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Polymorphisms in microRNA (miRNA) genes could influence the expression of miRNAs
that regulate the PI3K/Akt signalling pathway and play crucial roles in cancer susceptibility.
To investigate the association of single nucleotide polymorphisms (SNPs) in miRNA genes
of PI3K/Akt with cervical intraepithelial neoplasia (CIN) and cervical cancer (CC), nine SNPs
located in miRNA genes were selected for genotyping, and the association of these SNPs
with CIN and CC risk was evaluated. A total of 1,402 participants were enrolled in the
current study, including 698 healthy individuals in the control group, 431 patients with CC,
and 273 patients with CIN. Nine SNPs in miRNA genes (rs107822 in miR-219a,
rs10877887 in let-7i, rs2292832 in miR-149, rs353293 in miR-143, rs3746444 in miR-
499, rs3803808 in miR-132, rs4078756 in miR-10b, rs629367 in let-7a, and rs7372209 in
miR-26a) were genotyped using MassArray, and the association of these SNPs with CIN
and CC were analysed. The results showed that the frequencies of rs107822 in miR-219a
and rs2292832 in miR-149 were significantly different between the control and CC groups
(p < 0.005). The C allele of rs107822 in miR-219a was associated with an increased risk of
CC (OR = 1.29, 95%CI:1.09–1.54) whereas the C allele of rs2292832 in miR-149 was
associated with a decreased risk of CC (OR = 0.77, 95%CI:0.64–0.92). The results of
inheritance model analysis showed that the best-fit inheritance models for rs107822 and
rs2292832 were log-additive. The 2CC + CT genotype of rs107822 could be a risk factor
for CC when compared with the TT genotype (OR = 1.28, 95%CI:1.08–1.51). The 2CC +
CT genotype of rs2292832 could be a protective factor against CC when compared with
the TT genotype (OR = 0.76, 95%CI:0.64–0.92). However, no association of these SNPs
with CIN was found in the current study. Our results suggest that rs107822 in the promoter
region of miR-219a and rs2292832 in pre-miR-149 region are associated with the risk
of CC.
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INTRODUCTION

Cervical cancer (CC) is the fourth most commonmalignancy and
the second most common gynaecological malignancy in women
worldwide (Torre et al., 2015). It is predominantly caused by the
persistent infection of high-risk human papilloma virus (HR-
HPV) (Burd, 2003; zur Hausen, 2009). Malignant progression
involves two main stages: cervical intraepithelial neoplasia (CIN)
and CC, and occurs over a long period of time (more than
10 years) after HPV infection (Sasagawa et al., 2012).

The initiation and development of CC is also accompanied by
aberrant regulation of host signalling pathways involving in
essential cellular mechanisms (proliferation, invasion, survival,
inflammation, and immunity), such as PI3K/Akt (Bossler et al.,
2019). The PI3K/Akt signalling cascade regulates various
fundamental aspects of cellular biology by promoting cell
survival, growth, proliferation, migration, and energy
metabolism (Morgensztern and McLeod, 2005; Sadeghi and
Gerber, 2012; LoRusso, 2016; Aoki and Fujishita, 2017). The
aberrant activation of PI3K/Akt signalling pathway has been
found to be involved in various human cancers (Sharma et al.,
2017; Ediriweera et al., 2019; Liu et al., 2020). In 2006, Bertelsen
et al. reported PIK3CA amplification and increased Akt
activation in cervical neoplasia (Bertelsen et al., 2006). In
2019, Zhang et al. found that PI3k/Akt/mTOR gene and
protein levels increased in the CC tissues compared with the
corresponding adjacent tissues (Zhang et al., 2019). Moreover,
many studies have revealed by inhibiting or promoting PI3K
signalling pathway, that genes could inhibit or promote the CC

cells (Fu et al., 2020; Shi et al., 2020; Bai et al., 2021), these
indicated the important roles of PI3K signalling pathway in CC.

Dysregulation of microRNAs (miRNAs) in human cancers
highlights the important roles of these small single-stranded non-
coding RNAs in human cancers (Garzon et al., 2006; Di Leva
et al., 2014; Acunzo et al., 2015). They negatively regulate the
expression of their target genes through the direct cleavage of
mRNA or inhibition of mRNA translation, depending on the
degree of complementarity between the seed sequence of
miRNAs and their target UTR regions (Lai, 2002; Bartel, 2004;
de Moor et al., 2005). Many studies have reported that miRNAs
regulate components of the PI3K/Akt signalling pathway
(Rahmani et al., 2020a; Rahmani et al., 2020b), and abnormal
expression of these miRNAs might induce an out-of-control
expression of their targets, which leads to disorders of the
corresponding signalling pathway (Akbarzadeh et al., 2021).
Studies have observed the abnormal expression of miR-219a
(Xu et al., 2020), let-7i (Chhabra, 2018), miR-149 (Zhou and
Xu, 2021), miR-143 (Tang et al., 2021), miR-132 (Zhang et al.,
2021), miR-10b (Zou et al., 2016), let-7a (Wu et al., 2016) and
miR-26a (Dong et al., 2014) in CC or other human cancers, which
indicated the important roles of these miRNAs in human cancers.
Single nucleotide polymorphisms (SNPs) in miRNA genes can
modify the expression of mature miRNAs (Slezak-Prochazka
et al., 2010; Króliczewski et al., 2018). Thus, SNPs in miRNA
genes are associated with susceptibility to human cancers (Du
et al., 2014; Wu et al., 2015; Wang et al., 2018). Previously, we
found that rs4636297 in pri-miR-126 and rs11614913 in mature
miR-196a2 were associated with CC risk (Yan et al., 2019), which

TABLE 1 | The information of the nine SNPs selected in the current study.

