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UMLF‑COVID: an unsupervised 
meta‑learning model specifically designed 
to identify X‑ray images of COVID‑19 patients
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Abstract 

Background:  With the rapid spread of COVID-19 worldwide, quick screening for possible COVID-19 patients has 
become the focus of international researchers. Recently, many deep learning-based Computed Tomography (CT) 
image/X-ray image fast screening models for potential COVID-19 patients have been proposed. However, the existing 
models still have two main problems. First, most of the existing supervised models are based on pre-trained model 
parameters. The pre-training model needs to be constructed on a dataset with features similar to those in COVID-19 
X-ray images, which limits the construction and use of the model. Second, the number of categories based on the 
X-ray dataset of COVID-19 and other pneumonia patients is usually imbalanced. In addition, the quality is difficult to 
distinguish, leading to non-ideal results with the existing model in the multi-class classification COVID-19 recogni‑
tion task. Moreover, no researchers have proposed a COVID-19 X-ray image learning model based on unsupervised 
meta-learning.

Methods:  This paper first constructed an unsupervised meta-learning model for fast screening of COVID-19 patients 
(UMLF-COVID). This model does not require a pre-trained model, which solves the limitation problem of model 
construction, and the proposed unsupervised meta-learning framework solves the problem of sample imbalance and 
sample quality.

Results:  The UMLF-COVID model is tested on two real datasets, each of which builds a three-category and four-cat‑
egory model. And the experimental results show that the accuracy of the UMLF-COVID model is 3–10% higher than 
that of the existing models.

Conclusion:  In summary, we believe that the UMLF-COVID model is a good complement to COVID-19 X-ray fast 
screening models.
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Background
Coronavirus disease 2019 (COVID-19) caused by 
SARS-CoV-2 has become one of the most serious epi-
demic diseases in the world since the twentieth century 

[1–3]. The main symptoms of COVID-19 include dry 
cough, sore throat, fever, organ failure, septic shock, 
severe pneumonia, acute respiratory distress syndrome 
(ARDS), etc. [3–5]. Due to the highly contagious nature 
of COVID-19, medical systems in many countries are on 
the verge of collapse [6]. To date, there remains no spe-
cific medicine for COVID-19. Therefore, patients can 
only clear the virus through their own immune systems 
[7], directly leading to the rapid increase in the death rate 
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of COVID-19. Tens of thousands of have people died 
because of COVID-19 [2, 8]. In this situation, stopping 
the spread of the virus has become the focus of interna-
tional researchers.

Researchers have proposed many methods to com-
bat the COVID-19 pandemic [9–12]. However, previous 
studies have shown that the best way to stop the spread 
of COVID-19 is to screen people infected with COVID-
19 as quickly as possible [13–15]. Currently, reverse 
transcription-polymerase chain reaction (RT–PCR) is the 
most commonly used diagnostic test for COVID-19 [16–
18]. However, the sensitivity of the RT–PCR test is low, 
and the test time of RT–PCR is long in the early stage 
[19–22]. The cost of RT–PCR testing in hospitals is also 
high. Therefore, it is difficult for many countries to con-
duct large-scale nucleic acid testing. In this case, using 
CT images or X-ray images for rapid preliminary screen-
ing of subjects with potential pneumonia symptoms is a 
feasible solution to this problem [22, 23]. Many machine 
learning and deep learning methods have brought great 
help to the fight against COVID-19[24–27]. However, 
CT/X-ray images of COVID-19 are very similar to those 
of traditional pneumonia, which requires experienced 
experts to diagnose COVID-19 patients based on CT/X-
ray images [28, 29]. Many regions cannot implement 
the program due to a lack of experts. Therefore, some 
COVID-19 potential patient detection models based on 
CT images have been proposed and have achieved good 
results [30–32]. Although CT images can provide bet-
ter details than X-ray scans, CT scans cause more harm 
to the human body, and the cost of CT scanning is also 
high. Therefore, many researchers recommend using 
X-ray imaging instead of CT imaging for preliminary 
screening [33, 34]. X-ray imaging has the characteristics 
of fast speed, low cost and minor damage.

At present, researchers have established some X-ray 
image datasets of COVID-19 patients. For example, 
Mahmud et al. proposed CovXNet, which is a COVID-19 
X-ray image detection model based on transfer learning 
[34]. Shorfuzzamana et al. proposed MetaCOVID, which 
is a supervised meta-learning model [35].

