Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

5²CelPress

Thymus algeriensis essential oil: Phytochemical investigation, bactericidal activity, synergistic effect with colistin, molecular docking, and dynamics analysis against Gram-negative bacteria resistant to colistin

Walid Ben Selma ^{a,b,*}, Amr Farouk ^c, Zhaojun Ban ^d, Mohamed Ferjeni ^a, Tawfiq Alsulami ^e, Hatem Ali ^f, Jalel Boukadida ^g

^a Laboratory of Biological and Genetic Markers Studying for Early Diagnosis and Follow-up of Neurological Diseases, Faculty of Medicine – Av. Ibn el Jazzar-4000, Sousse, LR18ES47, Tunisia

^b Higher Institute of Applied Sciences and Technology, Mahdia, Tunisia

^c Flavor and Aroma Chemistry Department, National Research Centre, Cairo, 12622, Egypt

^d Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical

Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China

e Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia

f Food Technology Department, National Research Center, Cairo, 12622, Egypt

^g Laboratory of Microbiology, Farhat Hached University Hospital, Sousse, Tunisia

ARTICLE INFO

Keywords: Antibiotic resistance Colistin Docking analysis Gram-negative bacteria Synergism Thymus algeriensis essential oil

ABSTRACT

Due to the increasing resistance prevalence to the last line of antibiotics, such as colistin, and the rising threat of multi-drug resistant bacteria, it is crucial to find alternative therapeutic options. The current study focuses on evaluating antibacterial activities alone and in combination with colistin of Thymus algeriensis essential oil (TA-EO) against colistin-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli co-harboring mcr-1 gene. GC/MS was used to determine the chemical composition of TA-EO. Disc diffusion and microdilution techniques were used to evaluate the antimicrobial activities of TA-EO. Synergism between colistin and TA-EO was evaluated by checkerboard assay. The major compounds of TA-EO were docked with known enzymes involved in resistance to colistin, as well as the biosynthesis of peptidoglycan and amino acids. GC/MS revealed that TA-EO was of carvacrol chemotype (67.94 %). The TA-EO showed remarkable antibacterial activities against all Gram-negative bacterial strains, with the diameter of inhibition zones varied between 30 and 50 mm and a ratio MBC/MIC equal to 1 for the vast majority of bacterial isolates. Interestingly, the checkerboard showed synergism between TA-EO and colistin against colistin-resistant Escherichia coli co-harboring mcr-1 gene (FICI<1) and reduced the MIC of colistin by 16- to 512-fold and those of TA-EO by 4- to 16-fold. The docking study demonstrated that carvacrol had high binding free energies against MCR-1, a phosphoethanolamine transferase extracellular domain, and its catalytic domain implicated in resistance to colistin, and undecaprenyl pyrophosphate synthase in complex with magnesium which is involved in bacterial peptidoglycan biosynthesis. The molecular dynamics study for 100-ns also revealed the stability of the MCR-1/carvacrol complex with a constant surface area over the

E-mail address: walid.bensalma@issatmh.u-monastir.tn (W. Ben Selma).

https://doi.org/10.1016/j.heliyon.2024.e38281

Received 12 May 2024; Received in revised form 19 September 2024; Accepted 20 September 2024

Available online 24 September 2024

^{*} Corresponding author. Laboratory of Biological and Genetic Markers Studying for Early Diagnosis and Follow-up of Neurological Diseases, Faculty of Medicine – Av. Ibn el Jazzar-4000, Sousse, LR18ES47, Tunisia.

^{2405-8440/© 2024} The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

simulation. These results support using carvacrol or TA-EO as a bactericidal agent, either alone or in combination with colistin, to treat infections caused by colistin-resistant Gram-negative bacteria.

1. Introduction

The World Health Organization (WHO) reported that antimicrobial resistance is one of the greatest challenges for human health worldwide [1]. The overuse of antibiotics in both human and veterinary medicine has been linked to the rise in multidrug-resistant (MDR), extensively resistant (XDR), and pan-drug-resistant (PDR) strains of Gram-negative bacteria. *Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa,* and *Escherichia coli* have multiple inherent or acquired resistance mechanisms [2]. Thus, the rapid and easy emergence of antimicrobial-resistant bacterial strains in the environment, including unit care in hospitals, was demonstrated to be the origin of difficulty in treating infections that caused a longer stay in hospital and mainly improved mortality [1].

Until today, new pharmaceutical drugs have not been developed to resolve and stop the rapid emergence of MDR, XDR, and PDR Gram-negative bacterial strains. Thus, the non-development of new antibiotics against these bacterial strains has oriented the attention to revive older antibiotics that were confirmed to induce toxicity for human use, especially colistin, to be used as a "last resort" antimicrobial. It was well established that antibiotic colistin was infrequently prescribed for patients even in the recent past because of its neurotoxicity and nephrotoxicity, and has now been extensively used as the last therapeutic option, especially in countries characterized by an intensive rate of resistance to antimicrobials for the treatment of infections caused by Gram-negative bacteria resistant to carbapenem [3].

In this setting, WHO has declared that colistin is one of the important antibiotics listed as a "Highest Priority Critically Important Antimicrobial" [4]. Nevertheless, this announcement was confronted by the worldwide dissemination of "mobile colistin resistance 1" (mcr-1) resistant genes to colistin between bacteria from both animals and humans, leading to reduce the clinical efficacy of this antimicrobial agent and to a serious global strategy to use colistin [5].

Resistance to colistin has increased progressively due to the augmented and inappropriate use of this antibiotic [4]. Thus, it was demonstrated that the primary resistance mechanism to colistin was related to mutations occurring in some chromosomal genes, for example, *mgr*B, *phoPQ*, and *pmr*AB [6]. Besides, the easy and rapid spread via horizontal transfer of the plasmid-mediated colistin resistance gene, *mcr*-1, had increased the public and environmental rate risks [1,6].

Accordingly, it was demonstrated that *mcr*-1 can mediate resistance to colistin resistance by a mechanism that does not differ from that found in intrinsically resistant Gram-negative bacteria. Thus, MCR-1 is a phosphoethanolamine lipid A transferase enzyme, belonging to the "YhjW/YjdB/YijP" alkaline phosphatase superfamily [7]. The *mcr-1* gene encodes a PEtN transferase, which plays a key role in the addition of a PEtN moiety to the lipid A of lipopolysaccharide (LPS), leading to an increase of the cationic charges on LPS, and subsequently, reduces the affinity and binding of colistin to LPS [8].

To resolve the worldwide emergence of bacterial resistance to antibiotics, previously discarded antibiotics are once again being introduced for therapeutic use even though it was demonstrated to have important side effects in human organs [9]. Moreover, several collaborations between academic researchers and industry were established to develop new approaches to resolve the worldwide problem of antimicrobial resistance. Numerous potential strategies were proposed such development of alternatives to antibiotics and the research of adjuvants to conventional antibiotics [10]. An attractive and promising strategy was proposed, which was based on the simultaneous use of conventional antibiotics with adjuvants like bioactive compounds of medicinal plants [10].

Various medicinal plants were extensively characterized as a potential natural source to generate a diversity of therapeutic drugs for human use due to their multitude of bioactive compounds. Essential oils produced by medicinal plants are considered natural substances due to their content of multiple volatile secondary metabolites [11,12]. Hence, based on their beneficial therapeutic effects to human and animal health care, some essential oils were classified as safe to use according to the United States Agency for Food and Drug Products [13]. *Thymus algeriensis* belongs to the *Lamiaceae* family, which is native to the Mediterranean region [14]. This plant is considered one of the most popular medicinal plants in the world based on its therapeutic and aromatic properties. Therefore, due to its benefit effects, it is usually used as a therapeutic agent in traditional human medicine to treat several illnesses, such as gastric disorders, heart diseases, respiratory infections, pneumonia, asthma, diabetes, influenza, dermatitis, skin diseases, and infertility in women [15,16].

In the context of the growing imperative to identify novel adjuvants to complement existing antibiotics for combatting multiresistant pathogenic bacteria, this study has set out the following objectives: (i) to assess the antibacterial efficacy of Tunisian *Thymus algeriensis* essential oil against hospital strains of Gram-negative bacteria that exhibit resistance to colistin; (ii) to examine the potential impact of using *Thymus algeriensis* essential oil as an adjuvant to colistin in reversing the resistant phenotype of Gramnegative bacteria to a susceptible phenotype; and (iii) to conduct molecular docking analysis to evaluate the interaction between the predominant compound in *Thymus algeriensis* essential oil and crucial enzyme MCR-1, a phosphoethanolamine transferase associated with resistance to colistin, and two others enzymes undecaprenyl pyrophosphate synthase, and *S. aureus* ketol-acid reductoisomerase implicated in biosynthesis of peptidoglycan and amino acids, respectively.