SNPs Genes Function Consequence Location Alleles MAF in EAS

rs107822 MIR219A promotor region Chr 6:33207798 T > C 0.396
rs10877887 MIRLET7I promotor region Chr 12:62603400 T > C 0.343
rs2292832 MIR149 pre-miRNA sequence Chr 2:240456086 T > C 0.363
rs353293 MIR143 promotor region Chr 5:149427663 C > T 0.156
rs3746444 MIR499 mature miR-499-5p Chr20:34990448 A > G 0.145
rs3803808 MIR132 500bp Downstream Chr17:2049683 A > G 0.455
rs4078756 MIR10B promotor region Chr2:176139387 T > C 0.271
rs629367 MIRLET7A 500bp Downstream Chr11:122146306 A > C 0.219
rs7372209 MIR26A promotor region Chr3:37969217 C > T 0.272

TABLE 2 | The clinical characteristics of the subjects enrolled in the current study.

CC CIN Control F p value

N 431 273 698
Ages (year) 47.74 ± 9.78 46.80 ± 10.01 47.91 ± 7.18 1.662 0.190
Pathologic types SCC (n) 359

AC(n) 53
Others (n) 19

Stages of CC I (n) 244
II (n) 157
III and IV (n) 30

Stages of CIN I (n) 71
II (n) 57
III (n) 145
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indicates that SNPs in miRNAs might be associated with the
development of CC.

In the current study, we first predicted potential targets of
candidate miRNAs and enriched them in cancer signalling
pathways. Next, miRNAs involved in the PI3K/Akt signalling
pathway were screened. Finally, nine SNPs related to nine
miRNA genes of PI3K/Akt (rs107822 in miR-219a, rs10877887
in let-7i, rs2292832 in miR-149, rs353293 in miR-143, rs3746444
in miR-499, rs3803808 in miR-132, rs4078756 in miR-10b,
rs629367 in let-7a, and rs7372209 in miR-26a) were selected,
and the association of SNPs with CIN and CC was evaluated in a
Chinese population.

MATERIALS AND METHODS

Subjects
A total of 273 patients withCIN and 431withCCwere recruited. The
patients were diagnosed with CIN and CC at the Third Affiliated
Hospital of Kunming Medical University from 2017 to 2019
according to “Diagnosis and Treatment: Obstetrics and
Gynaecology” and the International Federation of Gynaecology
and Obstetrics (FIGO 2009). The exclusion criteria for the study
were as follows: 1) a prior history of primary cancer other thanCC, 2)
malignant tumours other than CC, 3) currently receiving
radiotherapy or chemotherapy, and 4) an unclear diagnosis.
According to the cervical pathological diagnostic criteria, CIN was
classified into CIN I, II and III. CIN I is characterized as having slight
atypical hyperplasia; CIN II as medium atypical hyperplasia; and
CIN III as severe atypical hyperplasia (Schiffman et al., 2007). During
the same period, 698 healthy women who underwent physical
examinations at the same hospital were recruited as the control
group. The genomic DNA of the samples was obtained from EDTA

anti-coagulated whole blood of the subjects using QIAamp Blood
Mini Kit (Qiagen NV, Venlo, Netherlands).

Target Prediction and Signal Pathway
Enrichment
The target genes of the miRNAs were predicted using the
TargetScan Human 8.0 database (http://www.targetscan.org/
vert_80/) (McGeary et al., 2019). Target enrichment was
performed using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) v6.8 (Huang et al., 2009).

SNP Selection and Genotyping
First, the miRNAs involved in the regulation of the PI3K/Akt
pathway were chosen through target prediction and enrichment.
Then, SNPs which were located in the primary sequences,
precursor sequences, or transcriptional regulatory regions of
these miRNAs were selected. In addition, the MAF (minor
allele frequency) of the SNPs was used as the selection criteria
that only the SNPs with MAF over 0.05, were selected. As a result,
nine SNPs (rs107822 in promotor region of miR-219a,

FIGURE 1 | Nine miRNAs involving in PI3K/Akt signalling pathway.

TABLE 3 | The Hardy–Weinberg equilibrium significance tests of the nine miRNA
SNPs selected in the current study.

SNPs Genotypes n (%) HWE (p-value)

