and two control-

lers and the other comprised seven controllers and two progressors (Figure 3A). As each cluster primarily com-

prises individuals from one clinical phenotype, the latent factors in this case can be interpreted as the average

humoral signature corresponding to each phenotype. Thus LOVE comes up with biologically meaningful latent

factors for this dataset too, illustrating that the model formulation is both intuitive and interpretable.

Next, we evaluated the performance of LOVE in terms of accuracy, true positive rate, and true negative

rate. Although clustering by definition is unsupervised, we were able to measure these metrics for this

dataset as we already know the clinical outcomes for each human subject. We assumed that the ideal

result would be two clusters—one comprising only controllers, and the other comprising only chronic pro-

gressors. Based on this definition of ground truth, we obtained an accuracy, a true positive rate, and a true

negative rate each of�80% for LOVE (Figure 3B). We contend that an accuracy of�80% is really high, espe-

cially for an unsupervised method, as previously even a supervised approach had a median classification

accuracy of�75% (Sadanand et al., 2018). We also found that LOVE outperformed both Cmeans clustering

and ClusterOne in terms of all three metrics—accuracy, true positive, and true negative rate (Figure 3B).

Next, we sought to explore how LOVE performs across a range of assignments. Although the most optimal

assignments correspond to all subjects being assigned to a cluster with high accuracy (as shown in

Figure 3B), we wanted to check how LOVE does across a range of assignment thresholds (including

those where not all subjects are assigned to clusters). A receiver operating characteristic curve drawn across

assignment thresholds revealed robust performance across thresholds (Figure 3C, area under the curve= 0.82).

Finally, we wanted to evaluate how stable LOVE is across the three key parameters—delta (cluster anchor

tuning), lambda (membership matrix tuning), and mu (latent variable tuning). We performed a grid search

around the optimal parameters and found that all the three indicators of performance—accuracy, false

positive rate (1, true positive rate), and false negative rate (1, true negative rate), are stable across a range

of tuning parameters (Figures 3D–3F). These results demonstrate that LOVE is able to accurately cluster

even if somewhat less than optimal parameter choices are made and are analogous to those observed

for overlapping clustering.
130 iScience 14, 125–135, April 26, 2019
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Figure 3. Non-overlapping Clustering Using LOVE

(A) Distribution of HIV controllers and chronic progressors in the two LOVE clusters.

(B) True positive rate, true negative rate, and accuracy for each of the three methods—LOVE, fuzzy Cmeans clustering,

and ClusterOne.

(C) Receiver operating characteristic curve illustrating the performance of LOVE across a range of assignment thresholds

for the membership matrix.

(D) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of delta values, the cluster

anchor tuning parameter.

(E) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of lambda values, the cluster

membership matrix tuning parameter.

(F) Variation of true positive rate, true negative rate, and accuracy for LOVE across a range of mu values, the assignment

threshold tuning parameter.
LOVE on High-Dimensional Data

Finally, we sought to evaluate LOVE on a high-dimensional dataset of vaccine-induced humoral immune re-

sponses. Recently, we found that the route of immunization, even for the same immunogen, can modulate

mechanisms of protection in the context of vaccination against simian immunodeficiency virus (SIV) (Ackerman

et al., 2018). Our study had three vaccination arms—IM239 (administration of the SIVmac239 immunogen

intramuscularly), IM mosaic (administration of a mosaic envelope immunogen intramuscularly), and AE239

(administration of the SIVmac239 immunogen via inhaled aerosol). We found that each vaccine arm induced

a distinct profile of humoral immune responses (Ackerman et al., 2018). We sought to evaluate whether these

differences that we had captured using a supervised approach (Ackerman et al., 2018) could also be discov-

ered using LOVE, an unsupervised clustering method. Furthermore, here the data are high dimensional, i.e.,

the number of measured humoral immune responses >> the number of primates. This is typical in a study

involving human subjects or non-human primates, as the cost per subject or primate is high and there are

ethical guidelines outlining the maximum number of primates that can be used in such studies. Thus sample

sizes for these studies are usually much smaller than the number of measured analytes. Thus having a clus-

tering method that works on high-dimensional data is of paramount importance.

LOVE split the six primates into three clusters, each of which was clearly enriched for one of the vaccination

arms (Figure 4A). Here too, the latent variable formulation has an intuitive biological explanation; they

correspond to the induced humoral signature corresponding to each vaccination strategy. Overall,

LOVE correctly assigned 80% of primates to the corresponding vaccination arm (Figure 4B). This is signif-

icantly better than the performance of the two other clustering methods—fuzzy Cmeans and ClusterOne

(Figure 4B). Fuzzy Cmeans was reasonably accurate at discriminating between the IM239 and IM mosaic

arms, i.e., the vaccination arms with different immunogens, arguably the easier split. However, it failed

to discriminate the AE239 arm, i.e., the arm that had the same immunogen as IM239, but differed only
iScience 14, 125–135, April 26, 2019 131



A B

C D
E

Figure 4. Using LOVE on High-Dimensional Data

(A) Distribution of primates from the three vaccination arms in the three clusters generated by LOVE.

