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Abstract. Proteins with molecular weights of around 
100,000 (designated 100K) are found in all coated vesi- 
cles. Five monoclonal antibodies have been raised 
against the major 100K proteins of bovine brain coated 
vesicles, which migrate on SDS gels as three closely 
spaced bands. One antibody stains the middle band 
(band B), two stain both upper and lower bands 
(bands A and C), and two stain the lower band (band 
C) only. Thus, the polypeptides in bands A and C are 
related (but not identical), a result confirmed by 
NH2-terminal sequencing. Other tissues were found to 
express proteins corresponding to, and co-migrating 
with, bands B and C but not band A. Only the two 
antibodies that recognize both A and C stained fixed 
and permeabilized tissue culture cells; they both 
showed a punctate pattern in the plane of the plasma 
membrane. Double labeling with anti-clathrin antibod- 

ies confirmed that the dots correspond to coated pits 
and vesicles. However, perinuclear staining seen with 
anti-clathrin, corresponding to Golgi-derived coated 
vesicles, was conspicuously absent with the two 
monoclonal antibodies. Affinity-purified polyclonal an- 
tisera against the 100K proteins, reported earlier, gave 
perinuclear as well as punctate staining; these included 
one antiserum which gave mainly perinuclear staining 
(Robinson, M. S., and B. M. F. Pearse, 1986, J. Cell 
Biol., 102:48-54). Thus, different 100K proteins ap- 
pear to be found in different membrane compartments. 
Since the 100K proteins are thought to lie between 
clathrin and the membrane proteins of the vesicle, 
these results may help to explain how different mem- 
brane proteins can be sorted into coated vesicles in 
different parts of the cell. 

C 
LATHRIN-COATED pits and vesicles play an important 
part in the sorting of proteins during intraceUular 
membrane traffic. On the plasma membrane, coated 

pits concentrate selected membrane proteins and cause them 
to be efficiently internalized during receptor-mediated en- 
docytosis (8) and recycling of secretory granule components 
(15). inside the cell, coated vesicles are most abundant in the 
region of the Golgi apparatus. Here they are thought to be 
involved in the targeting of proteins to organelles such as 
lysosomes (3) and secretory granules (14). 

Recent studies suggest that a family of proteins, with mo- 
lecular weights of around 1OO,000 (designated 100K), may 
provide the molecular basis for the sorting of proteins by 
coated vesicles. Both biochemical and structural work indi- 
cate that the looK proteins are positioned between clathrin 
and the vesicle membrane (23, 24). In addition, Pearse (17) 
has been able to demonstrate that the mannose-6-phosphate 
receptor, one of the membrane proteins concentrated in 
coated pits, binds directly to complexes containing the 100K 
proteins and a closely associated 50-kD protein. Genetic en- 
gineering experiments performed on other such membrane 
proteins indicate that the cytoplasmic domain contains the in- 
formation that directs them into coated pits (8, 22). Thus, 

these results all suggest the 100K proteins may interact with 
the cytoplasmic tails of selected transmembrane proteins and 
link them to clathrin, causing them to be sequestered into 
coated pits and vesicles for transfer to another organeUe. 

We have purified the looK proteins from bovine brain 
coated vesicles and have shown that they can be divided into 
two groups, based on their behavior on hydroxylapatite 
columns (18). The group comprising the bulk of the protein 
has been designated HA-II (for hydroxylapatite group ID. 
The looK proteins in this group migrate on SDS gels as three 
closely spaced bands, but the upper and lower bands can be 
separated from the middle band by running a second hydrox- 
ylapatite column in the presence of SDS. Peptide mapping 
by limited proteolysis indicates that the upper and lower 
bands are related to each other, but are markedly different 
from the middle band (21). 

When polyclonal antisera were raised against the HA-II 
100K proteins, each antiserum showed a somewhat different 
labeling pattern on immunoblots. Two of these antisera were 
able to stain cells and also showed somewhat different label- 
ing patterns by immunofluorescence (21). This result raised 
the possibility that different looK proteins might be found in 
different types of coated vesicles, and thus suggested a means 

© The Rockefeller University Press, 0021-9525/87/04/887/9 $1.00 
The Journal of Cell Biology, Volume 104, April 1987 887-895 887 



whereby different membrane proteins could be sorted into 
coated vesicles in different membrane compartments. How- 
ever, because we were working with polyclonal antisera, we 
could not really correlate the patterns seen on blots with the 
patterns seen in intact cells. 