rs107822 T/T T/C C/C
Control 275 (39.4) 314 (45.0) 109 (15.6) 0.221
CIN 101 (37.0) 124 (45.4) 48 (17.6) 0.355
CC 139 (32.3) 202 (46.9) 90 (20.9) 0.296
rs10877887 T/T T/C C/C
Control 286 (41.0) 335 (48.0) 77 (11.0) 0.150
CIN 126 (46.2) 123 (45.1) 24 (8.8) 0.435
CC 185 (42.9) 200 (46.4) 46 (10.7) 0.457
rs2292832 T/T T/C C/C
Control 293 (42.0) 316 (45.3) 89 (12.8) 0.792
CIN 114 (41.8) 132 (48.4) 27 (9.9) 0.207
CC 209 (48.5) 189 (43.9) 33 (7.7) 0.275
rs353293 C/C C/T T/T
Control 499 (71.5) 180 (25.8) 19 (2.7) 0.570
CIN 181 (66.3) 84 (30.8) 8 (2.9) 0.640
CC 322 (74.7) 100 (23.2) 9 (2.1) 0.707
rs3746444 A/A A/G G/G
Control 490 (70.2) 183 (26.2) 25 (3.6) 0.130
CIN 184 (67.4) 75 (27.5) 14 (5.1) 0.090
CC 292 (67.7) 119 (27.6) 20 (4.6) 0.088
rs3803808 A/A A/G G/G
Control 246 (35.2) 340 (48.7) 112 (16.0) 0.761
CIN 83 (30.4) 134 (49.1) 56 (20.5) 0.887
CC 137 (31.8) 215 (49.9) 79 (18.3) 0.739
rs4078756 T/T T/C C/C
Control 384 (55.0) 277 (39.7) 37 (5.3) 0.152
CIN 152 (55.7) 105 (38.5) 16 (5.9) 0.702
CC 250 (58.0) 155 (36.0) 26 (6.0) 0.762
rs629367 A/A A/C C/C
Control 407 (58.3) 250 (35.8) 41 (5.9) 0.751
CIN 176 (64.5) 82 (30.0) 15 (5.5) 0.192
CC 255 (59.2) 145 (33.6) 31 (7.2) 0.105
rs7372209 C/C C/T T/T
Control 323 (46.3) 294 (42.1) 81 (11.6) 0.262
CIN 117 (42.9) 126 (46.2) 30 (11.0) 0.651
CC 208 (48.3) 189 (43.9) 34 (7.9) 0.321
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rs10877887 in promotor region of let-7i, rs2292832 in pre-
miRNA sequence of miR-149, rs353293 in promotor region
of miR-143, rs3746444 in mature sequence of miR-499,
rs3803808 in primary sequence region of miR-132,
rs4078756 in promotor region of miR-10b, rs629367 in
primary sequence region of let-7a, and rs7372209 in
promotor region of miR-26a) were used. Information
regarding the miRNA-SNPs selected in this study is
presented in Table 1. Genotypes of the nine SNPs were
determined using the Agena MassArray system. The PCR
primers were designed using AssayDesigner 3.1 (Sequenom
Inc., San Diego, CA, United States) (Supplementary Table
S1). The PCR conditions and program have been described in
our previous study (Li et al., 2020). A MALDI-TOF mass
spectrometer (Agena, Inc, San Diego, CA, United States) was
used to read SpectroCHIP, and the raw genotyping data was
obtained using TYPER4.0 software. Samples were selected
for sequencing to confirm the genotyping results for
each SNP.

Statistical Analysis
Microsoft Excel software and the SPSS 19.0 statistical package
were used for statistical analysis in the current study. The
Hardy-Weinberg equilibrium (HWE) for each SNP in each
group was evaluated. One-way analysis of variance (ANOVA)
was used to compare the differences in age among the CIN, CC,
and control groups. The differences in allele distributions of
these SNPs in the CIN, CC, and control groups were analysed
using Fisher’s chi-square test, and the odds ratios (ORs) with
associated 95% confidence intervals (CIs) were calculated.
Differences in the genotype distribution of these SNPs in

the three groups were evaluated by inheritance model
analysis using SNPstats software (Solé et al., 2006). The
statistical power of the SNPs was calculated using “Power
and sample size” software (Dupont and Plummer, 1990;
Dupont and Plummer, 1998). The Bonferroni correction
was performed for multiple comparisons, and the
significance threshold was set at p < 0.005 (0.05/n, n = 9).

RESULTS

Characteristics of the Subjects
A total of 1,402 participants were enrolled in this study. The
general clinical characteristics of the participants are presented
in Table 2. The average ages for the CIN, CC, and control
groups were 46.80 ± 10.01, 47.74 ± 9.78, and 47.91 ± 7.18,
respectively. No significant differences in age were found
among the CIN, CC, and control groups (Table 2).

Signal Pathway Enrichment of the miRNAs
Potential target genes of the miRNAs were predicted using
TargetScan Human 8.0. The potential target genes were then
submitted to DAVID to convert a gene list for enrichment. The
enrichment results showed that nine miRNAs were involved in
the PI3K/Akt signalling pathway (Figure 1).

Association of the Alleles of the Nine SNPs
With CIN and CC
The nine SNPs were all in HWE in the CIN, CC, and control
groups (p > 0.05) (Table 3). The allelic distributions of the nine

TABLE 4 | The Allele distribution of the nine SNPs in control, CIN and CC groups.

SNPs Alleles Control n (%) CIN n (%) CC n (%) CIN vs. control CC vs. control

OR (95%CI) p value OR (95%CI] p value

rs107822 T 864 (61.9) 326 (59.7) 480 (55.7) 1.10 (0.90–1.34) 0.374 1.29 (1.09–1.54) 0.004
C 532 (38.1) 220 (40.3) 382 (44.3)

rs10877887 T 907 (65.0) 375 (68.7) 570 (66.1) 0.85 (0.68–1.05) 0.121 0.95 (0.80–1.14) 0.575
C 489 (35.0) 171 (31.3) 292 (33.9)

rs2292832 T 902 (64.6) 360 (65.9) 607 (70.4) 0.94 (0.77–1.16) 0.583 0.77 (0.64–0.92) 0.004
C 494 (35.4) 186 (34.1) 255 (29.6)

rs353293 C 1,178 (84.4) 446 (81.7) 744 (86.3) 0.83 (0.64–1.07) 0.148 0.86 (0.67–1.09) 0.2241
T 218 (15.6) 100 (18.3) 118 (13.7)

rs3746444 A 1,163 (83.3) 443 (81.1) 703 (81.6) 0.86 (0.67–1.11) 0.255 0.89 (0.71–1.11) 0.285
G 233 (16.7) 103 (18.9) 159 (18.4)