(B) Confusion matrix for each of the three methods, LOVE, fuzzy Cmeans clustering, and ClusterOne, showing the

fractions of primates correctly or incorrectly assigned to the different vaccination arms.

(C) Variation of specificity and sensitivity for LOVE across a range of delta values, the cluster anchor tuning parameter.

(D) Variation of specificity and sensitivity for LOVE across a range of lambda values, the cluster membership matrix tuning

parameter.

(E) Variation of specificity and sensitivity for LOVE across a range of mu values, the assignment threshold tuning

parameter.
based on the route of administration (Figure 4B). ClusterOne had a high error rate overall (Figure 4B).

Furthermore, although LOVE is completely unsupervised, the accuracy obtained is comparable to what

we had previously obtained using a supervised approach (Ackerman et al., 2018). Together, these results

show that LOVE is very accurate even when clustering a high-dimensional dataset and significantly outper-

forms existing methods.

We also evaluated how stable LOVE is across the three key tuning parameters—delta (cluster anchor tun-

ing), lambda (membership matrix tuning), and mu (latent variable tuning). A grid search around the optimal

parameters revealed that both the sensitivity and specificity of LOVE are stable across a range of parameter

values (Figures 4C–4E). As for the previous two datasets, these results confirm that LOVE is able to accu-

rately cluster even if somewhat less than optimal parameter choices are made.
Benchmarking LOVE against a Wide Range of Clustering Methods

Our previous results demonstrate that LOVEworks well across datasets with different properties both in terms

of size and correlation structure. We also showed that LOVE outperforms two state-of-the art methods that

use different approaches—fuzzy Cmeans clustering and ClusterOne. To comprehensively compare LOVE’s

performance in a wide range of existingmethods, we used previously established benchmarks for 13 different

clusteringmethods across datasets (Wiwie et al., 2015). Also, both the methods to benchmark against and the

datasets were chosen by an independent study (Wiwie et al., 2015). Based on F1 scores (harmonic mean of

precision and recall), LOVE outperforms the 13 existing methods on two very different datasets (Table 3).

The first dataset quantified similarities between 293 The Cancer GenomeAtlas (TCGA) clinical samples across

three different cancer types—breast cancer, lung cancer, and glioblastoma. Specifically, the data were a pair-

wise similarity matrix of dimension 2933 293 (n3 n, where n = 293, the number of variables/samples). For this

dataset, LOVE outperformed 11 of the 13 other methods, in terms of the F1 score, and had a rank of 3 across

the 14 methods (Table 3). The other dataset on which we benchmarked LOVE was synthetic and low dimen-

sional (we have already evaluated LOVE on a high-dimensional dataset earlier), purposely chosen to be very
132 iScience 14, 125–135, April 26, 2019



Dataset TCGA Synthetic_cassini

Affinity propagation 0.389 0.524

ClusterDP 0.921 1

ClusterOne 0.678 0.524

Density-based spatial clustering of applications with noise 0.944 1

Fanny 0.914 0.957

Hierarchical clustering 0.998 1

Cmeans clustering – 0.78

Partitioning around medoids 0.9 0.95

Markov clustering 0.678 0.524

Molecular complex detection (MCODE) 0.894 0.992

Self-organizing maps – 0.778

Spectral clustering 0.5 1

Transitivity clustering 0.986 0.885

LOVE 0.976 0.984

Table 3. F1 Scores for LOVE and 13 Other Methods for Different Datasets
different from the previous dataset. Here, the dataset consisted of 250 variables, and each variable had two

corresponding features (i.e., each variable could be represented by a dot on a two-dimensional dot-plot).

Again, LOVE outperformed nine of the 13 other methods, in terms of the F1 score, and had a rank of 5 across

the 14methods (Table 3). Overall, LOVE consistently had one of the highest ranks across the two datasets (Ta-

ble 3). The only other method that had comparable performance across these two datasets was hierarchical

clustering. However, hierarchical clustering does not support fuzzy clustering, whereas LOVE can generate

both overlapping and non-overlapping clusters. This is an inherent strength of LOVE. Moreover, hierarchical

clustering is not applicable to some of the other datasets, such as the high-dimensional dataset of vaccine-

induced humoral immune responses, used in this study. Hierarchical clustering typically uses L2 or allied Lp
norms and clusters based on a distancemetric. For high-dimensional datasets with highly correlated features,

these Lp norms pose as inherent bias as the distance metric will be skewed toward the trends of the ‘‘larger’’

correlation blocks. Thus among all the methods evaluated in his study, LOVE is the only method that works

consistently well across datasets of varying sizes (both number of variables and number of features) and

correlation structures. This strength is rooted in LOVE’s theoretical principles, as our method makes no distri-

butional assumptions regarding the data-generating mechanisms, beyond the latent factor model

formulation.
DISCUSSION

Here, we present a versatile, robust, and scalable clustering method—LOVE. Our method comes with

numerous statistical guarantees regarding identifiability of clusters that existing methods do not provide.