However, the existing models still have two main 
problems. First, most of the existing models are super-
vised. The initialization of these models is based on pre-
training, and the dataset images used by the pre-trained 
model need to have features similar to those of COVID-
19 X-ray images. These issues limit the construction 
of models. Second, the number of categories based on 
the X-ray dataset of COVID-19 and other pneumonia 
patients is usually imbalanced. The quality is also dif-
ficult to distinguish, making it difficult for the model 
to use the supervised meta-learning model directly for 
training. This issue also increases the difficulty of transfer 

learning and leads to non-ideal results with the model in 
the multi-class classification COVID-19 recognition task.

This paper proposes an unsupervised meta-learning 
recognition model for COVID-19 X image detection 
(UMLF-COVID). The UMLF-COVID model does not 
require pre-trained model parameters, which solves the 
limitation problem of model construction. The proposed 
unsupervised meta-learning framework only needs to 
have few pneumonia pictures in each cycle, which solves 
the problem of sample imbalance and sample quality. 
An n-way k-shot training form and a gradient-based 
meta-learning optimization strategy are adopted in this 
paper. The UMLF-COVID model is unsupervised in the 
meta-learning step, which randomly samples K images 
for each N class and uses artificial labels to build a train-
ing set. This training set is related to the target but does 
not require proper category labels. Next, the model uses 
a validation dataset to update the gradient based on the 
deep learning model. Another feature of the model is 
that the validation set is created based on a training data 
sample using an enhancement function, which solves the 
limitation on the number of categories in the COVID-19 
dataset (Fig. 1). The experiment uses two real datasets to 
test UMLF-COVID and constructs three-category and 
four-category models for each dataset individually. In 
addition, the model contains a 4-layers neural network. 
In the experimental results, the model can effectively 
identify COVID-19 patients and others. The UMLF-
COVID model achieves a comprehensive recognition 
accuracy of 0.94 in the three-classification experiment 
(COVID-19, normal person, and other pneumonia). In 
the four-classification experiment (COVID-19, normal 
person, virus pneumonia, bacterial pneumonia), the 
model reached a recognition accuracy of 0.9.

The main contributions of this paper can be summa-
rized as follows:

First, the UMLF-COVID model is the first approach 
based on unsupervised meta-learning to identify 
COVID-19 X-ray images.

Second, the UMLF-COVID model does not need pre-
trained parameters, which solves the limitation problem 
of model construction.

Third, it does not have high requirements for the 
number of samples of each type of pneumonia, which 
solves the problem of small sample size and unbalanced 
COVID-19 X-ray data.

Fourth, according to the experimental results, the 
UMLF-COVID model is better than the existing super-
vised model. Because it can learn the experience of 
multiple pneumonia X-ray classification tasks during 
the training step, the UMLF-COVID model ultimately 
achieves better results on the fixed COVID-19 pneumo-
nia classification task.
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Fifth, two real datasets are set to verify the perfor-
mance, and the experimental results show that the 
UMLF-COVID is better than existing models. At the 
same time, only a 4-layer neural network is needed to 
construct an outstanding prediction model.

Methods
Dataset
Because the number of patients diagnosed with COVID-
19 is small. Therefore, only conducting an experiment on 
one data set is not enough to prove the performance of 
the model. In order to verify the performance and sta-
bility of the UMLF-COVID model. This paper obtained 
three available COVID-19 X-ray and other pneumonia 
datasets to construct two experimental datasets, and the 
description is as follows.

BIMCV‑COVID19 + dataset
The BIMCV-COVID19 + dataset [36] is a large dataset 
that contains chest X-ray images (CXR) and Computed 
Tomography (CT) images of some COVID-19 patients. 
The dataset includes the demographic information of the 
patient and the label information of the image. The first 
version of this dataset includes 1,380 CX images, 885 DX 
images and 163 CT images.

Kaggle dataset
The fourth external validation was performed on an 
open public Kaggle-pneumonia dataset [37]. This data-
set contains three folders (training, testing, validation), 

and each folder includes subfolders of the image cat-
egory (viral pneumonia/bacterial pneumonia/normal). 
There were 5,663 chest X-ray images (front and back) col-
lected from a retrospective study of paediatric patients 
aged 1–5 years in Guangzhou Maternal and Child Health 
Center. These images were first screened for quality 
control by removing low-quality or unreadable scans. 
Two professional physicians classified the diagnosis of 
the image and then cleared it to train the AI system. To 
resolve any grading errors, the dataset was also checked 
by another expert.