rs3803808 A 832 (59.6) 300 (54.9) 489 (56.7) 0.83 (0.68–1.01) 0.062 0.89 (0.75–1.06) 0.179
G 564 (40.4) 246 (45.1) 373 (43.3)

rs4078756 T 1,045 (74.9) 409 (74.9) 655 (76.0) 1.00 (0.79–1.25) 0.981 0.94 (0.77–1.15) 0.546
C 351 (25.1) 137 (25.1) 207 (24.0)

rs629367 A 1,064 (76.2) 434 (79.5) 655 (76.0) 1.21 (0.95–1.54) 0.123 0.99 (0.81–1.21) 0.900
C 332 (23.8) 112 (20.5) 207 (24.0)

rs7372209 C 940 (67.3) 360 (65.9) 605 (70.2) 0.94 (0.76–1.16) 0.555 1.14 (0.95–1.38) 0.157
T 456 (32.7) 186 (34.1) 257 (29.8)
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TABLE 5 | The inheritance model analysis of these SNPs between CIN and control groups.

SNPs Model Genotypes Control (n%) CIN (n%) OR (95%CI) p value AIC BIC

rs107822 Codominant T/T 275 (39.4) 101 (37.0) 1.00 0.680 1,157.1 1,176.6
C/T 314 (45.0) 124 (45.4) 1.07 (0.79–1.46)
C/C 109 (15.6) 48 (17.6) 1.20 (0.80–1.81)

Dominant T/T 275 (39.4) 101 (37.0) 1.00 0.500 1,155.4 1,170.1
C/T-C/C 423 (60.6) 172 (63.0) 1.10 (0.83–1.48)

Recessive T/T-C/T 589 (84.4) 225 (82.4) 1.00 0.440 1,155.3 1,169.9
C/C 109 (15.6) 48 (17.6) 1.16 (0.80–1.68)

Overdominant T/T-C/C 384 (55.0) 149 (54.6) 1.00 0.930 1,155.9 1,170.5
C/T 314 (45.0) 124 (45.4) 1.01 (0.76–1.34)

Log-additive --- --- --- 1.09 (0.90–1.33) 0.380 1,155.1 1,169.8

rs10877887 Codominant T/T 286 (41.0) 126 (46.2) 1.00 0.320 1,155.6 1,175.1
C/T 335 (48.0) 123 (45.0) 0.84 (0.62–1.12)
C/C 77 (11.0) 24 (8.8) 0.73 (0.44–1.21)

Dominant T/T 286 (41.0) 126 (46.2) 1.00 0.160 1,153.9 1,168.5
C/T-C/C 412 (59.0) 147 (53.9) 0.82 (0.62–1.08)

Recessive T/T-C/T 621 (89.0) 249 (91.2) 1.00 0.360 1,155.1 1,169.7
C/C 77 (11.0) 24 (8.8) 0.80 (0.49–1.30)

Overdominant T/T-C/C 363 (52.0) 150 (55.0) 1.00 0.400 1,155.2 1,169.8
C/T 335 (48.0) 123 (45.0) 0.89 (0.67–1.17)

Log-additive --- --- --- 0.85 (0.68–1.05) 0.130 1,153.6 1,168.3

rs2292832 Codominant T/T 293 (42.0) 114 (41.8) 1.00 0.390 1,156.0 1,175.5
T/C 316 (45.3) 132 (48.4) 1.07 (0.80–1.45)
C/C 89 (12.8) 27 (9.9) 0.78 (0.48–1.26)

Dominant T/T 293 (42.0) 114 (41.8) 1.00 0.960 1,155.9 1,170.5
T/C-C/C 405 (58.0) 159 (58.2) 1.01 (0.76–1.34)

Recessive T/T-T/C 609 (87.2) 246 (90.1) 1.00 0.200 1,154.2 1,168.9
C/C 89 (12.8) 27 (9.9) 0.75 (0.47–1.18)

Overdominant T/T-C/C 382 (54.7) 141 (51.6) 1.00 0.380 1,155.1 1,169.8
T/C 316 (45.3) 132 (48.4) 1.13 (0.86–1.50)

Log-additive --- --- --- 0.94 (0.76–1.16) 0.570 1,155.6 1,170.2

rs353293 Codominant C/C 499 (71.5) 181 (66.3) 1.00 0.280 1,155.3 1,174.9
C/T 180 (25.8) 84 (30.8) 1.29 (0.94–1.76)
T/T 19 (2.7) 8 (2.9) 1.18 (0.51–2.75)

Dominant C/C 499 (71.5) 181 (66.3) 1.00 0.110 1,153.4 1,168.0
C/T-T/T 199 (28.5) 92 (33.7) 1.28 (0.95–1.72)

Recessive C/C-C/T 679 (97.3) 265 (97.1) 1.00 0.830 1,155.8 1,170.5
T/T 19 (2.7) 8 (2.9) 1.10 (0.47–2.54)

Overdominant C/C-T/T 518 (74.2) 189 (69.2) 1.00 0.120 1,153.5 1,168.1
C/T 180 (25.8) 84 (30.8) 1.28 (0.94–1.74)

Log-additive --- --- --- 1.21 (0.94–1.58) 0.150 1,153.8 1,168.4

rs3746444 Codominant A/A 490 (70.2) 184 (67.4) 1.00 0.460 1,156.4 1,175.9
A/G 183 (26.2) 75 (27.5) 1.09 (0.79–1.50)
G/G 25 (3.6) 14 (5.1) 1.51 (0.77–2.98)

