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Heritable susceptibility of the autoimmune disorder, type 1 diabetes (T1D), only partially 
equates for the incidence of the disease. Significant evidence attributes several envi-
ronmental stressors, such as vitamin D deficiency, gut microbiome, dietary antigens, 
and most notably virus infections in triggering the onset of T1D in these genetically 
susceptible individuals. Extensive epidemiological and clinical studies have provided 
credibility to this causal relationship. Infection by the enterovirus, coxsackievirus B, 
has been closely associated with onset of T1D and is considered a significant etio-
logical agent for disease induction. Recognition of viral antigens via innate pathogen- 
recognition receptors induce inflammatory events which contribute to autoreactivity 
of pancreatic self-antigens and ultimately the destruction of insulin-secreting beta 
cells. The activation of these specific innate pathways and expression of inflammatory 
molecules, including type I and III interferon, prime the immune system to elicit either 
a protective regulatory response or a diabetogenic effector response. Therefore, 
sensing of viral antigens by retinoic acid-inducible gene I-like receptors and toll-like 
receptors may be detrimental to inducing autoreactivity initiated by viral stress and 
resulting in T1D.

Keywords: type 1 diabetes, autoimmunity, innate immunity, toll-like receptors, RiG-i-like receptors, MDA5, type i 
and iii interferon, coxsackievirus B

iNTRODUCTiON

Characterized by the destruction of the insulin-secreting beta cells of the pancreas and subsequent 
loss of blood glucose regulation, type 1 diabetes (T1D) is an autoimmune disorder whose onset is 
triggered by a combination of both genetic and environmental factors. Virus infections, vitamin 
D deficiency, dietary antigens, and disruption in the gut microbiota all have been implicated in 
eliciting T1D development in genetically susceptible individuals (1–4). Significant evidence suggests 
a strong causal association between genes involved in host–virus interactions and susceptibility to 

Abbreviations: CVB, coxsackievirus B; DC, dendritic cell; dsRNA, double-stranded RNA; GWAS, genome-wide association 
studies; IFIH1, interferon induced with helicase C domain 1; IFN, interferon; IFNAR, type I interferon receptor; IFNλR, type 
III interferon receptor; IRF7, interferon regulatory factor 7; LCMV, lymphocytic choriomeningitis virus; MDA5, melanoma 
differentiation-associated protein 5; MYD88, myeloid differentiation primary response gene 88; NOD mice, non-obese diabetic 
mice; pDC, plasmacytoid dendritic cell; poly I:C, polyinosinic:polycytidylic acid; PRR, pattern-recognition receptor; RA, 
rheumatoid arthritis; RIG-I, retinoic acid-inducible gene I; RLR, RIG-I-like receptors; SLE, systemic lupus erythematosus; SNP, 
single nucleotide polymorphism; ssRNA, single-stranded RNA; T1D, type 1 diabetes; TLR, toll-like receptor; TREG, regulatory 
T cell; VP1, viral protein 1.
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T1D. Using genome-wide association studies (GWAS), single 
nucleotide polymorphisms (SNPs) and gene variants conferring 
risk for T1D have been identified in multiple sites including 
the interferon induced with helicase C domain 1 (IFIH1), HLA 
class II, CTLA-4, insulin, and PTPN22 genes (5–7). The precise 
mechanisms leading to a loss of self-tolerance experienced in 
T1D are not adequately understood. Virus-mediated activation 
of T1D has been proposed to be caused by several different 
processes including direct islet infection, increased exposure 
to self-antigens which may have been previously sequestered, 
bystander activation, and molecular mimicry (8, 9).

Natural drift of genetic predisposition cannot adequately 
explain why the incidence of T1D has increased approximately 
1.8% annually from 2002 to 2012 worldwide (10, 11). The con-
cordance rate for T1D among monozygotic twins is about 35% by 
age 60, signifying significant contributions from environmental 
factors ultimately leads to the onset of autoimmunity (12). 
Indeed, epidemiological evidence indicates a link between virus 
infections and development of T1D as well as multiple other 
autoimmune disorders, including multiple sclerosis (MS), sys-
temic lupus erythematosus (SLE), and rheumatoid arthritis (RA).  
Studies have demonstrated geographical and seasonal differences, 
as well as disease outbreaks, correlate with increased incidence 
of T1D (11, 13–17).