Chest XRay_AI dataset
De-identified and anonymized data were deposited into 
the China National Center for Bioinformation [38]. The 
chest X-ray image (CXR) dataset was constructed by the 
China Chest X-ray Image Investigation Association (CC-
CXRI). This dataset can be used globally to help research-
ers study COVID-19. An AI model is first used to identify 
common chest diseases, including atelectasis, cardiac 
hypertrophy, consolidation, oedema, effusion, emphy-
sema, fibrosis, hernia, infiltration, nodules, masses, pleu-
ral thickening, pneumonia and pneumothorax. ChestDX 
and ChestDx-PE are datasets of patients. The CC-CXRI-
P dataset contains viral pneumonia (including COVID-
19 pneumonia), other types of pneumonia and normal 
images.

These three public datasets are divided into two experi-
mental datasets based on the random sampling method, 
namely, BIMCV and Xray_AI. The experimental dataset 
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Fig. 1  The flow chart of UMLF-COVID. The model requires multiple classes of images, which will randomly sample n-way k-shot images and attach 
artificial labels. The augmentation function is adopted to generate the validation dataset
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is shown in Table 1. The total number of X-ray images is 
1,027, including 395 of COVID-19 patients and 632 of 
non-COVID-19 patients. Each experimental dataset con-
tains five classification labels: COVID-19, normal person, 
bacterial pneumonia, viral pneumonia and other pneu-
monia. This paper only uses the frontal X-ray images of 
the chest to experiment (Fig. 2).

Model
This paper resizing all the images in the dataset to the 
same size as the preliminary pre-processing step, making 
the subsequent processes faster and easier to fine-tune. 
The image size that this paper used is 500 × 500.

Meta‑learning framework
The idea of meta-learning is to learn a general learning 
algorithm that can achieve good learning results in mul-
tiple tasks [39]. Ideally, the model can learn the common 
experience in different tasks, and in each new task, it can 
obtain a better result than the previous task. This is the 
reason why meta-learning is better than traditional sin-
gle-task models, and the performance of ω can be evalu-
ated on a task distribution p(T ) for each task involving 
a dataset and a loss function T = {D,L} . Here, ω is a 
parameter indicating ‘how to study’, such as the optimizer 
that selects model parameter θ . Therefore, the general 
model of meta-learning can be represented as Formula 
(1):

where L is the loss of the task. While divide the training 
dataset into D =

(

Dtrain,Dval
)

 . Then, the task-specific 
loss can be defined as Formula (2):

where θ∗ is the parameter trained in the ω model and 
Dtrain.

Normally, assume a set of M source tasks are sampled 
from p(T ) . Denote the M source task set used in the 
meta-training stage as Dsource =

{(

Dtrain
source,D

val
source

)}M

1
 , 

where each task has training and verification data. The 
source training and validation datasets are called the sup-
porting and query datasets, respectively. The meta-train-
ing step of ω can be written as Formula (3):

Moreover, the target datasets used in the test step are 
denoted as Dtarget =

{(

D
train
target ,D

test
target

)}

 , where the test 
dataset still contains training and test data. In the train-
ing step, the model uses the learned meta-knowledge ω∗ 
to train and test the fixed task of the test set, and the 
optimization goal of the parameter θ can be written as 
Formula (4):

Compared with the traditional supervised train-
ing model, the target task of the meta-learning method 

(1)min
ω

E
T ∼p(T )

L(D;ω)

(2)L(D;ω) = L

(

D
val; θ∗

(

D
train,ω

)

ω

)

(3)ω∗ = arg min
ω

M
∑

i=1

L

(

D
i
source;ω

)

(4)θ∗ = arg min
θ

L

(

D
train
target; θ ,ω

∗
)

Table 1  The number of X-ray images in each experimental 
dataset

There are two datasets, BIMCV and XRay_AI

COVID-19 Bacteria Virus Normal Other 
pneumonia

BIMCV 395 1200 672 1104 630

XRay_AI 367 1269 600 1349 627

Fig. 2  An example image of the BIMCV dataset identified as 
COVID-19 patients. The area of pneumonia infiltrated almost the 
entire right and left hemipleural cavities, mainly in the middle 
and basal areas, and no pleural effusion was seen. Assess possible 
COVID-19 patients in a clinical setting



Page 5 of 16Miao et al. BMC Medical Imaging          (2021) 21:174 	

can benefit from meta-knowledge ω∗ , which can be the 
empirical information of multiple tasks. This makes it 
possible for the meta-learning method to achieve better 
training effects than traditional methods on the target 
task.