Furthermore, whereas our method uses covariance as a measure of similarity, our approach will work for

any similarity measure, linear or non-linear, as long as the measure satisfies certain very generic criteria

regarding its decomposition (please see Transparent Methods for additional details). The only assump-

tions that LOVE make are regarding the decomposition of the matrix of similarity measures, the covari-

ance matrix in our case. It makes no further assumptions regarding the data-generating mechanism; for

instance, we do not need to know or assume the distribution of the data. Most existing methods work

well for specific datasets only, as there are underlying assumptions regarding how the data were gener-

ated (Wiwie et al., 2015), but LOVE is broadly applicable as it makes no such assumptions. Furthermore,

whereas most existing methods generate either overlapping or non-overlapping clusters, LOVE can

generate both kinds of clusters. Finally, the clusters generated by LOVE are highly stable across param-

eter choices.
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We successfully applied LOVE to three very different systems-scale datasets. Although the nature of the

data varies both within each kind of dataset (e.g., the structure and quality of gene expression measure-

ments vary depending on the platform or technology used to generate it), and across datasets (different

datasets had different correlation structures as summarized in Table 1), the theoretical guarantees pro-

vided by LOVE remain unchanged. Further benchmarking against 13 state-of-the-art methods demon-

strated that LOVE is the only approach that has consistently high performance across datasets with varying

properties (Table 3). This is primarily due to the latent model formulation of LOVE, which does not make any

assumptions regarding data-generating mechanisms. Furthermore, the latent factors are not only mathe-

matical constructs but also biologically meaningful and context dependent. Given these unique and novel

features, we anticipate that LOVE will be widely adopted in systems biology analyses and open new ave-

nues of biological discovery.

Limitations of Study

LOVE’s inherent formulation fits most typical contexts—either each variable belongs to a single cluster (non-

overlapping clustering) or some variables belong to a single cluster, whereas the others belong tomultiple clus-

ters (overlapping clustering). However, in a scenario where all variables belong tomultiple clusters, LOVEwould

not perform optimally as themethod assumes that there are at least some variables that belong to only a single

cluster and uses these variables to determine the latent factors. Furthermore, LOVE, like any typical clustering

method, is unsupervised.However, weenvisionbeing able toextendour latentmodel framework to classify vari-

ables in a supervised fashion (i.e., taking into account an outcome variable or outcome labels).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.03.018.
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discovery”

1 Model introduction

In this work, we consider the problem of clustering variables into groups that are allowed to overlap.

To formalize this problem, we assume that: (i) each group is represented by one unobservable latent

factor, (ii) each group has observable variables that anchor it, in that they are only associated with

one latent variable/group, and (iii) possibly many variables have multiple group association.

To be specific, we consider the following latent factor model, which has been first introduced and

analyzed theoretically in Bing et al. (2017):

X = AZ + E (1)

where X ∈ Rp is a vector of p variables to be clustered, Z ∈ RK denotes the vector of K latent,

unobservable, factors, A ∈ Rp×K is the membership matrix assigning p variables to K groups , and

E denotes the random error. In model (1), X, Z and E are random with E[E] = 0 and E and Z are

independent. We assume that the covariance matrix of the errors, Cov(E) := Γ = diag(σ2
1, . . . , σ

2
p)

is diagonal, and that the covariance matrix of the latent factors, Cov(Z) = C is strictly positive

definite. Without loss of generality, we can assume that X and Z have mean zero since we can

always subtract their means. The data consists in X1, . . . , Xn assumed to be independent and

identically distributed as X given by (1):

Xi = AZi + Ei, (2)

for 1 ≤ i ≤ n, and with Cov(Zi) = C, for all i. We emphasize that only X is observable, and that

both the group number K and the membership matrix A are unknown, and are the parameters
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of interest, to be estimated from the data. Our final clusters of X are defined via A. To be more

specific, for each group k ∈ {1, . . . ,K}, we cluster all Xj , j ∈ {1, . . . , p}, into group k if Ajk 6= 0,

that is,

Gk = {j ∈ {1, . . . , p} : Ajk 6= 0}, for each k ∈ {1, . . . ,K}. (3)

Since each row of A is allowed to have more than one non-zero entries, we expect that groups are

overlapped.

Model (1) is not identifiable without further conditions, in that one can always write AZ =

AQQTZ, for any orthogonal matrix Q. Therefore, without imposing further structural assumptions,

the cluster allocation matrix A cannot be uniquely defined. We thus assume the following model

specifications:

(i)
∑K

k=1 |Ajk| ≤ 1 and Aj· is sparse, for each j = {1, . . . , p};

(ii) For each k = {1, . . . ,K}, there exists at least two indices j 6= ` ∈ {1, . . . , p} such that

|Ajk| = |A`k| = 1;

(iii) ∆(C) := mink 6=k′(Ckk ∧ Ck′k′ − |Ckk′ |) > 0, with a ∧ b := min{a, b}.