I have now raised and characterized five monoclonal anti- 
bodies against the HA-II looK proteins. These antibodies 
have been useful biochemical tools for characterizing the 
proteins further. In addition, two of the antibodies stain tis- 
sue culture cells, and provide further support for the idea that 
different looK proteins may be found in coated vesicles em- 
barked on different pathways of membrane traffic. 

Materials and Methods 

Antibody Production 
The HA-II looK proteins were purified and prepared for injection as previ- 
ously described (21). BALB/c mice were immunized with 50 Ixg of protein 
and were boosted after 2 and 8 wk. I wk after the final injection, the antisera 
were screened on immunnblots (21). The mice that were to be used for fu- 
sions were then injected intraperitoneally with 50 pg of protein without 
Freund's adjuvant on the fifth and fourth days before the fusion. 

Fusions were carried out using NSO myeloma cells, essentially as de- 
scribed by Galfre and Milstein (6). Cells were plated into four 24-well 
plates, and the supernatants were assayed when yellow on immunoblots. 
Positives were then cloned twice before being grown in large flasks for cul- 
ture supernatants or injected into mice for ascites fluid. Antibody subclasses 
were typed using a kit provided by Cambridge Bioscience (Cambridge, En- 
gland). 

lmmunoblots 
Immnnoblots were prepared by electrophoresing protein samples on mini- 
gels, transferring them onto nitrocellulose, and labeling them with antibod- 
ies and radioactive probes as described (21). Antibodes B1-M6 and ACI-Mll 
were detected with t~I-protein A, while the other three antibodies, which 
do not bind protein A, were detected with affinity-purified t25I-rabbit 
anti-mouse immunoglobulin. Among the protein samples treated in this 
way were bovine brain looK proteins that had been separated on hydrox- 
ylapatite in the presence of SDS (21), human placental coated vesicles (16), 
and rat liver coated vesicles (20). Whole tissue homogenates were also blot- 
ted; these were prepared by cutting small pieces of fresh tissue, homogeniz- 
ing the tissue in boiling sample buffer, and sonicating and centrifuging the 
samples before running them on a gel. In addition, blots were made of 
column fractions of rat liver coated vesicles chromatographed on hydrox- 
ylapatite in the presence of SDS. This was done by incubating the coated 
vesicles (,vl mg in 0.5 ml) with 1070 SDS at 37"C for 15 min, then diluting 
them to 0.1% SDS and dialyzing them against the column starting buffer. 
The protein was applied to a 1-ml hydroxylapatite column and eluted with 
a gradient of 0.2 to 0.5 M phosphate as described (21). 

Immunoprecipitation 
Purified HA-II looK protein (,o3-4 pg in 5 ltl) was made 0.2% in SDS and 
heated to 37°C for 15 rain. This solution was then mixed with IOO pl 10% 
fixed Staphylococcus aureus suspended in PBS containing 0.05 % Tween-20, 
and 3 pl ascites fluid from hybridoma ACI-MI1. The tube was rotated for 
1 h and then centrifuged, and the pellet was washed twice. The final pellet 
was made up to the same volume as the first supernatant, and both samples 
were boiled in sample buffer, subject to electrophoresis, and blotted. 

lmmunofluorescence 
Primary cultures of bovine fibroblasts were generously provided by Dr. Ann 
Dane (ARC Institute of Animal Physiology, Babraham, England). They 
were grown on multiwell test slides and prepared for immunofluorescence 
in several different ways. The fixation that worked best for the monoclonal 
antibodies was immersion of the slide in -20°C methanol for 5 min, fol- 
lowed by air drying. The anti-clathrin antiserum gave the best staining on 
cells that had been fixed for 30 rain in PBS containing 2 % paraformaldehyde 
and 0.01% glutaraidehyde, blocked by a 15-min incubation in 1 mg/mi so- 

Table I. Antibody Characterization 

Antibody Subclass Specificity Cell staining 

B1-M6 IgG2a Middle (B) 
ACI-Mll IgG2a Upper and lower (A and C) + 
AC2-M15 IgG1 Upper and lower (A and C) + 
C1-MI5 IgM Lower (C) 
C2-M15 IgM Lower (C) 

dium borohydride, and permeabilized for 10 rain in 0.1% Triton X-IOO. For 
double labeling, cells were fixed for 10 min in 3.7% paraformaldehyde in 
PBS, followed by 5 min in -20°C methanol and 30 s in -20°C acetone. 