2. Materials and methods

2.1. Bacterial strains

Eleven clinical strains of *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Escherichia coli* resistant to colistin, which were previously isolated by microbiological procedures were included in this study [17]. They were collected at Rabta Hospital, Charles Nicolle Hospital of Tunis, National Bone Marrow Transplant Center, and Bechir Hamza Children's Hospital of Tunis Tunisia (Table 1). All bacterial isolates were stored in brain heart infusion broth with 20 % glycerol at -80 °C until use for antimicrobial evaluation. *Escherichia coli* ATCC 25922 was used as an internal quality control strain.

2.2. Antimicrobial susceptibility testing

2.2.1. Disc diffusion assay

Antimicrobial susceptibility tests were performed for all Gram-negative bacteria strains using the standard disk diffusion method on Mueller-Hinton agar plates (Bio-Rad, Marnes-la-Coquette, France) according to the Clinical and Laboratory Standards Institute (CLSI) guidelines [18]. The disk of antibiotics used was as follows: cephems (cefotaxim, ceftazidime), β -lactam (Ceftazidim, Cefoxitin, Cefixime, Cefepime, Aztreonam), aminoglycosides (gentamicin, tobramycin, amikacin), carbapenems (ertapenem, imipenem, eropenem), β -lactam combination agent (Amoxicillin-clavulanic acid, Piperacillin-Tazobactam), quinolones and fluoroquinolones (nalidixic acid, ciprofloxacin), penicillins (ampicillin, piperacillin, ticarcillin).

2.2.2. Determination of minimal inhibitory concentration of colistin

The Minimum Inhibitory Concentrations (MIC) of colistin were determined against all bacterial strains included. It was realized by the standard of broth microdilution assay according to the guidelines of the CLSI [18]. Susceptibility to colistin sulfate (Sigma-Aldrich, St. Louis, MO, USA) was tested over a range of two-fold dilutions by using a broth microdilution assay (512–0.012 mg/L) [18,19]. In a sterile biological safety cabinet (BIOBASE, China), a sterilized Mueller Hinton II cation-adjusted broth was distributed into 96 microtiter plate wells. Then, serial dilution of colistin was done at concentrations ranging from 512 µg/mL to 0.012 µg/mL by a two-fold dilution method. Finally, the wells were inoculated with 100 µL 10^5 CFU/mL of clinical Gram-negative bacteria resistant to colistin as well as *Escherichia coli* ATCC 25922 and *Pseudomonas aeruginosa* ATCC 27853 as standard strains and incubated overnight at 37 °C (Memmert, Germany).

After incubation, the bacteria that showed visible growth at concentrations $>2 \mu g/mL$ were considered resistant, as recommended by EUCAST 2024 [19]. The assays were performed in triplicate to confirm the findings.

2.3. Chemical composition analysis of Thymus algeriensis essential oil by gas chromatography-mass spectrometry

The chemical composition of a commercial *Thymus algeriensis* EO purchased from a local company was determined by Gas Chromatography-Mass Spectrometry (GC-MS). The analysis was carried out according to the conditions mentioned in our previous article using a Hewlett Packard (HP) 5890 II GC coupled with an HP-5 MS capillary column ($30 \text{ m} \times 0.25 \text{ mm}$, 0.25 µm film thickness, Agilent Technologies) [11].

2.4. Antimicrobial activities of Thymus algeriensis essential oil

2.4.1. Disc diffusion method

The Thymus algeriensis essential oil was evaluated by disc diffusion test as we have previously reported [11]. Briefly, in a sterile

Table 1

Antibiotic profile o	f colistin-resistant	Gram-negative	bacterial s	strains.
----------------------	----------------------	---------------	-------------	----------

Bacterial strains ^a	Drug resistance	MIC Colistin (µg/mL)
E. coli-1	NAL, CIP, TCN	16
E. coli-2	AMP, TIC, PIP, CAZ, CXM, FEP, ATM, NAL, CIP, TCN	16
E. coli-3	AMP, AMC, TIC, PIP, CAZ, CXM, FEP, ATM, NAL, CIP, TCN	32
E. coli-4	AMP, TIC, PIP, CAZ, CXM, FEP, ATM, GM, NAL, CIP, TCN	32
K. pneumoniae-1	AMP, AMC, TIC, PIP, TZP, CAZ, FOX, CXM, FEP, ATM, ERT, IMP, MEM, GM, NAL, CIP, TCN	32
K. pneumoniae-2	AMP, AMC, TIC, PIP, TZP, CAZ, FOX, CXM, FEP, ATM, ERT, IMP, MEM, GM, NAL, CIP, TCN	64
K. pneumoniae-3	AMP, TIC, PIP, TZP, TCN	32
K. pneumoniae-4	AMP, AMC, TIC, PIP, TZP, FOX, ERT, IMP, MEM, GM, TCN	128
P. aeruginosa-1	TIC, PIP, TZP, CAZ, FEP, ATM, ERT, IMP, MEM, GM, NAL, CIP, TCN	8
P. aeruginosa-2	TIC, PIP, FOX, ERT, IMP, MEM	4
P. aeruginosa-3	TIC, PIP, TZP, CAZ, GM, NAL, CIP, TCN	128

^a Escherichia coli strain 1: E. coli-1; Klebsiella pneumoniae: K. pneumoniae; Pseudomonas aeruginosa: P. aeruginosa; Amoxicillin-clavulanic acid: AMC; Ampicillin: Amp; Aztreonam: ATM; Cefepime: FEP; Cefixime: CXM; Cefoxitin: FOX; Ceftazidim: CAZ; Ciprofoloxacin: CIP; Ertapenem: ERT; Gentamicin: GM; Imipenem: IMP; Meropenm: MEM; Nalidixic acid: NAL; Piperacillin/Tazobactam: TZP; Piperacillin: PIP; Tetracycline: TCN; Ticarcillin: TIC. biological safety cabinet, 5 μ L of the essential oil was added on sterile Whatman filter paper discs of a 6 mm diameter which were placed in the center of Petri dishes previously spread with an overnight culture of each bacterial strain. Then, plates were placed at room temperature for 2 h to allow the essential oil to diffuse. Finally, they were incubated upside down at 37 °C overnight.

The antibacterial activity of *Thymus algeriensis* was determined based on the diameter of the transparent zone around the disc (zone of inhibition). The zone of inhibition was interpreted as described previously by Ponce and collaborators [20]: not sensitive = diameter < 8 mm; sensitive = diameter of 8–14 mm; very sensitive = diameter of 15–19 mm; extremely sensitive = diameter > 20 mm.

2.4.2. Determination of minimal inhibitory concentration

The MICs of *Thymus algeriensis* essential oil were determined by microdilution susceptibility as we reported against all Gramnegative bacteria resistant to colistin, and susceptible strains to colistin *Escherichia coli* ATCC 25922 [11]. Initially, *Thymus algeriensis* essential oil was diluted in DMSO. The concentrations of the essential oil were two-fold serial dilutions ranging from 40 to 0.078 mg/mL. Next, the wells were inoculated with 100 μ L 10⁵ CFU/mL of clinical Gram-negative bacteria resistant to colistin as well as *Escherichia coli* ATCC 25922 and *Pseudomonas aeruginosa* ATCC 27853 as standard strains and incubated overnight at 37 °C (Memmert, Germany). After incubation, the well with no bacterial growth at the lower concentration of the essential oil was considered the MIC.

2.4.3. Determination of minimal bactericidal concentration

The minimal bactericidal concentration (MBC) of *Thymus algeriensis* essential oil was determined as follows: 10 μ L from each well of the Plate without bacterial growth aspired, then they were cultured on Mueller-Hinton agar to verify if the inhibition of bacterial growth was reversible or permanent. Thus, MBC corresponds to the highest dilution (consequently the lowest concentration of the essential oil) at which >99.9 % reduction of initial CFU was obtained. Each test was achieved in triplicate.

2.5. Interactions between Thymus algeriensis essential oil and colistin

To evaluate plausible synergism between colistin and *Thymus algeriensis* essential oil, a checkerboard was applied as we have before described [11]. Briefly, two-fold serial dilutions of the essential oil and colistin were done in Mueller Hinton II cation-adjusted broth and added to 96-well sterile plates. Next, the microplates were placed in the incubator at 37 °C for 24 h under agitation. To analyze the interaction results obtained by checkerboard assays, fractional inhibitory concentration indexes (FICI) were calculated. The FICI was determined as follows:

FICEO + FICantibiotic; with

$$FICEO = \frac{MICEO \text{ used in combination}}{MICEO \text{ used alone}}$$
 and

 $FICantibiotic = \frac{MIC \text{ antibiotic used in combination}}{MIC \text{ antibiotic used alone}}$

The interpretation of FICI values was done as previously described. Thus, if FICI <0.5 the result indicates a synergistic effect; if 0.5 \leq FICI \leq 4, the result indicates an additive or indifferent effect; and if FICI >4, the result indicates an antagonistic effect [19,21].