Our specification (i) rules out the scaling ambiguity between A and Z. It also allows the existence

of some variable which is not associated with any group, that is Ajk = 0 for all k ∈ {1, . . . ,K}.

This is practically meaningful. For example, while analyzing a gene expression dataset, it allows

genes with poor/noisy expression measurements to not be associated with any latent factor, where

each latent factor could correspond to a unique biological function (as demonstrated in the main

manuscript). Specification (ii) requires that, for each group, we have at least two variables that are

solely associated with this group. In many areas of factor analysis, this assumption is arguably the

most well-received, such as psychology (McDonald, 1999) and non-negative matrix factorization

(Donoho and Stodden, 2004) in computer science, to name just a few. It has the following practical

implication: if Xi satisfies (ii), then it is only related to one Zk, for some k. Then, the cluster

corresponding to the unobservable Zk inherits the properties of Xi, which clarifies the cluster

interpretation, and renders the multi-clustering association meaningful. We name variables as in

(ii) the non-mixed variables and define its set as

I = {I1, . . . , IK}, Ik = {j ∈ {1, . . . , p} : |Ajk| = 1, Ajk′ = 0, ∀k′ 6= k}.

2



Correspondingly, we name the variables in the complement set mixed variables. Specification (iii)

implies |Zk| 6= |Zk′ | almost surely for any two latent variables, and can be viewed as the minimal

assumption to make two latent variables, and therefore two clusters, distinguishable.

Under model (1) and assuming that (i) - (iii) hold, Theorems 1 and 2 in Bing et al. (2017)

show that K and I can be uniquely determined from Σ := Cov(X) up to a group permutation.

Moreover, the allocation matrix A can also be determined, uniquely, from Σ up to a K ×K signed

label permutation.

In practice, instead of having access to the theoretical covariance matrix Σ, we only have access

to the data that consists in n i.i.d. copies of the vector X, organized in the n × p data matrix

X := (X1, . . . , Xn)T , where by slight abuse of notation we denote by Xi ∈ Rp the i-th measurement

on the vector X. By using Σ̂ = 1
nX

TX as an estimator of Σ, and assuming that X has sub-Gaussian

tails, Algorithms 1 and 2 in Bing et al. (2017) yield statistically accurate estimates Î and Â of I

and A, respectively, as shown in Theorems 3 and 4 of Bing et al. (2017), under suitable conditions.

After estimating A, we can estimate the clusters Gk by

Ĝk = {j ∈ [p] : Âjk 6= 0}, for each k ∈ {1, . . . , K̂}. (4)

Under suitable conditions, Part 3 of Remark 4 in Bing et al. (2017) guarantees that Ĝk = Gk for

all 1 ≤ k ≤ K, with high probability, up to label permutation. This shows that the clusters defined

by our latent variable model can be estimated consistently, via a scalable algorithm.

Remark: The original paper (Bing et al., 2017) focuses on clustering varaibles based on their

covariance structure which is a linear measure of the dependency. In particular, model (1) is an

example when the linear similarity measure Σ := Cov(X) has the following decomposition

Σ = ACAT + Γ. (5)

Since the definition of clusters in (3) is via A and A is identified from the linear similarity measure

Σ, we can naturally extend this to any non-linear similarity measure of variables. To be precisely, let

K ∈ Rp×p be any similarity measure of those p variables. If K satisfies the following decomposition

K = ACAT + Γ

with A and C following our model specifications (i) - (iii) and Γ being diagonal, then as long as

one can estimate K well from the observed data, LOVE algorithm is still applicable to estimate the

3



matrix A, from which the clusters can be constructed.

2 Identifiability and estimation of I, I, A and G

The details given in this section have been developed in Bing et al. (2017). For the convenience of

the reader, and to keep this work self-contained, we repeat them here.

We first present two theorems which guarantee that I, I, A and G are identifiable. The criterion

of Theorem 1 is constructive for the later estimation.

2.1 Identifiability

Let

Mi := max
j∈[p]\{i}

|Σij | (6)

be the largest absolute value of the entries of row i of Σ excluding |Σii|. Let Si be the set of indices

for which Mi is attained:

Si :=
{
j ∈ [p] \ {i} : |Σij | = Mi

}
. (7)

Theorem 1. Assume that model (1) and (i) - (iii) hold. Then:

(a) i ∈ I ⇐⇒ Mi = Mj for all j ∈ Si.

(b) The pure variable set I can be determined uniquely from Σ := Cov(X). Moreover, its partition

I := {Ia}1≤a≤K is unique and can be determined from Σ up to label permutations.

The identifiability of the allocation matrix A and that of the collection of clusters G = {G1, . . . , Gk}

in (3) use the results from Theorem 1 in crucial ways. We state the result in Theorem 2 below.

Theorem 2. Assume that Model (1) with (i) - (iii) holds. Then, there exists a unique matrix A,

up to a signed permutation, such that X = AZ + E. This implies that the associated overlapping

clusters Ga, for 1 ≤ a ≤ K, are identifiable, up to label switching.