Antibody labeling was carded out essentially as described (21). The 
monoclonal antibodies were used at a dilution of 1:10 for the culture super- 
natants and I:loo for the ascites fluid, although staining could still be 
detected at much greater dilutions. Ceils that had been incubated with 
monoclonal antibodies alone were then incubated with affinity-purified 
fluorescein rabbit anti-mouse Ig (Miles Laboratories, Inc., Naperville, IL). 
The mounting medium contained 0.05 ltg/ml of the DNA stain 4,6 diarnido- 
2-phenylindole (DAPI) 1 so that nuclei could be visualized with the appro- 
priate filter combination. 

Anti-clathrin light chain antibodies were affinity purified from a rabbit 
antiserum that had been prepared against bovine brain triskelions by Dr. 
Ernst Ungewickell while he was in this laboratory. For double labeling with 
wheat germ lectin, the anti-clathrin incubation was followed by incubations 
in affinity-purified fluorescein goat anti-rabbit (Sigma Chemical Co. Ltd., 
Dorset, England) and rhodamine wheat germ lectin, as described (21). 

Ceils that were to be double labeled with anti-clathrin and anti-100K 
were first incubated with the monoclonal anti-looK, then with the anti- 
clathrin. This was followed by an incubation with a mixture of fluorescein 
sheep anti-mouse and rhodamine sheep anti-rabbit (Cappel Laboratories, 
Cochranville, PA). Both of these secondary antibodies had been affinity 
purified with the appropriate immunoglobulin, then absorbed with im- 
munoglobulin from the other species to remove any cross-reacting antibod- 
ies. In control experiments, one or the other of the two primary antibodies 
was omitted, which abolished the respective fluorescent staining and 
showed that the labeling observed was indeed due to the presence of the 
specific antibody. 

NH~-terminal Sequencing 
Pure preparations of the three 100K bands were obtained by hydroxylapatite 
chromatography in the presence of SDS followed by preparative gel elec- 
trophoresis, as previously described (21). The bands were eluted into dialy- 
sis bags and extensively dialyzed against 20% ethanol containing 0.2% 
2-mercaptoethanol. Samples were then lyophilized, dissolved in 70% for- 
mic acid, desalted by gel filtration on Bin-Gel P-6 (Bio-Rad Laboratories, 
Whatford, England), and lyophilized a second time. About 100 pg of pure 
protein was recovered from each band. The proteins were then dissolved 
in 70% formic acid and sequenced on an Applied Biosystems 470A gas 
phase protein sequencer, using off-line high performance liquid chromatog- 
raphy to identify the phenylthiohydantoin derivatives (5). 

Results 

Characterization of the Five Antibodies 
Five monoclonal antibodies were obtained from mice that 
had been immunized with total HA-II 100K proteins. Table 
I lists these antibodies and their specificities. The nomencla- 
ture was kept as simple as possible, with the name of each 
antibody telling its specificity and the mouse from which it 
was derived. Thus, for instance, AC1-Mll is an antibody 
against the upper and lower bands (A and C), derived from 
mouse 11. As can be seen in Fig. 1, one of the antibodies 
(B1-M6) is against the middle band (B), two (AC1-Mll and 

1. Abbreviation used in this paper: DAPI, 4,6 diamido-2-phenylindole. 
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Figure 1. Immunoblots of HA- 
II looK proteins from bovine 
brain coated vesicles. The 
bands were separated by hy- 
droxylapatite chromatography 
in the presence of SDS, and 
fractions containing either A 
and C (left lanes) or B (right 
lanes) were subject to elec- 
trophoresis and blotted. The 
blots were stained with Pon- 
ceau S before blocking, and 
the positions of the bands 
were marked with pencil so 
that the autoradiographs and 
blots could be aligned. One 
antibody, B1-M6, stains band 
B; two others, ACl-MI1 and 
AC2-M15, stain both A and C; 
and the last two, C1-MI5 and 
C2-M15, stain band C only. 

AC2-MI5) are against both the upper and lower bands (A and 
C), and two (C1-M15 and C2-M15) are against the lower band 
(C) only. 