2.6. Molecular docking details

The crystal structures of the following enzymes were used as receptors, including a phosphoethanolamine transferase (MCR-1), with its extracellular domain (PDB ID: 5GOV), and its catalytic domain (PDB ID: 5GRR), undecaprenyl pyrophosphate synthase (PDB ID: 2E98 and 1X06), and *S. aureus* ketol-acid reductoisomerase (PDB ID: 7KH7). The Protein Data Bank (https://www.rcsb.org/, accessed on December 25–26, 2023) provided these structures. The 3d structures of the ligands used were downloaded from PubChem via http://pubchem.ncbi.nlm.nih.gov/ on December 17, 2023. The receptors were prepared by removing water and co-crystallized ligands/ions and were protonated using Pymol software ver. 2.5.1. The 3D structures of the ligands were optimized using Avogadro Software ver. 1.2.0. Blind docking was performed using CB-DOCK2, accessed via http://clab.labshare.cn/cb-dock/php/ on July 24, 2024, as described by Liu and coauthors [22]. The top five cavities were subjected to docking using AutoDock Vina. The best-docked complexes were analyzed using Discovery Studio software described by Farouk and collaborators [23].

2.7. Molecular dynamic simulation

The ligand topology parameters were obtained by the ACPYPE server (https://www.bio2byte.be/acpype/) with the GAFF force field. AMBER99SB force field was used for the protein topology parameters. The complex was solvated in a cubic box with an SPC water model. The system was neutralized by adding 4 Na + ions; then, energy was minimized by the steepest descent algorithm in 50,000 steps and Fmax <500 kJ/mol. After that, the minimized system was equilibrated using an NVT ensemble at 300 K for 200 ps, followed by an NPT ensemble for 500 ps. Finally, the MD simulations were performed for 100 ns under an NPT ensemble with a time step of 2 fs, and long-range electrostatic interactions were calculated using the Particle Mesh Ewald (PME) algorithm. Hydrogen bond lengths were constrained using the Linear Constraint Solver (LINCS) algorithm. After MD simulations, periodic boundary conditions were removed, and the trajectories were analyzed using GROMACS tools like rms for Root mean square deviation (RMSD), rmsf for

Root mean square fluctuation (RMSF), gyrate for Radius of gyration (RG), sasa for Solvent Accessible Surface Area (SASA) and hbond to calculate the number of hydrogen bonds.

3. Results and discussion

3.1. Antibiotic profile resistance

In the current study, the antibiotic resistance obtained by disc diffusion assay and colistin' MICs values achieved by microdilution method against different clinical Gram-negative bacteria strains selected are shown in Table 1. The levels of MIC of colistin ranged from 4 to 128 μ g/mL, and they were more than 2 μ g/mL, which is the rate defined by EUCAST 2024 to characterize Gram-negative bacterial strains resistant to colistin [19].

3.2. Chemical composition of Thymus algeriensis essential oil

Results obtained using the GC-MS technique revealed the identification of twenty-eight volatile constituents of *Thymus algeriensis* essential oil, where carvacrol is the dominant compound (67.94 %), followed by p-cymene (8.93 %), γ -terpinene (3.25 %), α -terpinyl acetate (2.18 %), linalool (1.43 %), myrcene (1.39 %), and α -terpinene (1.27 %) as shown in Fig. 1 and Table 2. This composition characterizes this essential oil as a carvacrol chemotype.

The chemical of *Thymus algeriensis* essential oil in the current results was not the same as those of other studies previously published from Algeria. Thus, an earlier study from Algeria reported that α -terpinyl acetate (47.4 %) was the major component of EO of *Thymus algeriensis* cultivated in Algerian Saharan atlas [24]. Furthermore, another study indicated that *Thymus algeriensis* EO from El-Guetfaregion, M'sila, Algeria was of camphor chemotype (32.56 %) [25]. The heterogeneity of chemotypes and the chemical compositions of *Thymus algeriensis* EO could be related to one or more of the following parameters: climatic and soil variations, the stage of collection of plants' samples, conditions of storage, techniques used to extract the essential oil, and epigenetic variations in this specie.

3.3. Antibacterial activity of Thymus algeriensis essential oil

3.3.1. Disc diffusion

Results obtained by disc diffusion assay showed very high inhibition zone' diameters of *Thymus algeriensis* essential oil against all tested Gram-negative strains resistant to colistin (Table 3). The interval ranges of inhibition zone diameter varied from 46 mm to 64 mm, with an average value of 54.5 mm in the *E. coli* strains resistant to colistin and co-harboring *mcr*-1 gene; from 35 to 40 mm, with an average value of 37 mm in the *K. pneumoniae*; and from 30 to 40 mm, with an average value 35 mm in the *P. aeruginosa* (Table 3). Thus, to the best of our knowledge, this is the first study to show an advanced inhibition zone of *Thymus algeriensis* essential oil against Gramnegative bacteria resistant to colistin. The *Thymus algeriensis* essential oil gives an inhibitory transparent zone of 60 mm against *E. coli* ATCC 25922 (Table 3).

3.3.2. MIC and MBC determination

MIC assay results confirmed those obtained by the disc diffusion method against all Gram-negative bacteria resistant to colistin and

Percentage of volatile components of Thymus algeriensis essential oil identified by GC-MS analysis.