2.2 Estimation

We develop estimators from the observed data, which is assumed to be a sample of n i.i.d. copies

X(1), . . . , X(n) of X ∈ Rp, where p is allowed to be larger than n. Our estimation procedure consists

4



of the following four steps:

(1) Estimate the pure variable set I, the number of clusters K and the partition I;

(2) Estimate AI , the submatrix of A with rows Ai· that correspond to i ∈ I;

(3) Estimate AJ , the submatrix of A with rows Aj· that correspond to j ∈ J ;

(4) Estimate the overlapping clusters G = {G1, . . . , GK}.

2.2.1 Estimation of I and I

Given the different nature of their entries, we estimate the submatrices AI and AJ separately. For

the former, we first estimate I and its partition I = {I1, . . . , IK}, which can be both uniquely

constructed from Σ, as shown by Theorem 1. We use the constructive proof of Theorem 1 for this

step, replacing the unknown Σ by the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

X(i)(X(i))T .

Specifically, we iterate through the index set {1, 2, . . . , p}, and use the sample version of part (a)

of Theorem 1 to decide whether an index i is pure. If it is not deemed to be pure, we add it to the

set that estimates J . Otherwise, we retain the estimated index set Ŝi of Si defined in (7), which

corresponds to an estimator of Mi given by (6). We then use the constructive proof of part (b) of

Theorem 1 to declare Ŝi∪{i} := Î(i) as an estimator of one of the partition sets of I. The resulting

procedure has complexity O(p2), and we give all the specifics in Algorithm 1 of Section 2.2.5. The

algorithm requires the specification of a tuning parameter δ, which will be discussed in Section 3.

2.2.2 Estimation of the allocation submatrix AI

Given the estimators Î, K̂ and Î = {Î1, . . . , ÎK̂} from Algorithm 1, we estimate the matrix AI by

a |Î| × K̂ matrix with rows i ∈ Î consisting of K̂ − 1 zeros and one entry equal to either +1 or −1

as follows. For each a ∈ [K̂],

(1) Pick an element i ∈ Îa at random, and set Âia = 1. Note that Âia can only be +1 or −1 by

the definition of a pure variable.

(2) For the remaining j ∈ Îa \ {i}, we set Âja = sign(Σ̂ij).

5



This procedure induces a partition of Îa = Î1
a ∪ Î2

a , where Î1
a and Î2

a are defined below: Âka = Âla, for k, l ∈ Î1
a or k, l ∈ Î2

a

Âka 6= Âla, for k ∈ Î1
a and l ∈ Î2

a

. (8)

2.2.3 Estimation of the allocation submatrix AJ

We continue by estimating the matrix AJ , row by row. To motivate our procedure, we begin by

highlighting the structure of each row Aj· of AJ , for j ∈ J . We recall that Aj· is sparse, with

‖Aj·‖1 ≤ 1, for each j ∈ J , as specified by assumption (i). In addition, model (1) subsumes a

further constraint on each row Aj· of A, as explained below. To facilitate notation, we rearrange

Σ, A and Γ := Cov(E) as follows:

Σ =

ΣII ΣIJ

ΣJI ΣJJ

 , A =

AI
AJ

 and Γ =

ΓII 0

0 ΓJJ

 .
Model (1) implies the following decomposition of the covariance matrix Σ of X:

Σ =

ΣII ΣIJ

ΣJI ΣJJ

 =

AICATI AICA
T
J

AJCA
T
I AJCA

T
J

+

ΓII 0

0 ΓJJ

 .
In particular, ΣIJ = AICA

T
J . Thus, for each i ∈ Ia with some a ∈ [K] and j ∈ J , we have

AiaΣij = A2
ia

K∑
b=1

AjbCab =

K∑
b=1

AjbCab = CTa·Aj·. (9)

Averaging display (9) over all i ∈ Ia yields

1

|Ia|
∑
i∈Ia

AiaΣij = CTa·Aj·, for each a ∈ [K]. (10)

For each j ∈ J , we let

βj := Aj·

and

θj =

 1

|I1|
∑
i∈I1

Ai1Σij , . . . ,
1

|IK |
∑
i∈IK

AiKΣij

T

. (11)

Since Aia ∈ {−1, 1}, for each i ∈ Ia and a ∈ [K], the entries of θj are respective averages of the

sign corrected entries of Σ corresponding to the partition of the pure variable set. Summarizing,
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modeling assumption (i) and equation (10) above show that the estimation of AJ reduces to esti-

mating, for each j ∈ J , a K-dimensional vector βj that is sparse, with norm ‖βj‖1 ≤ 1, and that

satisfies the equation

θj = Cβj .