NHz-terminal Sequences of  the 100K Proteins 

The ability of two of the monoclonal antibodies to recognize 
both upper and lower bands indicates that the polypeptides 
in these two bands share common antigenic determinants. To 
compare the NH2-terminal sequences of the different looK 
proteins, each band was electrophoretically purified and sub- 
jected to Edman degradation. The protein or proteins in the 
middle band, B, could not be sequenced, presumably be- 
cause of a blocked NH2 terminus. However, the first 10 
amino acids of bands A and C could be identified, and ap- 
peared to be identical: 

Pro Ala Val Ser Lys Gly Ser Gly Met Gly 

It is unlikely that band C is merely a breakdown product 

of band A, however. Their peptide maps are related but show 
several distinct differences (21). Moreover, two of the mono- 
clonal antibodies exclusively recognize band C. Thus, the 
polypeptides in bands A and C appear to have identical NH2 
termini and are closely related, but nevertheless must vary 
in other regions of their amino acid sequences. 

100 K Proteins in Other Tissues and Species 

The antibodies were all tested for their ability to cross-react 
with the 100K proteins of coated vesicles purified from hu- 
man placenta and rat liver. Fig. 2 shows that cross-reactivity 
is generally good: all the antibodies except for C1-M15 
reacted strongly with human placenta (Fig. 2 a), while all 
the antibodies except for AC2-M15 reacted strongly with rat 
liver (Fig. 2 b). Immunoblots of human and rat brain 
homogenates indicate that the relative inability of these anti- 
bodies to cross-react is due to the difference in species rather 
than the difference in tissue (data not shown). 

Figure 2. Coated vesicles puri- 
fied from other sources. Coated 
vesicles were purified from 
human placenta (a) and rat 
liver (b), subject to elec- 
trophoresis, and blotted. In 
both cases, four out of the five 
antibodies show strong label- 
ing of the 100K region, but the 
antibody that does not cross- 
react is different in the two 
blots. 
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lmmunoprecipitation 
Although none of the antibodies were able to precipitate the 
100K proteins in their native state, antibody AC1-M11 
brought down proteins that had first been denatured in SDS 
(Fig. 5). When the supernatants and pellets from such an ex- 
periment are compared, it can be seen that bands A and C 
have been selectively precipitated. To test whether the other 
antibodies bind to the same polypeptides as AC1-M11, super- 
natants and pellets from an immunoprecipitation experiment 
were blotted and probed with the five different antibodies 
(Fig. 5). As expected, B1-M6, which is against band B, al- 
most exclusively labeled the supernatant, while AC1-M11 it- 
self mainly labeled the pellet. All of the other antibodies also 
mainly labeled the pellet. Thus, antibodies AC2-M15, C1- 
M15, and C2-M15 all recognize polypeptides that are also 
recognized by AC1-Mll. 

Immunofluorescence 
Before using the antibodies for immunofluorescence, it was 
necessary to show that they labeled bands of the correct 

Figure 3. Immunoblots of whole tissue homogenates from three 
different rat organs, run on a long gel. Antibody AC1-Mll labels 
a doublet, bands A and C, in the lane of brain protein, but only de- 
tects a single band, co-migrating with band C, in the other two 
lanes, which contain protein from liver and adrenal gland. 

Although the 100K proteins of human placenta and rat 
liver coated vesicles can be labeled with all three of the 
different types of antibodies (anti-B, anti-A and C, and 
anti-C), the pattern of bands in the looK region looks differ- 
ent from that of bovine brain. Two experiments indicate that 
coated vesicles from these other tissues contain bands corre- 
sponding to, and co-migrating with, bands B and C from 
brain but not band A. First, whole homogenates of a number 
of different rat organs, three of which are shown in Fig. 3, 
were subject to electrophoresis on a long gel, blotted, and 
stained with AC1-Mll. Although two bands can be seen in the 
lane of brain protein, the other lanes only show one band 
when stained with the antibody, which co-migrates with 
band C from brain. Second, the looK proteins of rat liver 
coated vesicles were separated on hydroxylapatite in the 
presence of SDS (Fig. 4 a). The rat liver band that co- 
migrates with band C from brain peaked at around fraction 
30, while the band that co-migrates with band B peaked at 
around fraction 40. A similar elution profile is seen when bo- 
vine brain looK proteins are chromatographed on hydrox- 
ylapatite with SDS (21). The identity of the two rat liver 
bands was confirmed by staining blots of the column frac- 
tions with monoclonal antibodies specific for band B (Fig. 
4 b) and bands A and C (Fig. 4 c). These results indicate that 
bands B and C are expressed in all tissues, while band A so 
far appears to be brain specific. 