1 Τrigelene 930 0.028 2 α Thujene 935 0.248 3 α Pinene 940 0.967 4 Camphene 954 0.066 5 Sabinene 976 0.399 6 1-Octen-3-01 982 0.359 7 Myrcene 991 0.023 8 3-OCTANOL 998 0.059 9	Peak	Compound	RI	Area %
2 a ⁻¹ bigene 935 0,248 3 a ⁻¹ bigene 954 0,066 5 Sabinene 976 0,389 6 1-0cten-3-01 982 0,330 7 Myrcene 991 1,390 8 3-0CTANOL 988 0,059 9 a ⁻¹ bellandrene 1005 0,213 10 8-3-Carcene 1019 1,279 12 p-Cymene 1031 0,557 14 p-Pellandrene 1033 0,045 16 y ⁻¹ Perpinene 1063 3,2255 17 Linalod 1141 0,022 18 cis-p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,663 22 Borneol 1168 0,946 23 Dodcecate 1190 0,215 24 p-Cymen-8-ol 1190 0,215 25 Dodcecate 1307 0,305 26 Nerol <td< td=""><td>1</td><td>Tricyclene</td><td>930</td><td>0,028</td></td<>	1	Tricyclene	930	0,028
3a. Phinne9400.9674Camphene9760.0895Sabinene9760.38961-Octen-3-ol9820.5307Myrcene9910.35083-OCTANOL9980.6139aPhellandrene10120.094111a'-Terpinene10120.094121p-Cymene10258,39813Limonene10330,45714p-Phellandrene10320,909151,8-Cincolc10330,45516r,Terpinene10330,45517Linalool11011,43218cis-p-Menth-2en-1-ol11210,02219p-Menth-2en-1-ol11400,06322Bomcol11440,06323Terpinen-4-ol11791,06724p-Cymen-8-ol11860,94625Dodecene11900,13526Nerol12330,27127Methyl thymol12350,11828Methyl arvacrol12440,14829E-Ctrad13096,99131Carvacrol13096,99132Terpinen-4-yl acetate13810,06934Thymol12550,11835Carvacryl acetate13810,06936Socarvacryl acetate13810,06937P-Carvacrol acetate13810,06938Garv	2	α-Thujene	935	0,248
4 Camphene 954 0,066 5 Sabinene 976 0,330 6 1-0cten-3-01 982 0,350 7 Myrcene 991 1,300 8 3-0CTANOL 982 0,059 9 a-Phellandrene 1005 0,213 10 6-3-Carcene 1019 1,279 12 p-Cymene 1031 0,527 13 Linnonene 1031 0,527 14 p-Phellandrene 1032 0,909 15 1,8-Cincole 1032 0,909 15 Linalool 1121 0,022 16 7 Terpinene 1063 3,2255 17 Linalool 1144 0,663 219 p-Menth-2-en-1-ol 1121 0,024 210 Pinocarveol 1144 0,663 22 Borneol 1166 0,383 23 Terpinen-4-ol 1179 1,677 24 P.Cymens-6-ol 1180 0,946 25 Dodceene	3	α-Pinene	940	0,967
5 Sabinene 976 0,339 6 1-Otten-3-ol 982 0,350 7 Myrcene 991 1,390 8 3-OCTANOL 998 0,059 9 a-Phellandrene 1012 0,094 111 a-Terpinene 1012 0,094 111 a-Terpinene 1032 8,938 133 Limonene 1033 0,457 14 β-Phellandrene 1032 0,909 15 1,8-Cincole 1033 0,455 16 7-Terpinene 1063 3,255 17 Linalool 1101 1,432 18 cis-p-Menth-2en-1-ol 1121 0,022 19 p-Menth-2en-1-ol 1144 0,063 22 Borneol 1144 0,063 23 Borneol 1186 0,946 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 190 0,135 26 Nerol 1233 0,271 27 Methyl thymol <td>4</td> <td>Camphene</td> <td>954</td> <td>0,066</td>	4	Camphene	954	0,066
61-Octen-3-ol9820,3507Mycene9911,30083-OCTANOL9980,0599Phellandrene10020,094106-3-Carene10120,09411Grepinene10120,99412p-Cymene10258,93813Limonene10310,527140Phellandrene10330,045151,8-Cincole10330,04516Terpinene10633,28517Linalool11210,02219p-Menth-2-en-1-ol11200,06321Camphor11400,06422Borneol11680,38323Borneol11680,38324p-Cymene-8-ol11791,06725Dodecene1900,13526Nerol12330,27127Methyl thymol12540,16236Methyl carvacrol12440,46329E-Citral13550,11836Carvacrol130967,94137O,26013640,05038Carvacrol13310,06937P-Carvophyllene14310,06938Carvacrol13310,06939Carvacrol13310,06936Isoarophyllene14320,16239Carvacrol13310,06936Isoarophyllene1451	5	Sabinene	976	0,389
7 Myrcen 991 1,300 8 3-OCTANOL 998 0,659 9 α-Phellandrene 1005 0,213 10 6-3-Carene 1012 0,094 11 α-Terpinene 1019 1,279 12 p-Cymene 1031 0,527 13 Limonene 1031 0,527 14 β-Phellandrene 1032 0,909 15 1,8-Cineole 1033 0,225 16 7-Terpinene 1063 3,225 17 Linalool 1101 1,432 18 clas-p-Menth-2-en-1-ol 1140 0,064 20 P.Menth-2-en-1-ol 1144 0,063 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1144 0,163 24 Dodecene 1186 0,946 25 Dodecene 1186 0,118 26 Nerol 1233 0,271 27 Methyl cavar	6	1-Octen-3-ol	982	0,350
8 3-CTANOL 998 0.059 9 a-Phellandrene 1005 0.213 10 6-3-Carene 1012 0.094 11 a-Terpinene 1012 0.094 11 a-Terpinene 1031 0.527 12 p-Cymene 1032 0.909 15 1,8-Cincole 1033 0.0451 16 7-Terpinene 1063 3.255 17 Linalod 1121 0.022 19 p-Menth-2-en-1-ol 1121 0.022 19 p-Menth-2-en-1-ol 1142 0.039 21 Camphor 1144 0.063 22 Borneol 1168 0.333 23 Borneol 1179 1.067 24 p-Cymen-8-ol 1186 0.333 25 Dodecene 1190 0.135 26 Nerol 1235 0.118 28 Methyl drynol 1237 0.360 31 Carvacrol 1309 67.941 32 Terpinen-4-al cetat	7	Myrcene	991	1,390
9σ-Phellandrene10050.21310δ-3-Carene10191.27911σ-Terpinene10191.27912p-Cymene10210.52713Limonene10310.52714β-Phellandrene10330.049151.8-Cincole10330.04516 γ-Terpinene 1063 3,255 17Linalool11011,43218cis-p-Menth-2-en-1-0111400.06420Pincarveol11420.03921Camphor11420.03322Borneol11860.38323Terpinen-4-0l11791.06724p-Cymen-8-0l11860.94625Dodecene11900.13526Nerol12330.27127Methyl thynol12350.11828Methyl caracrol130967,94133 Carvacrol 130967,94134Thymol1350.31635Carvacrol13600.36236Sacaryophyllene14610.046237φ-Caryophyllene14610.046238o-Humulene14730.08637φ-Caryophyllene14610.046238o-Humulene14610.046239φ-Caryophyllene15230.006144d-Cadinene15230.006145Sachulenol15200.006446 <td>8</td> <td>3-OCTANOL</td> <td>998</td> <td>0,059</td>	8	3-OCTANOL	998	0,059
10 \$3-Carene 1012 0,094 11 -reginene 1019 1,279 12 pCymene 1025 8,398 13 Limonene 1031 0,527 14 PPBellandrene 1032 0,909 15 1.8-Cineole 1032 0,909 16 -rTerpinene 1063 3,255 17 Linalool 1101 1,432 18 cisp-Menth-2en-1-ol 1140 0,064 20 Pinocarveol 1144 0,063 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 pCymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1255 0,118 35 Carvacrol <td< td=""><td>9</td><td>α-Phellandrene</td><td>1005</td><td>0,213</td></td<>	9	α-Phellandrene	1005	0,213
11 or Terpinene 1019 1,279 12 p-Cymene 1025 8,938 13 Limoene 1031 0,527 14 P-Phellandrene 1032 0,009 15 1,8-Cineole 1033 0,0045 16 7-Terpinene 1063 3,255 17 Linalool 1101 1,432 18 cis-p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1166 0,946 23 Terpinen-4-ol 1168 0,938 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl travacrol 1244 0,148 29 E-Citral 1355 0,118 33 orTerpinen-4-yl acetate 1347 0,305 34 Thymol acetate 1355 0,118 35	10	δ-3-Carene	1012	0,094
12p-Cymene10258,93813Limonene10310,52714p'Phellandrene10320,099151,8-Cineole10320,09916r-Terpinene10633,25517Linalool11011,43218cis-p-Menth-2:en-1-ol11210,02219p-Menth-2:en-1-ol11400,06420Pinocarveol11440,03921Camphor11440,06322Borneol11680,38323Terpinen-4-ol11791,06724p-Cymen-8-ol11860,38325Dodecene11900,13526Nerol12330,27127Methyl tarvacrol12440,14828Methyl carvacrol12440,14829E-Citral12540,16230Thymol13550,31832Carvacrol13470,36033G-Terpinyl acetate13600,41835Carvacryl acetate13840,05936Isocaryophyllene14620,54337Pi-Carcyophyllene14730,09241Iedene14920,07242Affurulene14730,09243Garnerol15230,00644Affanene14630,04245Spathulenol15230,00646Carvophyllene14730,09247 <t< td=""><td>11</td><td>α-Terpinene</td><td>1019</td><td>1,279</td></t<>	11	α-Terpinene	1019	1,279
13 Limonene 1031 0,527 14 μ-Phellandrene 1032 0,909 15 1,8-Cincole 1033 0,045 16 y-Terpinene 1063 3,255 17 Linalool 1101 1,432 18 cis-p-Menth-2-en-1-ol 1121 0,022 19 p-Menth-2-en-1-ol 1142 0,039 20 Pincoarveol 1144 0,663 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodcene 1190 0,135 26 Nerol 1233 0,271 27 Methyl tarvacrol 1244 0,162 30 Thymol 1297 0,360 314 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacrol 1309 67,941 3	12	p-Cymene	1025	8,938
14 β-Phellandrene 1032 0,099 15 1,8-Cincole 1033 0,045 16 γ-Ferpinene 1063 3,255 17 Linalool 1101 1,432 18 cisp-Menth-2-en-1-ol 1121 0,022 19 p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1235 0,118 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen4-yi acetate 1350 2,181 34 Thymyl acetate 1350 2,181 35 <td>13</td> <td>Limonene</td> <td>1031</td> <td>0,527</td>	13	Limonene	1031	0,527
15 1,8-Cincole 103 0,045 16 γ-Terpinene 1063 3,255 17 Linalool 1101 1,432 18 Cisp-Menth-2-en-1-ol 1120 0,022 19 p-Menth-2-en-1-ol 1140 0,664 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,663 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67941 32 Terpinyl acetate 1350 2,181 34 Thymyl acetate 1350 2,181 35 Carvacryl acetate 1381 0,069 37	14	β-Phellandrene	1032	0,909
16 γ-Terpinene 1063 3,255 17 Linalool 1101 1,432 18 cisp-Menth-2en-1-ol 1121 0,022 19 p-Menth-2en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1168 0,946 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 186 0,946 25 Dodecene 190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 139 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 a-Terpinyl acetate 1347 0,306 34 Thyml acetate 1355 0,118 35 Carvacryl acetate 1381 0,069	15	1,8-Cineole	1033	0,045
17 Linalool 1101 1,432 18 cis-p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 186 0,946 25 Dodecene 190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1233 0,271 27 Methyl carvacrol 1244 0,148 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1355 0,118 35 Carvacrol 1309 67,941 34 Thymyl acetate 1355 0,162 35 Carvacrol 1309 67,941 36 Sacrayophyllene 1448 0,069 37	16	γ-Terpinene	1063	3,255