Construct training dataset
Assuming there is a dataset U that contains N classes and 
M samples, it can be denoted as Formula (5):

UMLF-COVID model performs meta-training with 
n-way k-shot classification. That is, the number of clas-
sifications of the classifier during training is n, and each 
category contains k images. To remove existing labels, 
the model randomly samples n*k images from the whole 
dataset and attaches artificial labels. However, it is 
important to keep the labels distinguished by classes in 
actual operation: if two images have the same labels, they 
should have the same artificial labels. Therefore, UMLF-
COVID model adopt the following strategy to ensure 
label distinction.

First, the UMLF-COVID model randomly n(n ∈ N ) 
classes from dataset U to build a subset. Each class is 
regarded as a group and can be denoted by Formula (6):

where h is the number of images from selected classes. 
Then, the UMLF-COVID model shuffle the order of Û by 

(5)U = {(x1, 1), (x2, 1), . . . , (xM ,N )}

(6)
Û =

{

((x1, 1) . . . (x100, 1)), . . . ,
((

xh−500, n
)

, . . . , (xh, n)
)}

group and remove labels to construct an unsupervised 
dataset, which can be denoted as Formula (7):

The UMLF-COVID model randomly select k images 
for each group and put them into the training set. The 
UMLF-COVID model can obtain an unlabelled metadata 
training set T  , which can be denoted as Formula (8):

Attaching artificial labels to T  , the UMLF-COVID model 
obtain the training set Dtrain

source required by the model, 
which can be denoted as Formula (9):

Formula (7) ensures that the classes of the meta-training 
set extracted by the model will be disrupted every time, 
and artificial labels are given in order. Even if the model 
extrac n of the same classes, it may show different classi-
fication forms in the artificial labels. Formula (8) ensures 
the classification of artificial labels. After the above oper-
ations, the UMLF-COVID model can build an unsuper-
vised training set of metadata for the model, given the 
classification information through artificial labels. The 
algorithm for constructing the training dataset is denoted 
as Algorithm 1.

(7)
Û =

{(

(xh), . . . ,
(

xh−500

))

, . . . , ((x100), . . . , (x1))
}

(8)T = {x1, . . . xn∗k}

(9)D
train
source = {(x1, 1), . . . , (xn∗k , n)}
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Construct validation datasets
Generally, the meta-learning model based on the gradi-
ent update principle requires the data distribution of the 
training dataset and validation datasets to be completely 
different, ensuring that the effect of gradient update 
is good enough. However, due to the limitation of the 
number of categories for the COVID-19 dataset, it is 
difficult to find a new class to build a validation dataset. 
The UMLF-COVID model adopt an enhancement func-
tion on the training set to construct a validation data-
set to solve this problem. This paper believe that the 
distribution of the validation dataset generated by the 
enhancement function is different from that of the train-
ing dataset, which guarantees the effect of the gradient 
update. The final experimental results also verified this 
ideas.

The UMLF-COVID model use three kinds of enhance-
ment functions: salt and pepper noise, Gaussian noise 
and random shift. One or more kinds of enhancement 
functions were used in the training set. The UMLF-
COVID model can obtain a validation set Dval

source , which 
can be denoted as Formula (10):

(10)D
val
source = {(E(x1), 1), . . . , (E(xn∗k), n)}

Update gradient
The goal of the UMLF-COVID model is to find a univer-
sal model in the multi-classification pneumonia dataset 
so that it can be quickly generalized to the three-class 
and four-class tasks of identifying COVID-19 X-ray 
images with only a small quantity of data. Therefore, the 
UMLF-COVID model also use the principle of gradient-
based optimization to build a meta-learning model, and 
the loss function of the model is shown in Formula (11):

where ∅ denotes parameter of network. θ̂n is the param-
eter of the n sub-task learned based on ∅ . ln is the loss 
function based on θ̂n.

Because the task of the UMLF-COVID model is classi-
fication, the UMLF-COVID use cross-entropy as the loss 
function of the task, which can be denoted as Formula 
(12):

(11)L(∅) =

N
∑

n=1

ln
(

θ̂n
)

(12)

LTi

(

f∅
)

=
∑

x(j),y(j)∼Ti

y(j)logf∅

(

x(j)
)

+
(

1− y(j)
)

log
(

1− f∅

(

x(j)
))

Fig. 3  The details of the meta-learning step of the UMLF-COVID model
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where Ti is the i-th task and x(j), y(j) are the input and 
output of Ti . f∅ denotes the model function, which is 
determined by the parameter θ.

After establishing the loss function, the UMLF-COVID 
use the following method to update the gradient and set 
the initial parameters of the deep learning model in task 
Ti as θ . The UMLF-COVID use Formula (13) to compute 
gradient (Fig. 3):

(13)ϑ ′
i = ϑ ′

i − α∇ϑ ′
i
LTi

(

fϑ ′
i

)

where ϑ ′
i = θ . Then, the UMLF-COVID use a validation 

set D′ to update gradient θ as Formula (14):

Finally, the UMLF-COVID algorithm can be denoted 
as Algorithm 2.