Figure 4. Rat liver coated vesicles separated by hydroxylapatite 
chromatography in the presence of SDS. (a) Silver-stained gel 
showing eight of the column fractions. Bands co-migrating with 
bands B and C of brain are indicated; the band just below is appar- 
ently unrelated. The band co-migrating with C elutes before the 
band co-migrating with B, consistent with the behavior of brain 
100K proteins on hydroxylapatite with SDS. (b) Blot of a similar 
gel stained with B1-M6. Only the 100K region is shown. (c) Blot 
stained with AC1-MII. The antibody labeling confirms the identity 
of the two bands. 
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molecular mass on blots of tissue culture cells. Fig. 6 shows 
that three of the antibodies, B1-M6, AC1-MU, and AC2-M15, 
are clearly able to detect a looK band on blots of bovine fi- 
broblasts. Although B1-M6 works well on blots, it has so far 
not worked for immunofluorescence, probably because the 
antigenic site recognized by this antibody is not accessible 
under any of the fixation conditions that have been tried. 
However, antibodies AC1-Mll and AC2-MI5, both of which 
label bands A and C on blots of brain looK proteins, gave 
good immunofluorescent staining on methanol-fixed cells. 

Fig. 7, a and b, shows bovine fibroblasts stained with the 
two antibodies, and demonstrates that the two staining pat- 
terns are very similar. The cells are covered with fluorescent 
dots, often in clusters and sometimes linearly arranged. 
Focusing up and down on the cells indicates that the dots are 
in the plane of the plasma membrane. However, perinuclear 
staining in these cells is conspicuously absent: in fact, in 
some cells it is difficult to determine where the nuclei are lo- 
cated unless the cells are double labeled with a nuclear stain 
such as DAlai (Fig. 7, c and d). 

When cells are stained with a rabbit antiserum against 
clathrin light chains (Fig. 8 a), the punctate labeling looks 
very similar to that seen with the two monoclonal antibodies. 
However, in addition, there is strong labeling of a peri- 
nuclear reticulum. Such staining is typically seen with anti- 
bodies against clathrin, both polyclonai (1) and monoclonal 
(4), as well as with polyclonal antibodies against total looK 
proteins both in 3T3 cells (21) and in bovine flbroblasts (not 
shown). Double labeling with wheat germ lectin demon- 
strates that the perinuclear staining seen with anti-clathrin 
corresponds to the Golgi apparatus (Fig. 8 b). 

To confirm that the monoclonal antibodies were labeling 
a subset of the structures stained with anti-clathrin, cells 
were double labeled with anti-looK and anti-clathrin. Fig. 
9 demonstrates that most of the discrete fluorescent dots in 
the spread margins of the cells are identical with the two anti- 
bodies (a and b, c and d). Essentially all the dots stained with 
anti-looK are also stained with anti-clathrin, providing fur- 
ther evidence that uncoating of vesicles involves removal of 
both clathrin and looK and not just clathrin alone (21). How- 
ever, bright perinuclear staining is only seen with the 
anti-clathrin. This perinuclear staining often extends in a re- 
ticular pattern into the surrounding cytoplasm. Here, in- 
dividual dots can be resolved, and these are not stained with 
the anti-100K (e and f ) .  These dots presumably correspond 
to coated vesicles budding from the Golgi apparatus, which 
contain clathrin but not the looK protein(s) recognized by 
these particular monoclonal antibodies (AC1-M11 and AC2- 
M15). 

Figure 5. Immtmoprecipitation of brain 100K proteins with ACI- 
Mll. The supernatants (S) and pellets (P) were made up to the same 
volume. The gel demonstrates that most of the protein in bands A 
and C has been precipitated, while band B has remained in the su- 
pernatant. Blots of the two samples show that antibody B1-M6 
labels the supernatant, while the other four antibodies mainly label 
the pellet. 

Figure 6. Gel and blots of a total homogenate of bovine fibroblasts. 
Antibodies B1-M6, AC1-Mll, and AC2-M15 are all able to label a 
band in the 100K region. 