18 cis-p-Menth-2-en-1-ol 1121 0,022 19 p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1144 0,063 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,148 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,059 33 arTerping Jacetate 1355 0,118 35 Carvaphyllene 1408 0,050 36 Isocaryophyllene 1408 0,050 36 Isocaryophyllene 1402 0,072	17	Linalool	1101	1,432
19 p-Menth-2-en-1-ol 1140 0,064 20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1355 0,118 34 Thymyl acetate 1355 0,125 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1461 0,042 39 γ-Garyophyllene 1473 0,086 40 allo-Aromadendrene 1473 0,086	18	cis-p-Menth-2-en-1-ol	1121	0,022
20 Pinocarveol 1142 0,039 21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 a-Terpinen-4-yl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocarvophyllene 1408 0,050 37 β-Carvophyllene 1425 0,543 38 a-Humulene 1473 0,092 41 Iedene 1492 0,072 <t< td=""><td>19</td><td>p-Menth-2-en-1-ol</td><td>1140</td><td>0,064</td></t<>	19	p-Menth-2-en-1-ol	1140	0,064
21 Camphor 1144 0,063 22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl tymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinyl acetate 1355 0,118 33 a-Terpinyl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1475 0,092 41 Iedene 1499 0,011 43	20	Pinocarveol	1142	0,039
22 Borneol 1168 0,383 23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl tymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1408 0,050 37 β-Caryophyllene 1408 0,064 40 allo-Aromadendrene 1475 0,992 41 ledene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cariophyllene oxide 1588 0,006	21	Camphor	1144	0,063
23 Terpinen-4-ol 1179 1,067 24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,162 30 F-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1402 0,574 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,986 40 allo-Aromadendrene 1475 0,992 41 Iedene 1492 0,072 42 α-Muurolene 1520 0,006 <t< td=""><td>22</td><td>Borneol</td><td>1168</td><td>0,383</td></t<>	22	Borneol	1168	0,383
24 p-Cymen-8-ol 1186 0,946 25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1520 0,004 43 β-Bisabolene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 <t< td=""><td>23</td><td>Terpinen-4-ol</td><td>1179</td><td>1,067</td></t<>	23	Terpinen-4-ol	1179	1,067
25 Dodecene 1190 0,135 26 Nerol 1233 0,271 27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1357 0,305 33 α-Terpinyl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1408 0,051 38 α-Humulene 1401 0,042 39 γ-Gurjunene 1475 0,092 41 Iedene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,003 4	24	p-Cymen-8-ol	1186	0,946
26 Nerol 1233 0,271 27 Methyl tymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,152 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1350 2,181 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1408 0,042 38 α-Humulene 1475 0,986 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Murolene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 <td>25</td> <td>Dodecene</td> <td>1190</td> <td>0,135</td>	25	Dodecene	1190	0,135
27 Methyl thymol 1235 0,118 28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,360 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1355 0,118 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1475 0,092 41 ledene 1492 0,072 42 α-Murolene 1523 0,006 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolene 1733 0,007 48 (E,E)-Farnesol 1733 0,007	26	Nerol	1233	0,271
28 Methyl carvacrol 1244 0,148 29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 σ-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 σ-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1473 0,092 41 ledene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1685 0,004 46 Catryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 <td>27</td> <td>Methyl thymol</td> <td>1235</td> <td>0,118</td>	27	Methyl thymol	1235	0,118
29 E-Citral 1254 0,162 30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1350 2,181 34 Thymyl acetate 1350 2,181 34 Thymyl acetate 1350 2,181 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1425 0,543 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,992 41 ledene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,003 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolen 1588 0,004 48 (E,E)-Farnesol 1733 0,007	28	Methyl carvacrol	1244	0,148
30 Thymol 1297 0,360 31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,503 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1475 0,904 41 ledene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cariophyllene oxide 1588 0,038 47 α-Sisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125	29	E-Citral	1254	0,162
31 Carvacrol 1309 67,941 32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1473 0,086 41 ledene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolo 1585 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 </td <td>30</td> <td>Thymol</td> <td>1297</td> <td>0,360</td>	30	Thymol	1297	0,360
32 Terpinen-4-yl acetate 1347 0,305 33 α-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,669 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1408 0,042 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1473 0,086 41 ledene 1492 0,072 42 α-Muurolene 1492 0,072 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolo 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 <td>31</td> <td>Carvacrol</td> <td>1309</td> <td>67,941</td>	31	Carvacrol	1309	67,941
33 α-Terpinyl acetate 1350 2,181 34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1402 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Caryophyllene oxide 1588 0,038 47 α-Bisabol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 21955 0,003 <td>32</td> <td>Terpinen-4-yl acetate</td> <td>1347</td> <td>0,305</td>	32	Terpinen-4-yl acetate	1347	0,305
34 Thymyl acetate 1355 0,118 35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,003 47 α-Bisabolo1 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	33	α-Terpinyl acetate	1350	2,181
35 Carvacryl acetate 1381 0,069 36 Isocaryophyllene 1408 0,050 37 β-Caryophyllene 1425 0,543 38 α-Humulene 1461 0,042 39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,038 47 α-Bisabolo1 1588 0,034 47 α-Bisabolo1 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	34	Thymyl acetate	1355	0,118
36 Isocaryophyllene 1408 0,050 37 β -Caryophyllene 1425 0,543 38 α -Humulene 1461 0,042 39 γ -Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α -Muurolene 1499 0,011 43 β -Bisabolene 1520 0,004 44 δ -Cadinene 1523 0,006 45 Spathulenol 1576 0,038 47 α -Bisabolo1 1588 0,038 47 α -Bisabolo1 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	35	Carvacryl acetate	1381	0,069
37β-Caryophyllene14250,54338α-Humulene14610,04239γ-Gurjunene14730,08640allo-Aromadendrene14750,09241ledene14920,07242α-Muurolene14990,01143β-Bisabolene15200,00444δ-Cadinene15230,00645Spathulenol15760,00946Caryophyllene oxide15880,03847α-Bisabolol16850,00448(E,E)-Farnesol17330,00749Octadecane18000,00350Hexadecanoic acid19570,125511-Docosene21950,003	36	Isocaryophyllene	1408	0,050
38 α -Humulene 1461 0,042 39 γ -Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α -Muurolene 1499 0,011 43 β -Bisabolene 1520 0,006 44 δ -Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α -Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	37	β-Caryophyllene	1425	0,543
39 γ-Gurjunene 1473 0,086 40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,006 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolo1 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	38	α-Humulene	1461	0,042
40 allo-Aromadendrene 1475 0,092 41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,003 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003 Total -Docosene 2195 0,003	39	γ-Gurjunene	1473	0,086
41 ledene 1492 0,072 42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,038 47 α-Bisabolen 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,033 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	40	allo-Aromadendrene	1475	0,092
42 α-Muurolene 1499 0,011 43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolo1 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	41	ledene	1492	0,072
43 β-Bisabolene 1520 0,004 44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	42	α-Muurolene	1499	0,011
44 δ-Cadinene 1523 0,006 45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	43	β-Bisabolene	1520	0,004
45 Spathulenol 1576 0,009 46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	44	δ-Cadinene	1523	0,006
46 Caryophyllene oxide 1588 0,038 47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003	45	Spathulenol	1576	0,009
47 α-Bisabolol 1685 0,004 48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003 Total	46	Caryophyllene oxide	1588	0,038
48 (E,E)-Farnesol 1733 0,007 49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003 Total	47	α-Bisabolol	1685	0,004
49 Octadecane 1800 0,003 50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003 Total	48	(E,E)-Farnesol	1733	0,007
50 Hexadecanoic acid 1957 0,125 51 1-Docosene 2195 0,003 Total 95.675	49	Octadecane	1800	0,003
51 1-Docosene 2195 0,003 Total 95.675	50	Hexadecanoic acid	1957	0,125
Total 95.675	51	1-Docosene	2195	0,003
50,070	Total			95,675