Dominant A/A 490 (70.2) 184 (67.4) 1.00 0.390 1,155.1 1,169.8
A/G-G/G 208 (29.8) 89 (32.6) 1.14 (0.85–1.54)

Recessive A/A-A/G 673 (96.4) 259 (94.9) 1.00 0.270 1,154.7 1,169.3
G/G 25 (3.6) 14 (5.1) 1.47 (0.75–2.88)

Overdominant A/A-G/G 515 (73.8) 198 (72.5) 1.00 0.690 1,155.7 1,170.4
A/G 183 (26.2) 75 (27.5) 1.07 (0.78–1.46)

Log-additive --- --- --- 1.15 (0.90–1.48) 0.260 1,154.6 1,169.3

rs3803808 Codominant A/A 246 (35.2) 83 (30.4) 1.00 0.180 1,154.4 1,173.9
G/A 340 (48.7) 134 (49.1) 1.18 (0.85–1.62)
G/G 112 (16.1) 56 (20.5) 1.47 (0.98–2.21)

Dominant A/A 246 (35.2) 83 (30.4) 1.00 0.140 1,153.8 1,168.4
G/A-G/G 452 (64.8) 190 (69.6) 1.25 (0.92–1.69)

Recessive A/A-G/A 586 (83.9) 217 (79.5) 1.00 0.110 1,153.4 1,168
G/G 112 (16.1) 56 (20.5) 1.34 (0.94–1.91)

Overdominant A/A-G/G 358 (51.3) 139 (50.9) 1.00 0.870 1,155.9 1,170.5
G/A 340 (48.7) 134 (49.1) 1.02 (0.77–1.36)

Log-additive --- --- --- 1.21 (0.99–1.48) 0.064 1,152.5 1,167.1
(Continued on following page)
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SNPs are presented in Table 4. The results showed that the allelic
distribution of rs107822 in miR-219a and rs2292832 in miR-149
was significantly different between the CC and control groups
(p = 0.004 and 0.004, respectively). The C allele of rs107822 in
miR-219a was associated with an increased risk of CC (OR = 1.29,
95%CI:1.09–1.54). The C allele of rs2292832 in miR-149 was
associated with a decreased risk of CC (OR = 0.77, 95%CI:
0.64–0.92). No significant difference in the allelic distribution
of the other SNPs was observed among the three groups (p >
0.005). And no association of all nine SNPs with CIN was found
(p > 0.005).

Inheritance Model Analysis of the Nine
SNPs With CIN and CC
Five inheritance models (codominant, dominant, recessive,
overdominant, and log-additive) were analysed. Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) values were used to determine the best-fit
model, of which the AIC and BIC values were the lowest for
each SNP (Solé et al., 2006). The association of the genotypes
of the nine SNPs with CIN and CC was evaluated using
inheritance model analysis (Tables 5, 6). The results showed
that the genotypes of rs107822 and rs2292832 were
significantly different between the CC and control groups

(p = 4.6 × 10−3 and 0.004). The best-fit inheritance models for
rs107822 and rs2292832 were log-additive. In this model, the
2CC + CT genotype of rs107822 was a risk factor for CC
compared to the TT genotype (OR = 1.28, 95%CI:1.08–1.51).
For rs2292832, the 2CC + CT genotype was a protective
factor against CC compared with the TT genotype in this
model (OR = 0.76, 95%CI:0.64–0.92). However, the results
showed no association between the other SNPs and CIN or
CC (p > 0.005).

Association Analysis of Nine SNPs With
Different Pathological Types of CC
To investigate the association of the nine SNPs with the
pathological types of CC, we analysed the distribution
characteristics of the nine SNPs in different pathological
types of CC. However, there were no significant differences
in these SNPs between AC and SCC after Bonferroni
correction (p > 0.005) (Supplementary Table S2).

Association Analysis of Nine SNPs With
Different Stages of CIN and CC
To investigate the association of the nine SNPs with different
stages of CIN and CC, the CIN group was divided into CIN I +

TABLE 5 | (Continued) The inheritance model analysis of these SNPs between CIN and control groups.

SNPs Model Genotypes Control (n%) CIN (n%) OR (95%CI) p value AIC BIC

rs4078756 Codominant T/T 384 (55.0) 152 (55.7) 1.00 0.930 1,157.8 1,177.3
C/T 277 (39.7) 105 (38.5) 0.97 (0.72–1.29)
C/C 37 (5.3) 16 (5.9) 1.08 (0.58–1.99)

Dominant T/T 384 (55.0) 152 (55.7) 1.00 0.880 1,155.9 1,170.5
C/T-C/C 314 (45.0) 121 (44.3) 0.98 (0.74–1.30)

Recessive T/T-C/T 661 (94.7) 257 (94.1) 1.00 0.780 1,155.8 1,170.4
C/C 37 (5.3) 16 (5.9) 1.09 (0.60–2.00)

Overdominant T/T-C/C 421 (60.3) 168 (61.5) 1.00 0.780 1,155.8 1,170.4
C/T 277 (39.7) 105 (38.5) 0.96 (0.72–1.28)

Log-additive --- --- --- 1.00 (0.79–1.26) 0.990 1,155.9 1,170.5

rs629367 Codominant A/A 407 (58.3) 176 (64.5) 1.00 0.210 1,154.8 1,174.3
C/A 250 (35.8) 82 (30.0) 0.76 (0.56–1.03)
C/C 41 (5.9) 15 (5.5) 0.86 (0.46–1.60)

Dominant A/A 407 (58.3) 176 (64.5) 1.00 0.084 1,152.9 1,167.5
C/A-C/C 291 (41.7) 97 (35.5) 0.78 (0.58–1.04)