Both C and θj , for each j ∈ J , can be estimated directly from the data as follows. For each j ∈ Ĵ ,

we estimate the a-th entry of θj by

θ̂ja =
1

|Îa|

∑
i∈Îa

ÂiaΣ̂ij , a ∈ [K̂], (12)

and compute

Ĉaa =
1

|Îa|(|Îa| − 1)

∑
i,j∈Îa,i 6=j

|Σ̂ij |, Ĉab =
1

|Îa||Îb|

∑
i∈Îa,j∈Îb

ÂiaÂibΣ̂ij , (13)

for each a ∈ [K̂] and b ∈ [K̂] \ {a} to form the estimator Ĉ of C. The estimates (12) and (13) rely

crucially on having first estimated the pure variables and their partition, according to the steps

described in Sections 2.2.1 and 2.2.2 above.

We have developed a computationally efficient method to estimate βj . We exploit the fact that

the square matrix C is invertible and take the equation βj = C−1θj as our starting point. The

idea is to first construct a pre-estimator β̄j = Ω̂θ̂j , based on an appropriate estimator Ω̂ of the

precision matrix Ω := C−1, followed by a sparse projection of β̄j . Alternatively, and recommended

to speed up the computation, we could use a simple hard threshold operation in the second step.

To estimate Ω, we propose the linear program

(Ω̂, t̂) = arg min
t∈R+, Ω∈RK̂×K̂

t (14)

subject to

Ω = ΩT , ‖ΩĈ − I‖∞ ≤ λt, ‖Ω‖∞,1 ≤ t, (15)

with tuning parameter λ. After we compute β̄j = Ω̂θ̂j , for each j ∈ Ĵ , we solve the following

optimization problem

β̂j = arg min
β∈RK̂

‖β‖1 (16)

subject to

‖β − β̄j‖∞ ≤ µ, (17)

7



for some tuning parameter µ that is proportional to ‖C−1‖∞,1, to obtain our final estimate β̂j as

the optimal solution of this linear program. This solution is also sparse and properly scaled, in

accordance to our model specification (i). Then, Â
Ĵ

is the matrix with rows β̂j , for j ∈ Ĵ . Our

final estimator Â of A is obtained by concatenating Â
Î

and Â
Ĵ
.

2.2.4 Estimation of the overlapping groups

Recalling the definition of groups in (3), the overlapping groups are estimated by

Ĝ =
{
Ĝ1, . . . , ĜK̂

}
, Ĝa =

{
i ∈ [p] : Âia 6= 0

}
, for each a ∈ [K̂]. (18)

Variables Xi that are associated (via Â) with the same latent factor Za are therefore placed in the

same group Ĝa. To accommodate potential pure noise variables, we further define

G0 :=
{
j ∈ {1, . . . , p} : Aja = 0, for all a ∈ {1, . . . ,K}

}
(19)

as the pure noise cluster. We can estimate G0 in (19) by

Ĝ0 =
{
i ∈ [p] : Âia = 0, for all a ∈ [K̂]

}
. (20)

However, our main focus is on G because it completely determines G0.

2.2.5 LOVE: A Latent variable model approach for OVErlapping clustering.

We give below the specifics of Algorithm 1, motivated in Section 2.2.1, and summarize our final

algorithm, LOVE in Algorithm 2.

3 Identifying tuning parameters

In order to apply Algorithms 1 and 2 in Bing et al. (2017), there are three tuning parameters

(δ, λ, µ) to be chosen. We clarify them in the sequel.

1. The tuning parameter δ is used for finding Î and defined as

δ := max
1≤i<j≤p

|Σ̂ij − Σij |.

When X has sub-Gaussian tail, we know δ = c
√

log(p ∨ n)/n for some constant c depending

on the variance of X with a∨ b := max{a, b}. Thus, we can choose a fine grid for the leading
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constant of δ with rate equal to
√

log(p ∨ n)/n, and use cross-validation to find the best

leading constant (cf. page 25 in Bing et al. (2017)).

2. To see the role of λ, note that we need to estimate C−1 in the Algorithm 2 by using Ĉ which

is not guaranteed to be positive definite. Thus, a linear program is proposed in (14) and (15)

in Bing et al. (2017) to deal with this issue, and the resulting estimator of C−1 is denoted by

Ω̂. The rate of λ is the same as that of δ.

3. Finally, in order to obtain sparsity of Â, a soft-thresholding procedure is proposed for the

estimation of each row of A as (16) and (17) in Bing et al. (2017). The tuning parameter

µ controls the sparsity of the resultant Â. The rate of µ is ‖C−1‖∞,1
√

log(p ∨ n)/n where

‖C−1‖∞,1 := maxk
∑K

k′=1 |Ckk′ |. In practice, we can replace C−1 by its estimate obtained in

the previous step.

Practically, as long as we use cross-validation to select δcv, Bing et al. (2017) recommends using

λ = δcv and µ = ‖Ω̂‖∞,1δcv where Ω̂ is the estimate of C−1. It is worth mentioning that, the

algorithm is very robust to µ and λ as long as δ is selected.

4 Gene expression dataset

The data has expression values corresponding to p = 16134 genes as columns and n = 114 time-

points as rows.