E. coli ATCC 25922 (Table 3). Thus, the MIC values varied from 1.25 to 5, from 0.156 to 0.612, and 0.612–2.5 mg/mL against *E. coli*, *K. pneumoniae*, and *P. aeruginosa*, respectively. To our knowledge, these results are reported for the first time in the current study. Besides, for ten Gram-negative bacteria resistant to colistin, the ratio MBC/MIC was equal to one, and just for *K. pneumoniae* strain number two (*K. pneumoniae*-2) it was equal to two. This finding argues for an advanced *bactericidal* effect of *Thymus algeriensis* essential oil against these bacterial strains, as recommended previously [26].

3.4. Synergism effect between colistin and Thymus algeriensis essential oil

In the current study, we measured the MICs of colistin for all *E. coli* colistin-resistant strains and colistin-sensitive *E. coli* strains (ATCC25922). Interestingly, checkerboard assay revealed that the colistin' MICs were decreased at an advanced rate in the presence of *Thymus algeriensis* essential oil for all tested bacterial strains, and especially for *E. coli* strain number four (*E. coli*-4) from $32 \mu g/mL$ to 0.06 $\mu g/mL$ (Table 4). Thus, simultaneous use of the two antimicrobial agents, i.e., colistin and *Thymus algeriensis* essential oil, intensively reduced the MIC values of colistin by 16 to 512-fold. Furthermore, the MIC value of *Thymus algeriensis* essential oil (when

Table 3

Diameter of inhibition zone (IZ; mm), MICs (mg/mL), and MBCs (mg/mL) of *Thymus algeriensis* essential oil against colistin-resistant Gram-negative bacteria.

Tested strains	IZ±SD (mm)	MIC value (mg/ml)	MBC value (mg/ml)	MBC/MIC ratio
E. coli-1	44 ± 0.2	5	5	1
E. coli-2	48 ± 0.1	5	5	1
E. coli-3	50 ± 0.58	1.25	1.25	1
E. coli-4	46 ± 0.63	1.25	1.25	1
K. pneumoniae-1	35 ± 0.28	0.325	0.325	1
K. pneumoniae-2	37 ± 0.34	0.612	1.25	2
K. pneumoniae-3	40 ± 0.54	0.612	0.612	1
K. pneumoniae-4	36 ± 0.4	0.156	0.156	1
P. aeruginosa-1	30 ± 0.5	2.5	2.5	1
P. aeruginosa-2	35 ± 0.28	2.5	2.5	1
P. aeruginosa-3	40 ± 0.24	0.612	0.612	1
E. coli ATCC 25922	60 ± 0.1	1.25	2.5	2

Escherichia coli strain 1: E. coli-1; Klebsiella pneumoniae: K. pneumoniae; Pseudomonas aeruginosa: P. aeruginosa; Minimal inhibitory concentration: MIC; minimal bactericidal concentration: MBC.

Table 4	
MICs of colistin and Thymus algeriensis essential oil used alone or in combination against different E. coli strains.	

Tested strains	Colistin (µg/mL)	TA-EO (mg/mL)	Colistin $^{A}_{TA-EO}$ (µg/mL)	TA-EO ^B _{colistin} (mg/mL)	FICI ^a
E. coli-1	16	5	1	0.312	0.12 (Synergy)
E. coli-2	16	5	0.06	0.312	0.12 (Synergy)
E. coli-3	32	1.25	2	0.156	1.06 (additive)
E. coli-4	32	1.25	0.06	0.312	0.25 (Synergy)
E. coli ATCC 25922	1	1.25	0.06	0.312	0.31 (Synergy)

Thymus algeriensis EO: TA-EO; A: Colistin MICs in the presence of TA-EO; B: TA-EO MICs in the presence of colistin.

^a Fractional inhibitory concentration index.

used alone) was higher than that of used along with colistin and decreased 4 to 16-fold against colistin-resistant *E. coli* strains and 4-fold against *E. coli* ATCC 25922 (Table 4).

It was established that colistin has dose-dependent side effects such as nephrotoxicity and neurotoxicity, which limits its clinically sufficient dose and long-term treatment options. However, in this study, the simultaneous use of *Thymus algeriensis* essential oil and colistin against *E. coli* co-harboring *mcr*-1 hospital strains diminished importantly the MIC values of colistin under 8 µg/mL which is the limit characterizing *E. coli* NCTC 13846 resistant to colistin co-harboring *mcr*-1 [19]. This finding highlights the important use of *Thymus algeriensis* essential oil as an adjuvant to colistin to combat *E. coli* co-harboring *mcr*-1.

Importantly, we reported that the calculated FICI values ranged between 0.12 and 0.25 for all tested *E. coli* strains resistant to colistin and for the *E. coli* ATCC 25922 sensitive to colistin. These values indicated an advanced synergetic effect between colistin and *Thymus algeriensis* essential oil. However, the FICI was equal to 1.06 only for one strain of *E. coli* resistant to colistin-resistant (*E. coli*-3).

Fig. 2. Molecular docking scores of the major components of Thymus algeriensis essential oil and the metabolic enzymes as receptors.

W. Ben Selma et al.

strain), indicating an additive effect of the combination of these two antimicrobial agents.

To avoid the emergence of MDR and XDR Gram-negative superbugs, mainly *E. coli, Acinetobacter baumannii, Klebsiella pneumoniae,* and *Pseudomonas aeruginosa,* which had different mechanisms of resistance against all available antibiotics, and the lack of development by industrial pharmaceutics of novel antimicrobials, the polymyxins had re-emerged by the mid-1990s as a last-resort to treat infections associated to MDR and XDR Gram-negatives bacteria even of its approved no safety profile [27]. Accordingly, *mcr*-1 has become a main risk of dissemination via horizontal transfer of a plasmid-borne gene coding for a polymyxin resistance mechanism among various Gram-negative bacteria [2,28]. Furthermore, it was previously shown that the *mcr*-1 gene was associated with a 4- to 8-fold increase in the MICs of colistin in *E. coli*. Thus, it was suggested that the *mcr*-1 alone is enough to provide resistance against colistin in *E. coli* and other *Enterobacteriaceae* [29].

3.5. Molecular docking analysis

The molecular docking approach was applied in the current study to understand better how the major *Thymus algeriensis* volatiles under investigation provide antibacterial activities. These volatiles as ligands were docked into vital enzymes involved in the biosynthesis, and resistance toward colistin. MCR-1 modifies lipid A and confers resistance to colistin (PDB ID: 5GOV and 5GRR). Undecaprenyl pyrophosphate synthases (PDB ID: 2E98 and 1X06) catalyze the condensation reactions of farnesyl pyrophosphate with isopentenyl pyrophosphates to generate undecaprenyl pyrophosphate. The branched-chain amino acids (BCAAs) pathway partly relies on the ketol-acid reduction-isomerase (KARI) enzyme for the biosynthesis of leucine, isoleucine, and valine. KARI (PDB ID: 7KH7) is a bifunctional enzyme that converts 2-acetolactate or 2-aceto-2-hydroxybutyrate into precursors of BCAAs via a two-step reaction within a single active site [30–32].

Fig. 2 displays the best poses obtained from molecular docking analyses, revealing binding affinities of each ligand with different bacterial enzymes. Lower ΔG indicates a more vital interaction between receptors and ligands. The major volatile of the investigated oil, carvacrol, has displayed higher binding affinities with high docking scores, ranging from -6.5 to -6.8 kcal/mol, towards the 5GOV, 5GRR, and 1X06 bacterial enzymes, as shown in Fig. 2. Thus, to the best of our knowledge, this study is the first to show high affinities of carvacrol to the enzyme MCR-1 (PDBs: 5GOV, 5GRR) associated with resistance to colistin and to the undecaprenyl pyrophosphate synthase in complex with magnesium which plays a pivotal role in bacterial peptidoglycan biosynthesis (PDB ID: 1X06). The remaining major oil volatiles showed comparable docking scores to carvacrol, especially against 1X06, while similar energies were demonstrated for both carvacrol and terpinyl acetate against 2E98 (-6.1 kcal/mol).

To our knowledge, few studies have yet to be published concerning using essential oils or extracts as inhibitors for the receptors under consideration in the current molecular docking study. For example, Wang and collaborators studied the synergistic effect of eugenol with colistin against clinically isolated colistin-resistant *E. coli* strains with the free energy of binding was -10.087 kcal/mol, which indicates a higher bind compared to the findings of the present study between MCR-1 protein (PDB ID: 5GRR) and eugenol [33]. Meanwhile, comparable results to the present study were shown by Yi and coworkers, where the free energy of binding was -8.13 kcal/mol between MCR-1 protein (PDB ID: 5GRR) and tetrandrine [34]. In the same line, the docking scores of pogostone were -8.5 kcal/mol and -6.1 kcal/mol for MCR-1 and MCR-3, respectively [35].