Upon virus infection, initial innate sensing likely primes 
genetically susceptible or protected individuals for an effec-
tor or regulatory immunological response, respectively (18). 
Therefore, signaling from pattern-recognition receptors 
(PRRs) that identify pathogen-associated molecular patterns 
(PAMPs) associated with certain viruses could determine 
whether infection will promote T1D induction. The produc-
tion of interferon (IFN) from this PRR–PAMP interaction 
is a prominent immunological response for defense of virus 
infections. All three types of IFN, type I (IFN-α, -β, -ε, -κ, 
and -ω), type II (IFN-γ), and type III (IFN-λ1, -2, -3, and -4), 
stimulate the production of pro-inflammatory molecules from 
the interferon-stimulated genes (ISGs) to induce a strong anti-
viral state to prevent spreading of the infection to surrounding 
cells and also to establish an adaptive immune response (19, 
20). Accordingly, alterations in signaling stemming from PRR 
activation represent the foundational mechanisms leading to 
T1D development by producing an IFN signature which is 
conducive for autoimmunity.

iNNATe viRAL ReCePTORS

Genome-wide association studies indicate heritable differences 
in viral receptors and their related genes influence T1D suscepti-
bility. Functional diversity of innate PRRs due to genetic variants 
may push the immune homeostasis toward an imbalance between 
pathogen hypersusceptibility and autoimmunity. In conjunction 
with an inherent variation, several different viruses have been 
implicated in causing inappropriate responses leading to T1D 
(4, 21). Among these viral candidates, enteroviruses such as 
coxsackievirus B (CVB) have been the most notable etiological 
agent attributed to T1D (22–24).

Dependent on the signals received from PRRs, innate immune 
cells including dendritic cells (DCs) macrophages, monocytes, 
natural killer cells and innate lymphoid cells can contribute to  
establishing either an effector inflammatory response or a more  
tolerogenic response by secreting cytokines, chemokines, and 
through priming of naïve T  cells. While cross-reactivity of 
lymphocytes due to homology between viral and endogenous 
antigens and have been proposed in the establishment of T1D, 
non-specific immune stimulation causing persistent and low-
grade inflammation are more likely underlaying the cause of 
pathogen-induced triggering of autoimmunity (25). The scale of 
an immune response is reliant on tightly regulated activation and 
inhibitory signals which may tip into an exaggerated or improper 
response causing the loss of self-tolerance (26).

Innate immunity and PRRs represent the first line of defense 
to coordinate the immune system for pathogen clearance and sets 
the stage for ensuing cellular and molecular pathway activation. 
The initial inflammatory state established with innate recognition 
of viral products induces beta cell damage and is then followed 
by apoptotic events and an effector T lymphocyte response killing 
the beta cells. Therefore, placing emphasis on the PRRs is critical 
for understanding the pathogenesis of autoimmune diabetes. 
There are three primary families of PRRs involved in detecting 
viral products: toll-like receptors (TLRs), retinoic acid-inducible 
gene I (RIG-I)-like receptors (RLRs), and nucleotide oligomeriza-
tion domain-like receptors (27). Summarized in Figure  1, this 
review will focus on the contribution of RLRs and TLRs to T1D 
following engagement with their respective viral PAMPs.

RLRs iN T1D

The RLR family consists of RIG-I, melanoma differentiation-
associated protein 5 (MDA5), and Laboratory of Genetics and 
Physiology 2 (LGP2), which are cytosolic receptors that recog-
nize pieces of viral RNA from picornaviruses, flaviviruses, and 
paramyxoviruses (28). RLRs primarily bind viral replication 
intermediates [i.e., double-stranded RNA (dsRNA)] in infected 
cells and promote recruitment of transcription factors and adap-
tor molecules to restrict virus replication and prevent spread to 
other cells. Among a diverse range of effects, activation of MDA5 
and RIG-I induce a potent type I and III IFN expression which 
go on to stimulate antiviral gene expression and increase antigen 
presentation (29, 30). LGP2 can bind short pieces of dsRNA and 
acts as a negative regulator for both RIG-I and MDA5; however, 
it lacks N-terminal caspase activation and recruitment domains 
necessary for signaling (31).