(14)θ = θ − β∇θLTi

(

fϑ ′
i

)

Fig. 4  Model architecture. There are 4-layer 2-dimensional convolution layers, max-pooling layers and batch normalization layers
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Parameters of deep learning
Based on the above-unsupervised learning framework, 
the UMLF-COVID construct a 4-layer neural network 
model containing 4-layer 2-dimensional convolution lay-
ers, and each convolution layer has max-pooling and a 
batch normalization layer.

The LXCRM model uses a 3*3 convolution kernel. A 
small convolution kernel means fewer parameters and 
less time complexity. The first convolution layer uses 16 
convolution kernels, the second uses 32 convolution lay-
ers, and the third uses 64 convolution layers (Fig. 4).

Comparison models
LeNet5
LeNet-5 comes from the paper Gradient-Based Learn-
ing Applied to Document Recognition, which is a classic 
convolutional neural network [40] and is widely used in 
handwritten text recognition and other object classifica-
tion applications. LeNet-5 is a simpler convolutional neu-
ral network. The main structure of LeNet-5 is as follows: 
the two-dimensional input image first passes through 
the convolutional layer twice to the pooling layer, then 
passes through the fully connected layer, and finally uses 
softmax classification as the output layer. The purpose 
of comparing the LeNet-5 model is to verify whether a 
simple deep learning model can effectively identify X-ray 
images of COVID-19 patients.

AlexNet
AlexNet was designed by Hinton and his student Alex 
Krizhevsky and won the 2012 ImageNet competition 
[41]. AlexNet is a classic deep learning architecture. The 
architecture contains 5 convolutional layers and three 
fully connected layers and uses the dropout layer. The 
original text uses 2 GPUs for training and limits the net-
work size. Due to the improvement of hardware equip-
ment, this paper only uses a GPU for computing.

VGG19
VGG was proposed by the Visual Geometry Group of 
Oxford. The network is related to the work on ILSVRC 
2014 and shows that increasing the depth of the net-
work can affect the performance to a certain extent. The 
improvement of VGG compared to AlexNet is using sev-
eral consecutive 3 × 3 convolution kernels to replace the 
larger convolution kernel in AlexNet. A smaller convolu-
tion kernel reduces the number of model parameters and 
can better maintain the properties of the image. With the 
idea of the VGG model, the LXCRM model uses a 3 × 3 
convolution kernel. VGG19 contains 19 hidden layers (16 
convolutional layers and three fully connected layers). 
The purpose of comparing the VGG19 model is to verify 

whether the complex deep learning model can effectively 
identify X-ray images of COVID-19 patients.

CovXNet
CovXNet was proposed by Shorfuzzaman et al. and uses 
transfer learning and depthwise convolution with vary-
ing dilation rates to efficiently extract diversified features 
from chest X-rays [34]. In the training phase, the Cov-
XNet model first uses a large database of normal peo-
ple and non-COVID-19 patients for migration learning. 
Next, the trained model is migrated to a dataset con-
taining COVID-19 patients to fine-tune the parameters. 
In the process of data reading, the CovXNet model uses 
convolution kernels of various sizes to integrate the local 
and global features of the image.

CNN‑LSTM
In 2020, Islam et  al. proposed a combination of a con-
volutional neural network (CNN) and long short-term 
memory (LSTM) with a deep learning model to automat-
ically diagnose COVID-19 from X-ray images [42]. In this 
system, the CNN is used for deep feature extraction, and 
LSTM is used for detection using the extracted features.

CNN‑RNN
The CNN-RNN model was used by RAKHAMI et  al. 
in 2021 to quickly identify COVID-19 cases from chest 
X-rays. Similar to CNN-LSTM, the CNN is also used to 
extract features [43]. Then, the model uses the recurrent 
neural network (RNN) method to classify images.

EMCNet
In 2021, Saha et  al. proposed the EMCNet model [44]. 
The model first uses the CNN to extract features from 
the chest X-ray image and then adds machine learning 
methods for image classification.

Results
In this experiment, UMLF-COVID is constructed in 
JupyterLab with 32  GB RAM NVIDIA Tesla V100. The 
classification neural network is implemented by Tensor-
Flow. The versions of Python and TensorFlow are 3.6.9 
and 2.4.1, respectively. The experiment builds three-
class and four-class classifiers for five models including 
comparison methods and adopts three strategies involv-
ing 1-shot, 5-shot, and 10-shot for each classifier in 
UMLF-COVID.