Recessive A/A-C/A 657 (94.1) 258 (94.5) 1.00 0.870 1,155.9 1,170.5
C/C 41 (5.9) 15 (5.5) 0.95 (0.52–1.75)

Overdominant A/A-C/C 448 (64.2) 191 (70.0) 1.00 0.088 1,153.0 1,167.6
C/A 250 (35.8) 82 (30.0) 0.77 (0.57–1.04)

Log-additive --- --- --- 0.84 (0.66–1.06) 0.140 1,153.7 1,168.3

rs7372209 Codominant C/C 323 (46.3) 117 (42.9) 1.00 0.540 1,156.7 1,176.2
T/C 294 (42.1) 126 (46.1) 1.18 (0.88–1.59)
T/T 81 (11.6) 30 (11.0) 1.03 (0.65–1.66)

Dominant C/C 323 (46.3) 117 (42.9) 1.00 0.340 1,155.0 1,169.6
T/C-T/T 375 (53.7) 156 (57.1) 1.15 (0.86–1.52)

Recessive C/C-T/C 617 (88.4) 243 (89.0) 1.00 0.830 1,155.8 1,170.5
T/T 81 (11.6) 30 (11.0) 0.95 (0.61–1.49)

Overdominant C/C-T/T 404 (57.9) 147 (53.9) 1.00 0.270 1,154.7 1,169.3
T/C 294 (42.1) 126 (46.1) 1.17 (0.88–1.55)

Log-additive --- --- --- 1.07 (0.87–1.31) 0.540 1,155.5 1,170.2
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TABLE 6 | The inheritance model analysis of these SNPs between CC and control groups.

SNPs Models Genotypes Control n (%) CC n (%) OR (95%CI) p value AIC BIC

rs107822 Codominant T/T 275 (39.4) 139 (32.2) 1.00 0.018 1,501.2 1,521.4
C/T 314 (45.0) 202 (46.9) 1.27 (0.97–1.67)
C/C 109 (15.6) 90 (20.9) 1.63 (1.15–2.31)

Dominant T/T 275 (39.4) 139 (32.2) 1.00 0.015 1,501.4 1,516.5
C/T-C/C 423 (60.6) 292 (67.8) 1.36 (1.06–1.76)

Recessive T/T-C/T 589 (84.4) 341 (79.1) 1.00 0.026 1,502.3 1,517.4
C/C 109 (15.6) 90 (20.9) 1.42 (1.05–1.94)

Overdominant T/T-C/C 384 (55.0) 229 (53.1) 1.00 0.540 1,506.9 1,522.0
C/T 314 (45.0) 202 (46.9) 1.08 (0.85–1.37)

Log-additive --- --- --- 1.28 (1.08–1.51) 4.6 x 10−3 1,499.0 1,514.0

rs10877887 Codominant T/T 286 (41.0) 185 (42.9) 1.00 0.810 1,508.9 1,529.0
T/C 335 (48.0) 200 (46.4) 0.92 (0.72–1.19)
C/C 77 (11.0) 46 (10.7) 0.93 (0.61–1.40)

Dominant T/T 286 (41.0) 185 (42.9) 1.00 0.520 1,506.9 1,522.0
T/C-C/C 412 (59.0) 246 (57.1) 0.92 (0.72–1.18)

Recessive T/T-T/C 621 (89.0) 385 (89.3) 1.00 0.860 1,507.2 1,522.3
C/C 77 (11.0) 46 (10.7) 0.97 (0.66–1.42)

Overdominant T/T-C/C 363 (52.0) 231 (53.6) 1.00 0.600 1,507.0 1,522.1
T/C 335 (48.0) 200 (46.4) 0.94 (0.74–1.19)

Log-additive --- --- --- 0.95 (0.79–1.14) 0.570 1,507.0 1,522.0

rs2292832 Codominant T/T 293 (42.0) 209 (48.5) 1.00 0.009 1,499.9 1,520.0
T/C 316 (45.3) 189 (43.9) 0.84 (0.65–1.08)
C/C 89 (12.8) 33 (7.7) 0.52 (0.34–0.80)

Dominant T/T 293 (42.0) 209 (48.5) 1.00 0.033 1,502.7 1,517.8
T/C-C/C 405 (58.0) 222 (51.5) 0.77 (0.60–0.98)

Recessive T/T-T/C 609 (87.2) 398 (92.3) 1.00 0.006 1,499.8 1,514.9
C/C 89 (12.8) 33 (7.7) 0.57 (0.37–0.86)

Overdominant T/T-C/C 382 (54.7) 242 (56.1) 1.00 0.640 1,507.1 1,522.2
T/C 316 (45.3) 189 (43.9) 0.94 (0.74–1.20)

Log-additive --- --- --- 0.76 (0.64–0.92) 0.004 1,499.0 1,514.0

rs353293 Codominant C/C 499 (71.5) 322 (74.7) 1.00 0.460 1,507.7 1,527.8
C/T 180 (25.8) 100 (23.2) 0.86 (0.65–1.14)
T/T 19 (2.7) 9 (2.1) 0.73 (0.33–1.64)

Dominant C/C 499 (71.5) 322 (74.7) 1.00 0.230 1,505.9 1,520.9
C/T-T/T 199 (28.5) 109 (25.3) 0.85 (0.65–1.11)

Recessive C/C-C/T 679 (97.3) 422 (97.9) 1.00 0.500 1,506.8 1,521.9
T/T 19 (2.7) 9 (2.1) 0.76 (0.34–1.70)