Expressed from the IFIH1 gene, MDA5 is a cytosolic helicase 
which binds long viral dsRNA to induce a type I and III IFN 
response (18, 32). MDA5 has been identified as an important 
part of the host immune response to CVB and is necessary for 
preventing early replication of the virus and potentiating tissue 
damage (33). Various SNPs in the IFIH1 gene have been found 
to confer either greater or reduced susceptibility for the onset of 
T1D (7). These SNPs likely alter the expression and activation 
of MDA5 when challenged with pathogenic stress. The A946T 
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FiGURe 1 | Summary of toll-like receptor (TLR)- and RIG-I-like receptors virus-associated ligands and the relationship between interferon (IFN) expression, genetic 
susceptibility, and autoimmunity. Upon ligand binding, cytosolic MDA5 and RIG-I receptors induce activation of the adaptor molecule, VISA (also called MAVS, IPS1, 
and CARDIF), endosomally located toll-like receptor 3 (TLR3) recruits TRIF (also known as TICAM), and TLR2, -4, -6, -7, -8, and -9 interact with myeloid 
differentiation primary response protein 88 (MYD88) in order to provide IFN expression stimulation in the cell nucleus. IFN induces expression of various interferon-
stimulated genes (ISGs) which perform positive feedback on IFN genes. IFN is released from the cell to establish an antiviral state in surrounding cells and act in an 
autocrine and paracrine manner by binding to its cell surface receptors, IFNAR1/2 and IFNλR. Individuals exhibiting heightened genetic susceptibility to type I 
diabetes (T1D) can have increased basal and pathogen-elicited expression of IFN causing the immune system to skew toward a self-reactive state. Conversely, 
significantly diminished IFN expression would render a host unable to mount a proper response to virus infection. Thus balance of receptor stimulation between 
autoimmunity and virus hypersusceptibility is tightly regulated and pathogenic stimuli which exacerbates inflammation in genetically susceptible individuals may  
result in loss of tolerance.
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(rs1990760) mutation in IFIH1 has been implicated in the 
development of multiple autoimmune diseases, including T1D, 
SLE, and MS (34, 35). Individuals which exhibit loss-of-function 
SNPs on even a single allele in RLR genes including E627* 
and I923V in MDA5 generally benefit from protection to T1D 
(35, 36). Hyperexpression or constitutive activation of MDA5 
by mutagenesis has been shown to promote development of 
type I interferonopathies including SLE and Aicardi-Goutières 
syndrome (37–39). Diabetic patients which are heterozygous for 
the A946T SNP have a more robust ISG expression and immune 
response to CVB challenge when compared to healthy controls, 
potentially signifying an enhanced ability to promote IFN and 
ISG signal transduction during infection (40, 41). Accordingly, 
mutations in IFIH1 causing gain-of-function are associated with 
hyperexpression of both IFN-I and -III (32, 39). Gorman et al. 
recently found that mice homozygous for the 946T variant as well 
as mice simultaneously exhibiting two IFHI1 risk alleles (843R 
and 946T) have increased basal activation of IFIH1-related genes, 
enhanced protection from encephalomyocarditis virus infection, 

increased incidence of autoimmunity, and are inherently more 
sensitive to self RNA ligands (42). These mutations conferring 
T1D risk may be altering the homeostatic intensity of inflamma-
tory molecule expression and/or the kinetics of target binding 
and activation—causing ligands to produce more potent or 
prolonged IFN responses. For example, the E627* mutation in 
MDA5 causes loss of a portion of the protein’s C-terminal region 
and consequently forfeiture of dsRNA ligand binding (36). The 
A946T risk variant is also associated with heightened sensitivity 
to IFN-α in SLE patients so this mutation may allow receptors 
to become more easily activated (43). This evidence supports 
the notion that pathogen-mediated T1D is likely similar to the 
described type I interferonopathy disorders.