There are two datasets used in the experiment to test 
performance. This paper uses tenfold cross-validation for 
the experiment. For each model, the average results are 
reported in the following sections.
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There are seven indicators used to evaluate the models: 
accuracy, precision, recall, F1-score, AUC using receiver 
operating characteristic (ROC) and precision-recall (PR). 
Accuracy is commonly used in deep learning, indicat-
ing the ratio of judgements for image classification. Due 
to the imbalance of the dataset, accuracy cannot express 
the performance of the model well. Therefore, this paper 

calculates the precision, recall, and F1-score indicators. 
Precision indicates the proportion of potential COVID-
19 patients predicted to be COVID-19 potential patients. 
Recall is the proportion of potential COVID-19 patients 
who are correctly predicted. The PR curve is drawn 
based on the precision and recall values. The F1-score 
is a comprehensive manifestation of precision and recall 

Fig. 5  Training accuracy and loss for the 3-way and 4-way DIMCV datasets. The blue line is 1-shot, the orange line is 5-shot and the grey line is 
10-shot
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indicators. Moreover, the ROC curve uses two param-
eters, the true positive rate and the false positive rate, 
to indicate the performance of classification tasks. The 

details of the comparison methods can be seen in the 
Additional file 2 and Additional file 1: Table S1.

Table 2  Details of the results in three-classification tasks with 
3-way 10-shot

Precision Recall f1-score

COVID-19 1 1 1

Normal 0.91 1 0.95

Other pneumonia 1 0.9 0.95

Accuracy 0.97 0.97 0.97

Macro avg 0.97 0.97 0.97

Weighted avg 0.97 0.97 0.97

Table 3  Details of the results in four-classification tasks with 
4-way 10-shot

Precision Recall f1-score

Bacteria 0.83 1 0.91

COVID-19 1 1 1

Normal 0.83 1 0.91

Virus 1 0.6 0.75

Accuracy 0.9 0.9 0.9

Macro avg 0.92 0.9 0.89

Weighted avg 0.92 0.9 0.89

Fig. 8  ROC and PR analysis of UMLF-COVID of 10-shots. a, b are the results of 3-way. c, d are the results of 4-way analysis, and the lines of COVID-19 
and virus overlap
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Results of BIMCV dataset
Because UMLF-COVID is a few-shot generalized learn-
ing model, it will randomly select k images to train in 
each epoch. This paper first tested the effect of k-shot, 
involving 1-shot, 5-shot, and 10-shot methods. Figure 5 
shows the value changes of these strategies, and the loss 
of the model gradually decreases and stabilizes. Figures 6, 
7 and Tables 2, 3 show the results of the three and four 

classifiers of UMLF-COVID. It is worth noting that the 
accuracy of the model increases with increasing k-shots, 
while the four classifiers have similar results. With an 
increased number of shots, the model exploits the benefit 
of more available pairs of images where it has to distin-
guish a similar image from different images.

Table 4  The performance of UMLF-COVID and comparison 
models in three-classification tasks

The strategy is 3-way 10-shot

Bold values are highlight our model

Model Precision Recall F1-score Accuracy

UMLF-COVID 0.97 0.97 0.97 0.97
LeNet 0.92 0.92 0.92 0.92

Alexnet 0.91 0.89 0.89 0.89

VGG 0.85 0.83 0.83 0.83

CovXNet 0.91 0.89 0.88 0.89

CNN-LSTM 0.93 0.93 0.93 0.93

CNN-RNN 0.92 0.92 0.92 0.92

EMCNet 0.92 0.91 0.92 0.91

Table 5  The performance of UMLF-COVID and comparison 
models in four-classification tasks

The strategy of is 4-way 10-shot

Bold values are highlight our model

Model Precision Recall F1-score Accuracy

UMLF-COVID 0.92 0.9 0.89 0.9
LeNet 0.72 0.71 0.69 0.71

Alexnet 0.71 0.72 0.70 0.72

VGG 0.77 0.78 0.77 0.78

CovXNet 0.88 0.88 0.88 0.88

CNN-LSTM 0.88 0.88 0.87 0.88

CNN-RNN 0.85 0.81 0.79 0.81

EMCNet 0.84 0.84 0.84 0.84

Fig. 9  Training accuracy and loss for the 3-way and 4-way XRay_AI datasets. The blue line is 1-shot, the orange line is 5-shot and the grey line is 
10-shot
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The experiment also compares the n-way 10-shot strat-
egy of UMLF-COVID with other CNN classification 
models. Because COVID-19 is also a kind of viral pneu-
monia, COVID-19, normal, and virus classes are retained 
in the three-classifier. This model also randomly selects 
three classes from the whole dataset for each epoch. 
Table  4 shows the classification accuracy results. With 
the 10-shot strategy, UMLF-COVID obtains the best 