• For LOVE, we select δ from the grid c
√

log p/n with c ∈ {0.3, 0.31, . . . , 0.49, 0.50} by cross-

validation . The selected δcv is 0.43
√

log p/n. We then use λ = δcv as recommended in Bing

et al. (2017). For selecting µ, recall that it controls the sparsity of Â which determines the

size of each group via (4). We tune µ to have a large number of clusters with size between

[50, 1000] and we end up using µ = 1.91‖Ω̂‖∞,1δcv.

• For FuzzyCmeans, we use the function cmeans in the R-package e1071 (Bezdek, 1981). Re-

call that X ∈ R114×16134 where the rows correspond to independent observations. Therefore,

FuzzyCmeans is designed to cluster rows instead of columns. This suggests that it is mean-

ingless to naively apply FuzzyCmeans to XT to cluster 16134 genes. Moreover, the number
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of observations is too small to make the result meaningful. To remedy this, we try to apply

FuzzyCmeans to XTX instead; however it is still outperformed by LOVE.

The number of clusters needs to be pre-determined. To make the results comparable with

LOVE, we specify it equal to 1222 which is the number of clusters obtained from LOVE. Since

FuzzyCmeans doesn’t yield sparsity of its membership matrix (the quantity analogous to our

Â), we manually threshold it by using different thresholding levels. To tune the thresholding

level, we choose it via a grid such that it yields the largest proportion of clusters with size

within [50, 1000], in accordance of the biological expectation. The thresholded membership

matrix is used to define clusters as (4).

• For ClusterOne, we first compute the weighted gene co-expression network using pairwise

correlations as edge weights. Significant edges are defined when the (unsigned) correlation

is superior to threshold 0.5, with the added condition that the Benjamini-Hochberg multiple

testing correction produces a p-value associated with the t-test inferior to 0.05. On that

weighted correlation graph we apply the ClusterOne method aiming to detect highly cohesive,

potentially overlapping complexes (Nepusz et al., 2012). We generate overlapping clusters

using all default parameters, specifically a default density threshold of 0.3.

To calculate the under-representation index of housekeeping genes in each cluster, we first

measure the significance of the under-representation using a hypergeomtric test. We then report

the distributon of under-representation indices as the − log of the 100 most significant p-values for

each method.

5 Dataset of progressors and controllers

We have 19 subjects (10 progressors and 9 controllers). For each subject, we have 18 measurements

(antibody-dependent effector functions and antibody titers) across 4 time points. We use all time

points for each subject and end up with a 72× 19 data matrix X. There are 1.5% missing values

and we impute them using means.

LOVE could directly be applied to this dataset if the rows were independent and identically

distributed. However, measurements of effector functions and titers at different time points are

independent, but not necessarily identically distributed. We explain below why LOVE can still be
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used in in this situation. To start with, we note that for this data set n = 72 and p = 19, with

the interpretation of n and p given by model (1), but where the data consists now in independent

observations Xi ∈ R19, 1 ≤ i ≤ n, and each observation is allowed to have a different distribution,

in that for each i ∈ {1, . . . , n} we have

Xi = AZi + Ei, (21)

with Cov(Zi) = Gi. This emphasizes the fact that the vector containing the i-th clinical phenotype

(controller vs progressor) for all 19 subjects is linked, via an allocation matrix A, to an unobservable

latent factor vector Zi ∈ RK , but that unlike (2), where Cov(Zi) = C, for all i, here we allow the

covariance structure of the latent factors to change with i. The random error term Ei ∈ Rp is

assumed to have mean zero and diagonal covariance matrix. Then, (21) implies

M i := E[XiX
T
i ] = AE[ZiZ

T
i ]AT + E[EiE

T
i ] := AGiAT + Γi,

with Γi being diagonal, and recalling that Gi denotes the covariance matrix of the latent factors,

for i = 1, . . . , n. This further yields

M :=
1

n

n∑
i=1

M i = A

(
1

n

n∑
i=1

Gi

)
AT +

1

n

n∑
i=1

Γi := AGAT + Γ.

A close look at the development of the LOVE algorithm in Bing et al. (2017) reveals the fact that

it can be employed to estimate an allocation matrix A from a decomposition as above whenever: A

satisfies the requirements (i) and (ii) introduced in the first section, G satisfies the mild requirement

(iii) from the first section, and M can be estimated well from the data. Assuming that the theoret-

ical model requirements are satisfied, an estimator of M ∈ Rp×p is given by M̂ = n−1XTX ∈ Rp×p,

which can be used as the input of the LOVE algorithm. One of the tuning parameters, δ, is de-

fined now as δ := max1≤i<j≤p |M̂ij −M ij |, and will continue to be proportional to n−1/2, up to

logarithmic terms, under appropriate conditions on the error distributions. The other two tun-

ing parameters will change accordingly, but will have the same interpretation as in the previous

analysis. Specifically:

• For LOVE, we choose δ from c
√

log n/n with c ∈ {0.01, 0.02, . . . , 0.19, 0.2} and we ended up

with δcv = 0.1
√

log n/n. We choose λ = 1.36δcv via the criterion on page 25 in Bing et al.