Our lab has previously exhibited the importance of MDA5 
signaling by demonstrating reduced expression of the receptor 
can be protective for T1D. Non-obese diabetic (NOD) mice 
which were heterozygous for a null IFIH1 allele (MDA5+/−) and 
expressed roughly half as much MDA5 as wild-type NOD mice 
were shown to have decreased incidence of spontaneous disease 
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(18). More importantly, upon CVB4 infection, these heterozygous 
mice were completely protected from diabetes onset while about 
50% of homozygous NOD mice carrying a full complement of 
IFIH1 developed T1D within 7 days of infection. MDA5 knock-
out mice were also completely protected from spontaneous T1D 
onset; however, they were highly susceptible to virus. Compared 
to homozygous mice, the MDA5+/− mice displayed a specific type 
I IFN response characterized by a large spike in IFN-β occur-
ring three days post-infection. It appears this particular IFN 
signature provides a succinct signal from IFN-β that is sufficient 
to clear the virus without inducing autoimmunity. Furthermore, 
MDA5+/− mice had decreased CD4+ and CD8+ effector T  cells 
as well as a robust CD4+CD25+Foxp3+ regulatory T cells (TREG) 
response that suppressed IFN-γ-producing CD4+ T cells, thereby 
preventing T1D.

TLRs iN T1D

Toll-like receptors are broadly expressed PRRs in both immune 
and non-immune cells which detect microbial- and viral-
associated PAMPs (44). Upon recognition of pathogenic and/
or foreign material, TLRs influence a number of immunologic 
mechanisms including activation and maturation of antigen-
presenting cells (APCs), antibody production, downregulating 
TREG responses, and inducing a pro-inflammatory environment 
through secretion of various cytokines and chemokines (45). 
Each of the TLRs may be stimulated with endogenous DNA or 
RNA antigens produced during cell death that may be a result 
of virus infection (46). However, those specifically recognizing 
viral-associated ligands: toll-like receptor 3 (TLR3), TLR7, TLR8, 
and TLR9 (and to a lesser extent TLR2, TLR4, and TLR6), have 
all been implicated in having a role in the diabetogenic potential 
of certain viruses (45, 47).

Toll-Like Receptor 3
Binding short pieces of dsRNA, TLR3 is an endosomal receptor 
heavily expressed in classical DCs and a variety of epithelial 
cells (47). Unlike all other TLRs, TLR3 is MYD88-independent 
and instead utilizes the adaptor molecule TRIF for signal 
transduction following activation (44). The dsRNA mimetic 
polyinosinic:polycytidylic (poly I:C) is recognized by TLR3 and 
has been shown in various mouse studies to either protect or 
induce and increase severity of T1D depending on dose and 
administration (48–50). NOD mice deficient for TLR3 have 
high mortality from CVB4 infections and the few that survive 
develop T1D (51). However, in some instances, TLR3-KO NOD 
mice can show less severe insulitis as well as some reduced 
susceptibility to T1D induction following CVB4 infection, but 
experience no difference in spontaneous disease development 
(52). TLR3 signaling within resident macrophages is critical 
for antiviral host defense to CVB4 as well as altering marginal 
zone B cell composition in NOD mice (50, 51). This indicates 
that enhanced TLR3 activation may participate in T1D devel-
opment as a result of virus infection. Certain polymorphisms 
in the TLR3 gene have shown to be associated with increased 
risk of T1D and more aggressive pathology (rs3775291 and 

rs13126816) while others impart protection (rs5743313 and 
rs11721827) (53).

Toll-Like Receptors 7 and 8
Expressed in the endosome, TLR7 and TLR8 recognize single-
stranded RNA (ssRNA) while TLR9 is typically activated by 
binding unmethylated CpG DNA ligands from DNA viruses and 
microbial pathogens (54). TLR9-KO NOD mice have significantly 
lower rates of spontaneous diabetes, reduced activation of diabe-
togenic CD8+ cytotoxic T cells (CTLs), and elevated expression 
of the immunosuppressive marker CD73, particularly on TREG 
cells (55–57). Thus, activation of TLR9 induces a less tolerogenic 
immunological state that contributes to the pathogenesis and 
acceleration of T1D.