Fig. 3 depicts how carvacrol interacts with the crystal structure of MCR-1, a phosphoethanolamine transferase, extracellular domain (PDB ID: 5GOV). This interaction exhibits the highest docking score, as illustrated in Fig. 2. The primary reason behind the higher binding affinity of carvacrol with 5GOV (-6.8 kcal/mol) is due to the hydrophobic π - π T-shaped, π -alkyl, and alkyl interactions (Fig. 3). The π - π T-shaped interaction refers to the attractive force between aromatic rings. This is due to π -electron clouds, such as the

Fig. 3. Interactions of carvacrol with MCR-1, a phosphoethanolamine transferase extracellular domain (PDB ID:5GOV).

 π -orbitals of PHE A:211 and carvacrol. When dealing with two π systems, the T-shaped edge-to-face and the parallel-displaced stacking arrangement are the most common forms of interaction. The interaction energies of the parallel, T-shaped, and slipped-parallel benzene dimers are -1.48, -2.46, and -2.48 kcal/mol, respectively [36].

Aromatic ring interactions are prevalent in chemical and biological systems and are considered the third most frequent proteinligand contact hydrophobic interactions. Almost 50 % of all π -stacking interactions occur between the aromatic ring of phenylalanine and an aromatic ring in the ligand, which supports the present study's findings [37]. Again, hydrophobic interactions between the π -orbitals of PHE A:211 and the alkyl group of carvacrol and between the π -orbitals of carvacrol and alkyl groups of ARG A:169, VAL A:171, and ALA A:241 were observed in Fig. 3-A, which helped in the intercalation of the ligand in the binding pocket of the receptor as reported by Arthur and collaborators [38]. They also reported another type of interaction that also supports the stabilization of ligands inside the receptor pocket was the hydrophobic alkyl one between ALA A:241 and a carvacrol alkyl group, in addition to the binding between the carvacrol alkyl group and that of VAL A:171 and LYS A:210 (Fig. 3-A).

3.6. Molecular dynamic simulation

We conducted all-atom molecular dynamics simulations of receptor-ligand complexes of target proteins, running them for 100 ns, to study how carvacrol binding affects the targeted MCR-1. Various computational analyses were performed, including structural, dynamic, and thermodynamic computations. We used backbone RMSD, RMSF, Rg, SASA, and H-bond analyses to assess the structural behavior of the target proteins in both their bound and unbound states (Fig. 4).

To assess the stability of a protein-ligand complex, analysis was performed for the dynamic movements of atoms and conformational changes of backbone atoms. The complex exhibited low RMSD and minimal variations, indicating high stability, as shown in Fig. 4A [39]. The RMSF analysis showed neutral fluctuation, suggesting that the ligand had no significant effect on the positioning of the residues (Fig. 4B). Additionally, the radius of gyration (Rg) analysis indicated that the compactness of the protein varied based on its coupling with the ligand. The Rg of the MCR-1-carvacrol complex was somewhat lower between 30 and 70 nm compared to the initial and final periods (Fig. 4C).

The study analyzed how the MCR-1-carvacrol complex interacts with solvents using solvent-accessible surface area (SASA) over 100 ns (Fig. 4D). The results showed that the MCR-1 maintained a constant surface area over the simulation and formed two hydrogen bonds with the ligand, indicating a stable structure (Fig. 4E).

4. Conclusions

This study is the first to report the bactericidal effects of Tunisian *Thymus algeriensis* essential oil against Gram-negative bacterial isolates resistant to colistin *in vitro*. Furthermore, the current is the first to demonstrate and approve the synergistic effect of the simultaneous use of *Thymus algeriensis* essential oil and colistin against colistin-resistant *Escherichia coli* co-harboring *mcr*-1 gene. Interestingly, the docking study demonstrated that carvacrol had high binding free energies against MCR-1, a phosphoethanolamine transferase extracellular domain (PDB ID: 5GOV), and its catalytic domain (PDB ID: 5GRR) involved in resistance to colistin, and undecaprenyl pyrophosphate synthase in complex with magnesium which is implicated in bacterial peptidoglycan biosynthesis (PDB ID: 1X06). MCR-1/carvacrol complex showed high stability through the molecular dynamic study with a constant surface area and two hydrogen bonds during the simulation.

These findings appear as a promising therapeutic strategy to use carvacrol alone or as an adjuvant to colistin against Gram-negative bacteria resistant to colistin.

Funding

This work was supported by Researchers Supporting Project number (RSPD2024R641), King Saud University, Riyadh, Saudi Arabia.

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Ethics declarations

The study was approved by the ethical committee CER-SVS/ of the Higher Institute of Biotechnology of Monastir, with the "003/ 2022" committee's reference number. The ethical committee CER-SVS waived the need for consent to participate.

CRediT authorship contribution statement

Walid Ben Selma: Writing – review & editing, Writing – original draft, Visualization, Software, Project administration, Methodology, Investigation, Conceptualization. Amr Farouk: Writing – review & editing, Writing – original draft, Visualization, Software, Investigation, Conceptualization. Zhaojun Ban: Software. Mohamed Ferjeni: Software. Tawfiq Alsulami: Software, Project administration, Funding acquisition. Hatem Ali: Software, Conceptualization. Jalel Boukadida: Supervision, Conceptualization.

W. Ben Selma et al.

Fig. 4. MD simulations of Carvacrol with MCR-1, a phosphoethanolamine transferase extracellular domain (PDB ID:5GOV).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

The authors acknowledge Prof. Ilhem Boutiba-Ben Boubaker (Charles Nicolle Hospital, Laboratory of Microbiology, Tunis, Tunisia) that provide as bacterial strains. Authors thank Researchers Supporting Project number (RSPD2024R641), King Saud University, Riyadh, Saudi Arabia.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e38281.

References

- WHO, Implementing the global action plan on antimicrobial resistance, 2024, pp. 1–71. https://iris.who.int/bitstream/handle/10665/375008/ 9789240074668-eng.pdf?sequence=1. Available from:.
- P. Srinivas P, K. Rivard, Polymyxin resistance in gram-negative pathogens, Curr. Infect. Dis. Rep. 19 (11) (2017) 38, https://doi.org/10.1007/s11908-017-0596-3.
- [3] E. Temkin, A. Adler, A. Lerner, Y. Carmeli, Carbapenem-resistant Enterobacteriaceae: Biology, Epidemiology, and management, 2014, https://doi.org/10.1111/ nvas.12537.
- [4] WHO, Critically important antimicrobials for human medicine, 6th revision, 2019, pp. 26–41. https://www.who.int/foodsafety/publications/antimicrobialssixth/en/. Available from:.
- [5] L. Poirel, A. Jayol, P. Nordmann, Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes, Clin. Microbiol. Rev. 30 (2) (2017) 557–596, https://doi.org/10.1128/CMR.00064-16.
- [6] A.O. Olaitan, S. Morand, J.M. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria, Front. Microbiol. 5 (2014) 643, https:// doi.org/10.3389/fmicb.2014.00643.
- [7] R. Gao, Y. Hu, Z. Li, J. Sun, Q. Wang, J. Lin, H. Ye, F. Liu, S. Srinivas, D. Li, B. Zhu, Y.H. Liu, G.B. Tian, Y. Feng, Dissemination and mechanism for the MCR-1 colistin resistance, PLoS Pathog. 12 (11) (2016) e1005957, https://doi.org/10.1371/journal.ppat.1005957.
- [8] J. Sun, H. Zhang, Y.H. Liu, Y. Feng, Towards understanding MCR-like colistin resistance, Trends Microbiol. 26 (9) (2018) 794–808, https://doi.org/10.1016/j. tim.2018.02.006.
- [9] H.W. Boucher, G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg, J. Bartlett, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis. 48 (1) (2009) 1–12, https://doi.org/10.1086/595011.
- [10] K. Bush, P. Courvalin, G. Dantas, et al., Tackling antibiotic resistance, Nat. Rev. Microbiol. 9 (12) (2011) 894–896, https://doi.org/10.1038/nrmicro2693.
- [11] W. Ben Selma, S. Alibi, M. Ferjeni, S. Ghezal, N. Gallala, A. Belghouthi, A. Gargouri, M. Marzouk, J. Boukadida, Synergistic activity of *Thymus capitatus* essential oil and cefotaxime against ESBL-producing *Klebsiella pneumoniae*, Int. J. Environ. Health (2023) 1–11, https://doi.org/10.1080/09603123.2023.2280149.