result at approximately 97%. Compared with the CNN-
LSTM model, the best of the compared models, UMLF-
COVID shows a 4% accuracy improvement, while the 
LeNet, Alexnet, VGG, CovXNet CNN-RNN, and EMC-
Net models only reach 92%, 89%, 83%, 89%, 92%, and 91% 
accuracy, respectively. Moreover, the precision, recall and 
F1-score indicators of UMLF-COVID reach nearly 97%. 
The ROC curve and PR curve are also used to show the 
performance of models. As shown in Fig.  8 and Addi-
tional file  2: Figures  S1–S7, the UMLF-COVID model 
is expected to perform well and is better than the other 
comparison methods. Especially in COVID-19 patients, 
the recognition rate can reach 100%.

Finally, this paper retains the COVID-19, normal, 
virus and bacteria classes to test the models in four-
classification tasks. Although four-classification tasks 
are more difficult than three-classification tasks, the 
UMLF-COVID model can also obtain 90% accuracy, 
which is much better than that of other models, and all 
metrics also present good results (Table  5). The preci-
sion, recall and F1-score reach nearly 92%, 90%, and 89%, 

Table 6  Details of the results in three-classification tasks with 
3-way 10-shot

Precision Recall F1-score

COVID-19 0.9 0.9 0.9

Normal 1 0.9 0.95

Other pneumonia 0.91 1 0.95

Accuracy 0.93 0.93 0.93

Macro avg 0.94 0.93 0.93

Weighted avg 0.94 0.93 0.93

Table 7  Details of the results in three-classification tasks with 
4-way 10-shot

Precision Recall F1-score

Bacteria 1 1 1

COVID-19 0.83 1 0.91

Normal 1 0.8 0.89

Virus 0.8 0.8 0.8

Accuracy 0.9 0.9 0.9

Macro avg 0.91 0.9 0.9

Weighted avg 0.91 0.9 0.9

Fig. 10  Four indicators of the test dataset results in 
three-classification tasksTable 8  The performance of UMLF-COVID and comparison 

models in three-classification tasks

The strategy is 3-way 10-shot

Bold values are highlight our model

Model Precision Recall F1-score Accuracy

UMLF-COVID 0.94 0.93 0.93 0.93
LeNet 0.87 0.81 0.82 0.81

Alexnet 0.9 0.89 0.88 0.89

VGG 0.83 0.72 0.72 0.72

CovXNet 0.83 0.79 0.80 0.79

CNN-LSTM 0.9 0.9 0.9 0.9

CNN-RNN 0.89 0.89 0.89 0.89

EMCNet 0.89 0.89 0.89 0.89

Table 9  The performance of UMLF-COVID and comparison 
models in four-classification tasks

The strategy is 4-way 10-shot

Bold values are highlight our model

Model Precision Recall F1-score Accuracy

UMLF-COVID 0.91 0.9 0.9 0.9
LeNet 0.77 0.77 0.77 0.77

Alexnet 0.78 0.78 0.78 0.78

VGG 0.74 0.73 0.68 0.73

CovXNet 0.74 0.73 0.72 0.73

CNN-LSTM 0.8 0.8 0.8 0.8

CNN-RNN 0.79 0.79 0.79 0.79

EMCNet 0.83 0.79 0.81 0.8
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respectively. However, the accuracy of other compared 
models only reaches 65–88%, and the precision, recall 

and F1-score of CNN-LSTM and CovXNet reach 88%. 
As shown in Fig. 8 and Additional file 2: Figures S1–S7, 
similar to the three-classification task results, the UMLF-
COVID model is superior to the other comparison meth-
ods. It can still reach 100% for COVID-19 patients.

Results of the XRay_AI dataset
The XRay_AI dataset used different batches of pneumo-
nia diseases: COVID-19, normal, virus, bacteria, and 
other pneumonia. First, the results of UMLF-COVID 
with different strategies are showed in Fig. 9. The accu-
racy of the three-classification tasks is higher than that 
of the four-classification tasks. With increasing k-shot 
parameter k, the accuracy is higher; the details of the 
results are shown in Tables 6, 7 and Figs. 10, 11.