Discussion 

Monoclonal antibodies provide a means of distinguishing be- 
tween different members of the 100K family of coated vesicle 
proteins. The antibodies described in this paper confirm ear- 
lier results indicating that there are at least three distinct 
polypeptides in the HA-II group of looK proteins, corre- 
sponding to the three bands that can be resolved on SDS gels 
(21). Bands B and C appear to be expressed in all tissues, 
while band A has so far only been detected in brain. Bands 
A and C are closely related, even to the extent that they have 
identical NH2 termini, but the ability of two of the antibod- 
ies to recognize band C but not band A indicates that band 
C is not simply a breakdown product of band A. None of 
these results rule out the possibility that there might be more 
than one polypeptide per band. 

One subset of looK proteins, containing bands A and C, 
appears by immunofluorescence to exist only in a particular 
subset of coated vesicles: those associated with the plasma 
membrane and not those in the Golgi region. This result pro- 
vides clear evidence for the idea that different looK proteins 
are found in different types of coated vesicles. That this 
might be the case was first suggested when different poly- 
clonal antisera against the looK proteins showed different 
amounts of staining of the plasma membrane compared with 
the Golgi apparatus. By raising monoclonal antibodies, it 
has been possible here to localize defined looK species. 
Antibodies AC1-Mll and AC2-M15 both recognize bands A 
and C but not B on blots. They do not recognize the same 
epitope, however: AC1-Mll cross-reacts much more strongly 
with rat looK proteins (see Fig. 2), and the two antibodies 
also label different bands on one-dimensional peptide maps 
(not shown). When used for immunofluorescence, both of 
these antibodies give plasma membrane staining but no 
Golgi staining. 

It should be possible to refine the localization of the looK 
proteins further. The number of different pathways that make 
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Figure 7. Bovine fibroblasts stained with ACI-Mll (a) and AC2-M15 (b). The nuclei of the ceils in a are shown in c, and those of the cells 
in b are shown in d, labeled with the DNA stain DAPI. Punctate labeling in the plane of the plasma membrane can be seen with both 
antibodies, but perinuclear labeling is conspicuously absent. Bar, 10 Ixm. 

use of coated pits and vesicles is not yet known, but in addi- 
tion to being associated with the plasma membrane and the 
Golgi apparatus, coated vesicles have also been reported to 
bud from endosomes (2, 7, 12), and there may be other path- 

ways as well. Interestingly, when cells were double labeled 
with the monoclonal antibodies and anti-clathrin, faint dots 
could occasionally be seen in the spread margins of the cells 
that were only stained with anti-clathrin (see Fig. 9, c and 
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Figure 8. Cells labeled with afffinity-purified rabbit anti-clathrin (a) and wheat germ lectin (b). The punctate labeling looks similar to that 
shown in Fig. 7, but there is strong perinuclear labeling as well. Wheat germ lectin, which binds to sugars that are added to glycoproteins 
in the Golgi apparatus and thus can be used as a Golgi marker, gives similar perinuclear staining to that seen with anti-clathrin, confirming 
that the antibody is labeling Golgi-derived coated pits and vesicles. Bar, 10 Ixm. 

d). Such dots may correspond to another subset of coated 
vesicles, such as coated vesicles budding from endosomes. 
If appropriate fixation conditions can be worked out, im- 
munoelectron microscopy should greatly improve the reso- 
lution of the localization of the different antibodies. 

Most important, however, will be to raise more mono- 
clonal antibodies against the looK proteins (HA-I as well as 
HA-II) and to select for those that stain cells, in order to com- 
plete the picture of where all the different looK proteins are 
located. By staining cells with polyclonal antisera, we have 
been able to show that at least one component of the HA-II 
looK proteins must be located in Golgi-derived coated vesi- 
cles, especially since one such antiserum (antiserum 3) actu- 
ally gave stronger Golgi staining than plasma membrane 
staining when compared with anti-clathrin (21). The appear- 
ance of antiserum 3 on blots is misleading, however, and 
points out the problems that arise when trying to correlate 
blot staining with cell staining using a polyclonal antiserum. 
Antiserum 3 stained band A particularly strongly; but the 
two monoclonal antibodies that stain both A and C on blots 
give no Golgi staining at all. Moreover, when antiserum 3 
was used to probe blots of looK proteins immunoprecipitated 
with antibody AC1-Mll (see Fig. 5), the heavy labeling of 
band A was found in the pellet, not in the supernatant (not 
shown). Thus, it seems likely that a component of antiserum 
3 that gives relatively weak staining on blots (possibly anti- 
bodies against band B) is responsible for most of the cell 
staining. In any case, it should be possible to raise mono- 

clonal antibodies against the 100K proteins that stain the 
perinuclear region of the cell, and thus to define which of 
these proteins are present in coated vesicles that bud from 
the Golgi apparatus. 