Overdominant C/C-T/T 518 (74.2) 331 (76.8) 1.00 0.320 1,506.3 1,521.4
C/T 180 (25.8) 100 (23.2) 0.87 (0.66–1.15)

Log-additive --- --- --- 0.86 (0.68–1.09) 0.210 1,505.7 1,520.8

rs3746444 Codominant A/A 490 (70.2) 292 (67.8) 1.00 0.560 1,508.1 1,528.3
A/G 183 (26.2) 119 (27.6) 1.09 (0.83–1.43)
G/G 25 (3.6) 20 (4.6) 1.34 (0.73–2.46)

Dominant A/A 490 (70.2) 292 (67.8) 1.00 0.390 1,506.5 1,521.6
A/G-G/G 208 (29.8) 139 (32.2) 1.12 (0.86–1.45)

Recessive A/A-A/G 673 (96.4) 411 (95.4) 1.00 0.380 1,506.5 1,521.6
G/G 25 (3.6) 20 (4.6) 1.31 (0.72–2.38)

Overdominant A/A-G/G 515 (73.8) 312 (72.4) 1.00 0.610 1,507.0 1,522.1
A/G 183 (26.2) 119 (27.6) 1.07 (0.82–1.41)

Log-additive --- --- --- 1.12 (0.90–1.39) 0.310 1,506.2 1,521.3

rs3803808 Codominant A/A 246 (35.2) 137 (31.8) 1.00 0.400 1,507.4 1,527.5
G/A 340 (48.7) 215 (49.9) 1.14 (0.87–1.49)
G/G 112 (16.1) 79 (18.3) 1.27 (0.89–1.81)

Dominant A/A 246 (35.2) 137 (31.8) 1.00 0.230 1,505.8 1,520.9
G/A-G/G 452 (64.8) 294 (68.2) 1.17 (0.91–1.51)

Recessive A/A-G/A 586 (83.9) 352 (81.7) 1.00 0.320 1,506.3 1,521.4
G/G 112 (16.1) 79 (18.3) 1.17 (0.86–1.61)

Overdominant A/A-G/G 358 (51.3) 216 (50.1) 1.00 0.690 1,507.1 1,522.2
G/A 340 (48.7) 215 (49.9) 1.05 (0.83–1.33)

Log-additive --- --- --- 1.13 (0.95–1.34) 0.170 1,505.4 1,520.5
(Continued on following page)
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II and CIN III, and the CC group was divided into stages I and
II + III + IV. No significant associations of these SNPs were
observed between CIN I + II and CIN III and between CC stage
I and stage II + III + IV after Bonferroni correction (p > 0.005)
(Supplementary Tables S3, S4).

DISCUSSION

Alterations in the PI3K/Akt signalling pathway have been
found in human cancers (Vara et al., 2004). These
alterations might be a consequence of aberrant miRNA
expression (Peng et al., 2019; Ichikawa et al., 2020). To
explore the role of SNPs in miRNA genes involved in the
PI3K/Akt pathway in CC susceptibility, the association of nine
SNPs located in the miRNA genes involved in the PI3K/Akt
pathway with CIN and CC was investigated. Results showed
that the frequencies of rs107822 in miR-219a and rs2292832 in
miR-149 were significantly different between the control and
CC groups (p < 0.005).

To date, many studies have revealed that miR-219a
functions as a tumour suppressor in different cancers, such
as ovarian and breast cancer (Long et al., 2017; Xing et al.,
2018; Wang et al., 2020; Ye et al., 2021). In the current study,
we predicted that miR-219a could target integrins (ITGA and

ITGB) which can participate in the activation of the PI3K/Akt
signalling pathway. Moreover, our results showed that the
rs107822C allele and CC genotype were risk factors for CC.
Similarly, rs107822 has been reported to be associated with
lung cancer (Zheng et al., 2017) and oesophageal squamous
cell carcinoma (Song et al., 2015), and the C allele was
associated with an increased risk of cancer. These results
are consistent with those found in CC in the current study.
Rs107822 is located at the 2 Kb upstream of miR-219a, which
may be the transcriptional regulatory region of miR-219a. In
2012, Greliche et al. found that rs107822 in miR-219a could
affect HLA-DPB1 expression in monocytes through
interaction with rs1042448 in the 3′-UTR of HLA-DPB1
(Greliche et al., 2012). The distance between rs107822 in
miR-219a and rs1042448 in the 3′UTR of HLA-DPB1 is
approximately 100 kb on chromosome 6, and these two
SNPs show modest linkage disequilibrium (Greliche et al.,
2012). Genome-wide association studies have revealed that
loci susceptible for CC are located in the HLA-DP region
(Chen et al., 2013; Shi et al., 2013), which indicates the
important role of HLA-DP in CC. Thus, rs107822 may be
associated with CC by affecting the expression of HLA-DPB1
through interaction with rs1042448 in the 3′UTR of HLA-
DPB1. The interaction between rs107822 and the 3′UTR SNP
(rs1042448) may be affected by miRNA expression (miRSNP)

TABLE 6 | (Continued) The inheritance model analysis of these SNPs between CC and control groups.