Using rat insulin promoter mice expressing lymphocytic cho-
riomeningitis virus glycoprotein (LCMV-GP), researchers have 
shown that LCMV infection produced IFN-α via stimulation of 
TLR3 and TLR7; this in turn increased the expression of MHC 
class I molecules in the insulin-secreting beta cells of the pancreas 
(58). This mechanism, where TLR-mediated expression of IFN-α 
upregulates MHC-I in the islets, was shown to be vital for the 
diabetogenic potential of LCMV and subsequent progression 
toward an overt autoreactive response. LCMV-GP-specific CTLs 
in the pancreas were unable to cause disease without hyperex-
pression of MHC-I (58). Stimulation of TLR7 in conjunction 
with CD40 activation of DCs can induce diabetogenic CTLs in 
the pancreatic lymph nodes of NOD mice to promote onset of 
autoimmunity (59). Even the repeated topical administration of a 
TLR7 agonist, imiquimod, is sufficient to promote T1D develop-
ment while inhibition using IRS661 can significantly decrease 
onset (59). TLR7 signaling in plasmacytoid DCs (pDCs) primes 
B and T cell activation via IFN-I secretion in rotavirus infections; 
however, inhibition of TLR7 is able to block this process from 
occurring and prevent acceleration of T1D following infection 
(60). The role of TLR7 and TLR8 in promoting autoimmunity 
has also been indicated in CVB3-induced self-reactivity toward 
myocardial tissue (61).

environmental inducers of TLRs
Previously, therapeutics for T1D prevention and treatment in 
the past have been primarily aimed at modifying or suppressing 
the adaptive immunity. Today, a shift in perspective of clinical 
methodology points toward targeting innate components to 
tolerize early pathogen-stimulated mechanisms as an effective 
strategy. Bednar and colleagues demonstrated that a TLR4-
agonist monoclonal antibody, TLR4–MD-2, was able to halt and 
reverse fulminant T1D by inducing APC tolerance to pathogen 
in NOD mice (62). TLR4 is typically activated by lipopolysaccha-
rides and other microbial products; however, envelope proteins 
from viruses including CVB can also stimulate its activation (63). 
Although it is uncertain whether CVB interaction with TLR4 is 
involved in T1D.

The natural route of enteroviral infection is through the gut, 
where the biodiversity of bacteria, viruses, fungi, and other 
microorganisms are significant mediators of immune homeo-
stasis and autoimmunity (64). Accordingly, stimulation of the 
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innate immunity and signaling on the mucosal surfaces from 
environmental pathogens could be detrimental to T1D onset. 
All TLRs other than TLR3 use the adaptor molecule MYD88 for 
signal transduction. Deletion of MyD88 in specific pathogen-free 
NOD mice confers resistance to diabetes (65). T1D resistance 
through loss of MYD88 is attributed to disruption in the gut 
flora since these MYD88-KO mice develop autoimmunity when 
housed in germ-free facilities (65). A “balanced signal hypoth-
esis” has been suggested where microbiota-derived stimulation 
of TLR4 signaling through the adaptor molecule, TRIF, provides 
a tolerogenic effect on T1D pathogenesis, while TLR2 signaling 
promotes diabetogenesis (66). Commensal virus communities 
likely contribute similarly to innate stimulation through PRR 
recognition of viral ligands. A recent study has determined the 
intestinal virome is significantly altered prior to onset of autoim-
munity in T1D-susceptible children (67). The overall diversity 
of the gut virome is reduced preceding disease development and 
certain viruses, such as Circoviridae and various bacteriophages, 
are significantly associated with either negative or positive T1D 
risk (67). This signifies a complex host–microbiome–virome 
relationship contributes to T1D and further studies are necessary 
to understand how these interactions alter disease and inflam-
mation to skew genetically susceptible individuals toward either 
a protective or disease-causing state.