In the three-classification tasks, the accuracy of UMLF-
COVID reaches 93%, and the precision, recall and 

Fig. 11  Four indicators of the test dataset results in four-classification 
tasks

Fig. 12  ROC and PR analysis of UMLF-COVID of 10-shots. a, b are the results of 3-way. c, d are the results of 4-way, and the lines of bacteria and 
normal overlap



Page 14 of 16Miao et al. BMC Medical Imaging          (2021) 21:174 

F1-score are 94%, 93%, and 93%, respectively. The best 
performing model is CNN-LSTM; its accuracy is 90%, 
and the precision, recall and F1-score only reach 0.9, 0.9 
and 0.9, respectively (Table  8). In addition, according 
to Fig. 12 and Additional file 2: Figures S8–S14, UMLF-
COVID still performs well on the XRay_AI dataset, 
which is better than the comparison model.

The experiment also tests the XRay_AI dataset in four-
classification tasks, and the UMLF-COVID model has 
obvious improvements. The accuracy of UMLF-COVID 
reaches 90%, and the precision, recall and F1-score are 
91%, 90%, and 90%, respectively. CNN-LSTM was the 
best performing model in the comparison models; its 
accuracy reached 80%, and the precision, recall and 
F1-score were 80%, 80%, and 80%, respectively (Table 9). 
According to Fig.  12 and Additional file  2: Figures  S8–
S14, the ROC curve and PR curve of UMLF-COVID on 
the XRay_AI dataset are better than those of the compar-
ison model.

In summary, it can be seen from these two datasets 
that although UMLF-COVID is an unsupervised model, 
its performance is better than that of existing classifica-
tion models. Specifically, as the number of task classes 
increases, the improvement is more pronounced.

Discussion
X-ray imaging has many advantages in clinical appli-
cations, such as low cost and less damage to patients. 
However, the characteristic of X-ray images is that when 
encountering a blocked part, the film will not be exposed, 
and the part will appear white after imaging. This issue 
creates greater requirements for the accurate judgement 
of clinicians. Inexperienced clinicians may find it diffi-
cult to accurately judge whether a patient has a potential 
COVID-19 infection based on X-ray images. However, 
the CT images will pass through the human body in 
layers, which means that the CT scan can observe the 
patient’s lungs hierarchically, containing more infor-
mation. This means that it is more difficult to establish 
a patient identification model for COVID-19 based on 
X-ray images than for datasets based on CT images. 
However, considering the convenience of X-ray, it is 
necessary to establish a patient identification model for 
COVID-19 based on X-ray images. At present, there 
are two main limitations to the existing deep learning 
model, which is based on COVID-19 X-ray images. First, 
the number of COVID-19 X-ray images is small, which 
means that the distribution of the training dataset is very 
unbalanced. Therefore, it is challenging to construct a 
supervised deep learning model. Second, most deep 
learning models to process COVID-19 images are based 
on transfer learning. This method is limited by the ref-
erence dataset, and the parameters are difficult to adjust. 

Therefore, this paper proposes the UMLF-COVID model, 
which is the first to use an unsupervised meta-learning 
method to process COVID-19 images. This model does 
not need pre-training, and it only needs a small num-
ber of samples in each cycle, which solves the problem 
of sample quality and data imbalance in the COVID-19 
X-ray dataset. Moreover, we use artificial labels to solve 
the limitation on the number of categories.

The UMLF-COVID model was discussed with radiolo-
gists at the Macau University of Science and Technology 
Hospital. Radiographers have a positive attitude towards 
using the UMLF-COVID model to diagnose COVID-19 
X-ray data. They believe that the use of big data and intel-
ligent detection (AI) can increase the detection rate of 
lesions, increase the speed of reporting, and reduce the 
workload of doctors. However, at the same time, the final 
detected lesions still require doctors to combine compre-
hensive clinical analysis to draw accurate conclusions.

Conclusion
In summary, this paper proposes a COVID-19 X-ray 
image classification model based on unsupervised meta-
learning. The experiment shows that the UMLF-COVID 
model is better than the existing deep learning models. 
In two datasets, the performance of three-classification 
tasks is better than comparison models by 4–14%, and 
the performance of four-classification tasks is better by 
at most 17%. The results are satisfactory, but the UMLF-
COVID model still has some problems. For example, the 
UMLF-COVID model can determine whether a patient 
is a COVID-19 patient but cannot distinguish between 
mild and severe cases. This idea is very important for 
clinicians and has higher requirements for the model. 
In the future, the UMLF-COVID model will be further 
expanded to improve the multi-class accuracy of the 
model and enable the model to distinguish between mild 
and severe COVID-19 patients.
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