SNPs Models Genotypes Control n (%) CC n (%) OR (95%CI) p value AIC BIC

rs4078756 Codominant T/T 384 (55.0) 250 (58.0) 1.00 0.450 1,507.7 1,527.8
C/T 277 (39.7) 155 (36.0) 0.86 (0.67–1.11)
C/C 37 (5.3) 26 (6.0) 1.08 (0.64–1.82)

Dominant T/T 384 (55.0) 250 (58.0) 1.00 0.330 1,506.3 1,521.4
C/T-C/C 314 (45.0) 181 (42.0) 0.89 (0.70–1.13)

Recessive T/T-C/T 661 (94.7) 405 (94.0) 1.00 0.610 1,507.0 1,522.1
C/C 37 (5.3) 26 (6.0) 1.14 (0.68–1.92)

Overdominant T/T-C/C 421 (60.3) 276 (64.0) 1.00 0.210 1,505.7 1,520.8
C/T 277 (39.7) 155 (36.0) 0.85 (0.67–1.10)

Log-additive --- --- --- 0.94 (0.77–1.15) 0.540 1,506.9 1,522.0

.rs629367 Codominant A/A 407 (58.3) 255 (59.2) 1.00 0.580 1,508.2 1,528.3
C/A 250 (35.8) 145 (33.6) 0.93 (0.72–1.20)
C/C 41 (5.9) 31 (7.2) 1.21 (0.74–1.97)

Dominant A/A 407 (58.3) 255 (59.2) 1.00 0.780 1,507.2 1,522.3
C/A-C/C 291 (41.7) 176 (40.8) 0.97 (0.76–1.23)

Recessive A/A-C/A 657 (94.1) 400 (92.8) 1.00 0.380 1,506.5 1,521.6
C/C 41 (5.9) 31 (7.2) 1.24 (0.77–2.01)

Overdominant A/A-C/C 448 (64.2) 286 (66.4) 1.00 0.460 1,506.7 1,521.8
C/A 250 (35.8) 145 (33.6) 0.91 (0.71–1.17)

Log-additive --- --- --- 1.01 (0.83–1.23) 0.900 1,507.3 1,522.3

rs7372209 Codominant C/C 323 (46.3) 208 (48.3) 1.00 0.130 1,505.2 1,525.3
T/C 294 (42.1) 189 (43.9) 1.00 (0.78–1.29)
T/T 81 (11.6) 34 (7.9) 0.65 (0.42–1.01)

Dominant C/C 323 (46.3) 208 (48.3) 1.00 0.520 1,506.9 1,522.0
T/C-T/T 375 (53.7) 223 (51.7) 0.92 (0.73–1.18)

Recessive C/C-T/C 617 (88.4) 397 (92.1) 1.00 0.043 1,503.2 1,518.3
T/T 81 (11.6) 34 (7.9) 0.65 (0.43–0.99)

Overdominant C/C-T/T 404 (57.9) 242 (56.1) 1.00 0.570 1,506.9 1,522.0
T/C 294 (42.1) 189 (43.9) 1.07 (0.84–1.37)

Log-additive --- --- --- 0.88 (0.73–1.05) 0.160 1,505.3 1,520.0
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and miRNA binding specificity (3′UTR SNP) (Greliche et al.,
2012). However, no association of this SNP with CIN was
found in the current study, which was not consistent with the
results of CC. As we known, the precancerous lesions and the
carcinogenesis are different stages during the development of
cervical cancer. Thus, one of the reasons of the discrepancy
between CIN and CC could be miR-219a might play different
roles in these two stages.

In 2020, Shao et al. reported that miR-149 functions as a
tumour suppressor in CC by negatively regulating AURKA
(Shao et al., 2020). Similarly, Zhou et al. found that miR-149
inhibits CC by targeting POU2F2 (Zhou and Xu, 2021). These
results indicate a suppressive role of miR-149 in CC. In the
current study, the results showed that rs2292832 was
associated with CC susceptibility, and the C allele was
associated with a decreased risk of CC. Our results are
consistent with those of another study on CC by Wang
et al. (2019). Similarly, the rs2292832 has been
documented to be associated with various types of human
cancer, such as gastric (Zhang et al., 2018), hepatocellular
(Wang et al., 2014) and breast cancers (He et al., 2015).
However, other studies have reported no such association
(Dai et al., 2015; Li et al., 2016; Cîmpeanu et al., 2017; Yu
et al., 2017). One of the reasons for the discrepancy between
different studies is that rs2292832 may play different roles in
different cancers. The other reason could be the different
genetic background populations enrolled in the different
studies. The third reason could be the different sample
sizes in different studies which might affect the reliability
of the association studies. Rs2292832 is located at the lower
stream of the stem-loop structure of precursor miR-149,
which might be related to the cleavage of pri-miRNA by
DROSHA (Han et al., 2006; Auyeung et al., 2013). Thus,
rs2292832 might be associated with CC through modulation
of the maturation process of miR-149, subsequently affecting
the expression of its target genes (ITGB and TRAF6) in the
PI3K/Akt signalling pathway. Similar to rs107822, rs2292832
only exhibit an association with CC, not CIN, which might
due to that miR-149 plays different roles between the
precancerous lesions and the carcinogenesis stages in the
cervical cancer development.

One limitation in the current study could be the lack of
HPV status for our every patient, which makes it difficult to
perform combined analyses of HPV status and gene SNPs
interaction. Therefore, the roles of the interactions of HPV and
host gene SNPs in the CC development should be investigated
in the future.

CONCLUSION

In summary, nine miRNAs involved in the PI3K/Akt signalling
pathway were selected, and nine SNPs located in regions related to

miRNA transcription or processing were chosen to investigate
their association with CC. Our results showed that rs107822 of
miR-219a and rs2292832 of miR-149 were associated with CC risk.
The statistical power in the comparison between CC and control
groups for rs107822 and rs2292832 were 0.818 and 0.803
respectively. Thus, the function of these two SNPs in the CC
development should be investigated and verified in the future.
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