Three papers have recently appeared which report at- 
tempts to separate different types of coated vesicles biochem- 
ically. First, Pfeffer et al. (19) used monoclonal antibodies 
against synaptic vesicle antigens to affinity purify two subsets 
of bovine brain coated vesicles and found no obvious differ- 
ences in their looK proteins. However, it is possible that such 
a treatment would select for coated vesicles embarked on 
more than one pathway, since synaptic vesicle antigens might 
be expected to be present not only in coated vesicles that 
recycle at the synapse, but also in coated vesicles budding 
from the Golgi apparatus containing newly synthesized pro- 
tein destined for specialized (i.e., regulated) secretory gran- 
ules (13, 14). More recently, Helmy et al. (10) have used a 
novel density shift method to separate endocytic and exocytic 
coated vesicles purified from rat liver and again saw no clear 
differences in their looK proteins. However, the two bands 
in rat liver corresponding to bands B and C in brain migrate 
very close together and cannot be resolved on heavily loaded 
gels. Finally, Kedersha et al. (11) have shown that agarose gel 
electrophoresis results in partial separation of different types 
of rat liver coated vesicles: different fractions are enriched 
in different content proteins. Interestingly, their gels, which 
were lightly loaded and silver stained, do show a slight dif- 
ference in the looK region of the various fractions, and one 

Robinson Heterogeneity o f  lO0-kD Coated Vesicle Proteins 893 



Figure 9. Double labeling with monoclonal antibody AC1-Mll (a, c, and e) and afffinity-purified rabbit anti-clathrin (b, d, and f) .  The 
two regions indicated in a are shown enlarged in c-f, both rotated counter-clockwise. (c and d) In the spread margin of the cell, most 
of the fluorescent dots are identical with the two antibodies, although some of the fainter dots stained with anti-clathrin are not stained 
with the monoclonal antibody. (e and f )  In the perinuclear region, many clusters of dots are seen that are only stained with anti-clathrin. 
These presumably correspond to coated vesicles budding from the Golgi apparatus. An occasional suggestion of perinuelear staining with 
the monoclonal antibody can be attributed to the shape of the cells: coated pits and vesicles associated with the upper plasma membrane 
around the nucleus appear diffusely fluorescent when the microscope is focused on the lower cell surface. Bar, 10 gm. 
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that is consistent with the possibility that band B may be 
found in Golgi-derived coated vesicles and band C in endo- 
cytic ones. The monoclonal antibodies against the 100K pro- 
teins could be used in conjunction with any of these methods 
as an additional tool for defining different subpopulations of 
coated vesicles. In addition, with the right monoclonal anti- 
bodies, it should be possible to affinity purify different types 
of coated vesicles based on their 100K protein content and 
then to look for other ways in which they differ from each 
other. 

Coated vesicles are mainly seen budding either from the 
plasma membrane or from the Golgi apparatus. These two 
types of coated vesicles have different functions and are filled 
with different membrane and content proteins. For instance, 
the envelope glycoprotein of vesicular stomatitis virus, G 
protein, is concentrated in coated pits and vesicles when it 
is on the host cell surface (22), but is apparently excluded 
from coated vesicles when it is in the Golgi apparatus (9). 
The ability of the cell to select different proteins for inclusion 
into coated vesicles in different membrane compartments is 
essential for the correct targeting of proteins from one part 
of the cell to another. It has recently been suggested that there 
may be no difference in the coats on these different types of 
coated vesicles, but only in their membranes and contents 
(10, 11, 19). However, if the function of the coat is to specify 
the composition of the vesicle, by binding to selected mem- 
brane proteins (which are often receptors for content pro- 
teins), then it is difficult to imagine how the cell can form 
different types of coated vesicles without using different coat 
proteins. The results presented in this paper show that the 
100K coat proteins, which are thought to provide the link be- 
tween the clathrin outer cage and the vesicle membrane (24), 
do indeed appear to differ in different types of coated vesi- 
cles. Although there are still many questions that remain to 
be answered, this finding may provide a first step toward un- 
derstanding how coated vesicles can carry out different func- 
tions in different parts of the cell. 
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