(2017). Finally, µ = ‖Ω̂‖∞,1δcv is used as recommended; for this analysis Ω̂ is an estimator of
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the inverse matrix G
−1

. We demonstrate in Figure 3 that our results are robust to the choice

of λ. We use the largest membership weight to assign each subject to one cluster.The initial

groups are merged to generate 2 clusters (a-priori expectation is 2 clusters as there are two

different clinical phenotypes).

• For FuzzyCmeans, using the arguments outlined in the previous section, we apply Fuzzy-

Cmeans to XTX by using the true group number K = 2. Since we are interested in the

performance of non-overlapping, we manually assign each subject to one cluster by using the

largest membership weight. The fuzziness parameter is the default value as the resultant

clusters change little when we vary the fuzziness paramter.

• For ClusterOne, we use the same procedure as above, we apply the method with default

parameters on the weighted gene co-expression network using pairwise correlations as edge

weights. The significant edges are defined as the previous section. However, here we use an

FDR cutoff of 0.2 so that the correlation graph is not too sparse.

6 Dataset of vaccine-induced humoral immune responses

We have 60 primates in 3 vaccination arms - IM239, IM mosaic and AE239. For each primate, we

measured 191 different humoral immune responses post vaccination. The data matrix X ∈ R191×60

contains 60 columns representing 60 primates and 191 rows of measurements. We impute the

missing values using k-nearest-neighbour imputation where k = 5. Since each humoral immune

response is on a different scale, we standardize each measurement to have unit variance. Note

that the 191 measurements here are independent but not necessarily identically distributed. From

the explanations of the previous dataset (Dataset of progressors and controllers), LOV E cound be

directly applied to n−1XTX in this dataset.

• For LOV E, we choose δ = c
√

log n/n from the grid c ∈ {0.05, 0.06, . . . , 0.39, 0.4} which gives

δcv = 0.11
√

log n/n. The chosen λcv is 0.8δcv via the criterion on page 25 in Bing et al.

(2017). The thresholding parameter µ is set to be 0.85‖Ω̂‖∞,1δcv in order to guarantee that

no primate is excluded. To obtain non-overlapping groups, we assign each primate to the

group having the largest membership weight. The initial groups are merged to generate 3

clusters (a-priori expectation is 3 clusters as there are 3 different vaccination arms).
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• For FuzzyCmeans, we use the true group number K = 3 as input and assign each primate

based on the largest weight of the membership matrix to obtain non-overlapping groups.

Since the fuzziness parameter controls the level of overlap in FuzzyCmeans, we manually

tune it from the grid of {1.1, 1.2, . . . , 2.9, 3} based on the best performance in terms of the

confusion matrix. We end up with a fuzziness parameter of 1.5.

• For ClusterOne, since the pairwise correlation is rather weak in this dataset, ClusterOne

tends not to assign many subjects into any group. To obtain the upper bound of performance

for ClusterOne, we used effect size and significance thresholds that allowed most primates to

be assigned to at least one group. We used an FDR cutoff of 0.2 as in the earlier section. Even

after tuning parameters to ensure that most primates are assigned to at least one cluster, some

remained unassigned. Each of these primates was randomly assigned to one of the clusters.
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Algorithm 1 Estimate the partition of the pure variables I by Î
1: procedure PureVar(Σ̂, δ)

2: Î ← ∅.

3: for all i ∈ [p] do

4: Î(i) ←
{
l ∈ [p] \ {i} : maxj∈[p]\{i} |Σ̂ij | ≤ |Σ̂il|+ 2δ

}
5: Pure(i)← True.

6: for all j ∈ Î(i) do

7: if
∣∣|Σ̂ij | −maxk∈[p]\{j} |Σ̂jk|

∣∣ > 2δ then

8: Pure(i)← False,

9: break

10: end if

11: end for

12: if Pure(i) then

13: Î(i) ← Î(i) ∪ {i}

14: Î ← Merge(Î(i), Î)

15: end if

16: end for

17: return Î and K̂ as the number of sets in Î.

18: end procedure

19: function Merge(Î(i), Î)

20: for all G ∈ Î do . Î is a collection of sets

21: if G ∩ Î(i) 6= ∅ then

22: G← G ∩ Î(i) . Replace G ∈ Î by G ∩ Î(i)

23: return Î

24: end if

25: end for

26: Î(i) ∈ Î . add Î(i) in Î

27: return Î

28: end function
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Algorithm 2 The LOVE procedure for overlapping clustering.

Require: Σ̂ from I.I.D. data (X(1), ..., X(n)), the tuning parameters δ, λ and µ.

1: Apply Algorithm 1 to obtain the number of clusters K̂, the estimated set of pure variables Î and its

partition of Î.

2: Estimate AI by ÂÎ from (8).

3: Estimate C−1 by Ω̂ from (14) and β̄j for each j ∈ Ĵ .

4: Estimate AJ by ÂĴ from (16). Combine ÂÎ with ÂĴ to obtain Â.

5: Estimate overlapping groups Ĝ = {Ĝ1, ..., ĜK̂} from (18) by using Â.

6: Output Â and Ĝ.
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