- [12] W. Ben Selma, S. Ferjeni, A. Farouk, M. Marzouk, J. Boukadida, Antimicrobial activity of Cinnamomum zeylanicum essential oil against colistin-resistant gramnegative bacteria, Int. J. Environ. Health Res. (2024) 1–13, https://doi.org/10.1080/09603123.2024.2348094.
- [13] F. Fancello, G.L. Petretto, S. Zara, M.L. Sanna, R. Addis, M. Maldini, M. Foddai, J.P. Rourke, M. Chessa, G. Pintore, Chemical characterization, antioxidant capacity and antimicrobial activity against food related micro-organisms of Citrus limon var, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 69 (2016) 579–585.
- [14] A.G. Pirbalouti, Z.E. Bistghani, F. Malekpoor, An overview on genus Thymus, J Herbal Drugs 6 (2) (2015) 93–100, https://doi.org/10.3390/plants11070954.
- [15] B. Mustafa, A. Hajdari, F. Krasniqi, E. Hoxha, H. Ademi, C.L. Quave, A. Pieroni, Medical ethnobotany of the Albanian alps in Kosovo, J. Ethnobiol. Ethnomed. 8 (2012) 6, https://doi.org/10.1186/1746-4269-8-6.
- [16] B. Wahida, M. Amor, C. Nabil, M. Amor, C. Nabil, An inventory of ethnomedicinal plants used in Tunisia, Ethnomed. Plants (2011) 28, https://doi.org/10.4314/ ajtcam.v11i3.27.
- [17] S. Ferjani, E. Maamar, A. Ferjani, K. Meftah, H. Battikh, B. Mnif, M. Hamdoun, Y. Chebbi, L. Kanzari, W. Achour, O. Bahri, A. Hammami, M. Zribi, H. Smaoui, I. B. Boubaker, Tunisian multicenter study on the prevalence of colistin resistance in clinical isolates of gram negative bacilli: emergence of *Escherichia coli* harbouring the *mcr-1* gene, Antibiotics 11 (10) (2022) 1390, https://doi.org/10.3390/antibiotics11101390.
- [18] CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 29th ed, CLSI Suppl M100, 2019, https://doi.org/10.1007/978-3-662-48986-4.
- [19] EUCAST, Clinical breakpoint (v 14.0) [Updated January 1]. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf, 2024.
- [20] A.G. Ponce, R. Fritz, C. Del Valle, S.I. Roura, Antimicrobial activity of essential oils on the native microflora of organic Swiss chard, LWT-Food Sci. Technol. 36 (2003) 679–684, https://doi.org/10.3390/antibiotics9010029.
- [21] F.C. Odds, Synergy, antagonism, and what the chequerboard puts between them, J. Antimicrob. Chemother. 52 (1) (2003) 1, https://doi.org/10.1093/jac/ dkg301.
- [22] Y. Liu, X. Yang, J. Gan, S. Chen, Z.X. Xiao, Y. Cao, CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting, Nucleic Acids Res. 50 (W1) (2022) W159–W164, https://doi.org/10.1093/nar/gkac394.
- [23] A. Farouk, T. Alsulami, H.S. Ali, A.N. Badr, In-vitro and in-silico investigation for the spent-coffee bioactive phenolics as a promising aflatoxins production inhibitor, Toxins 15 (3) (2023) 225, https://doi.org/10.3390/toxins15030225.
- [24] M. Rezzoug, B. Bakchiche, A. Gherib, A. Roberta, Kilinçarslan Ö. FlaminiGuido, R. Mammadov, S.K. Bardaweel, Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas, BMC Compl. Alternative Med. 19 (1) (2019) 146, https://doi.org/10.1186/s12906-019-2556-y.
- [25] H. Ouakouak, A. Benarfa, M. Messaoudi, S. Begaa, B. Sawicka, N. Benchikha, J. Simal-Gandara, Biological properties of essential oils from Thymus algeriensis Boiss, Plants 10 (4) (2021) 786, https://doi.org/10.3390/plants10040786.
- [26] G.A. Pankey, L.D. Sabath, Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections, Clin. Infect. Dis. 38 (6) (2004) 864–870, https://doi.org/10.1086/381972.
- [27] S.J. Son, R. Huang, C.J. Squire, I.K.H. Leung, MCR-1: a promising target for structure-based design of inhibitors to tackle polymyxin resistance, Drug Discov. Today 24 (1) (2019) 206–216, https://doi.org/10.1016/j.drudis.2018.07.004.
- [28] K. Jeannot, A. Bolard, P. Plésiat, Resistance to polymyxins in Gram-negative organisms, Int. J. Antimicrob. Agents 49 (5) (2017) 526–535, https://doi.org/ 10.1016/j.ijantimicag.2016.11.029.
- [29] B. Zheng, C. Huang, H. Xu, L. Guo, J. Zhang, X. Wang, X. Jiang, X. Yu, L. Jin, X. Li, Y. Feng, Y. Xiao, L. Li, Occurrence and genomic characterization of ESBLproducing, MCR-1-harboring *Escherichia coli* in farming soil, Front. Microbiol. 8 (2017) 2510, https://doi.org/10.3389/fmicb.2017.02510.
- [30] Y. Lv, S. Zheng, A. Goldenzweig, F. Liu, Y. Gao, X. Yang, A. Kandale, R.P. McGeary, S. Williams, B. Kobe, et al., Enhancing the thermal and kinetic stability of ketol-acid reductoisomerase, a central catalyst of a cell-free enzyme cascade for the manufacture of platform chemicals, Appl. Biosci. Appl. Biosci 1 (2) (2022) 163–178, https://doi.org/10.3390/applbiosci1020011.
- [31] M. Hu, J. Guo, Q. Cheng, Z. Yang, E.W.C. Chan, S. Chen, Q. Hao, Crystal structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for colistin resistance, Sci. Rep. 6 (2016) 38793, https://doi.org/10.1038/srep38793.
- [32] R.T. Guo, T.P. Ko, A.P. Chen, C.J. Kuo, A.H. Wang, P.H. Liang, Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thiopyrophosphate: roles of the metal ion and conserved residues in catalysis, J. Biol. Chem. 280 (21) (2005) 20762–20774, https://doi.org/10.1074/jbc.M502121200.
- [33] Y.M. Wang, L.C. Kong, J. Liu, H.X. Ma, Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant *Escherichia coli* strains, Antimicrob. Resist. Infect. Control 7 (2018) 17, https://doi.org/10.1186/s13756-018-0303-7.
- [34] K. Yi, S. Liu, P. Liu, X. Luo, J. Zhao, F. Yan, Y. Pan, J. Liu, Y. Zhai, G. Hu, Synergistic antibacterial activity of tetrandrine combined with colistin against MCRmediated colistin-resistant Salmonella, Biomed. Pharmacother. 149 (2022) 112873, https://doi.org/10.1016/j.biopha.2022.112873.
- [35] S. Xie, L. Li, B. Zhan, X. Shen, X. Deng, W. Tan, T. Fang, Pogostone enhances the antibacterial activity of colistin against MCR-1-positive bacteria by inhibiting the biological function of MCR-1, Molecules 27 (9) (2022) 2819, https://doi.org/10.3390/molecules27092819.
- [36] V. Pahal, U. Devi, K.S. Dadhich, Quercetin, a secondary metabolite present in methanolic extract of *Calendula officinalis*, is a potent inhibitor of peptide deformylase, undecaprenyl pyrophosphate synthase and DNA primase enzymes of *Staphylococcus aureus*: an *in vitro* and *in silico* result analysis, MOJ Drug Des Develop Ther 2 (4) (2018) 216–225, https://doi.org/10.15406/mojddt.2018.02.00050.
- [37] R. Ferreira de Freitas, M. Schapira, A systematic analysis of atomic protein-ligand interactions in the PDB, Medchemcomm 8 (10) (2017) 1970–1981, https://doi.org/10.1039/c7md00381a.
- [38] D.E. Arthur, J.N. Akoji, R. Sahnoun, et al., A theoretical insight in interactions of some chemical compounds as mTOR inhibitors, Bull. Natl. Res. Cent. 45 (2021) 67, https://doi.org/10.1186/s42269-021-00525-x.
- [39] A. Farouk, T. Alsulami, H.S. Ali, A.N. Badr, In-vitro and in-silico investigation for the spent-coffee bioactive phenolics as a promising aflatoxins production inhibitor, Toxins 15 (2023) 225, https://doi.org/10.3390/toxins15030225.