T1D DiSPLAYS iNTeRFeRONOPATHY-
LiKe QUALiTieS

Type i iFN
Pattern-recognition receptor activation and signaling remain the  
predominant inducer for IFN signatures that can protect as well  
as portend onset of not only T1D, but are also typical of rheu-
matic disorders such as SLE and RA (68, 69). The synergistic 
effects of type I and III IFNs are significant mediators for the 
adaptive immune system that promote lymphocyte maturation 
and mediate antigen presentation (19, 70). Accordingly, the IFN 
expression elicited by PRR activation is essential to autoimmune 
development. As such, it has been proposed that virus infections 
including CVB may be inducing localized interferonopathy-like 
characteristics within the islet microenvironment to trigger auto-
reactivity (71). Islets from patients recently experiencing onset of 
T1D exhibit heightened expression of certain ISGs in the islet and 
peri-islet regions in a manner which is similar to islets infected 
with virus (72). Knocking out the type I IFN receptor (IFNAR) 
in the T1D-susceptible rat strain, LEW.1WR1, protects from 
T1D, reduces insulitis, and delays onset following poly I:C or 
virus challenge (73). Originating with PRR stimulation, aberrant 
activation of pDCs and genetic mutations in the IFN signaling 
pathway likely contribute to the IFN signature evident in T1D 
induction (74).

Transient upregulation of type I IFN can be seen in genetically 
predisposed children preceding the seroconversion of T1D-
related autoantibodies (75). Nearly all cells produce and respond 
to type I IFN; however, pDCs secrete a considerable amount 
of systemic IFN-α. Indeed, the secretion of IFN-α through 

TLR7- and TLR9-stimulated pDCs in the PLN of NOD mice is 
critical for onset of T1D (76). Blocking IFN-α signaling through 
IFNAR1 of young NOD mice (2–3 weeks old) significantly delays 
onset and incidence of diabetes as well as promote secretion of 
immunoregulatory cytokines, IL-4 and IL-10, in splenic CD4+ 
T cells (76). Treating human islet cells with IFN-α in vitro triggers 
endoplasmic reticulum stress which disrupts insulin production 
by hindering the conversion of proinsulin to insulin signifying a 
potential mechanism by which IFN-α may be prompting devel-
opment of T1D (77). Using a neutralizing antibody against IFN-α 
or using a specific agonist for S1PR1, an immune regulatory 
receptor which mediates IFN-α autoamplification, protects T1D 
onset in a Rip-LCMV mouse model by limiting the infiltration 
of autoreactive T cells into the islets and by inducing expression 
of tolerogenic receptor genes, such as Pdcd1, Lag3, Ctla4, Tigit, 
and Btla (78). This immunomodulation is able to prevent the 
autoreactive T cells from harming the insulin-secreting beta cells 
thus preserving the glucoregulatory function of the pancreas. 
Accordingly, the progression from prediabetes to full-onset 
disease requires signaling from IFN-α.

The transcription factor, interferon regulatory factor 7 (IRF7), 
is constitutively expressed in pDCs and is expressed in most 
other cells upon IFNAR activation (79). IRF7 is involved in signal 
transduction from MYD88-dependant endosomal TLRs (TLR7, 
TLR8, and TLR9) as well as RLRs to trigger IFN gene expression. 
A study by Hienig et al. used rat tissues to elucidate the IRF7-
driven inflammatory network (IDIN) to relate that genetic map-
ping with known viral response genes and disease GWAS (80).  
It was determined that an rs9585056 SNP (on chromosome 
13q32), located in the orthologous human genes controlling 
IDIN, was significantly associated with susceptibility to T1D 
and promoted expression of the IRF7-driven signaling network. 
Similar to gain-of-function mutations in IFIH1, this type of 
genetic predisposition would cause vigorous antiviral engage-
ment resulting in an IFN and immune response which may be 
more pathogenic than the actual virus.

Type iii iFN
While all nucleated cells respond to type I IFN, the type III 
IFN receptor (IFNλR) is primarily only expressed on pDCs and 
epithelial cells including pancreatic islet cells. Type III IFNs 
bind to the IFNλR consisting of dimer of IFNLR1 and IL10R2 
domains. There is significant overlap in signaling pathways and 
activation between IFN-III and IFN-I; however, non-redundant 
roles for IFN-III in host antiviral responses exist (70, 81). Islets 
from humans exhibiting a protective IFHI1 rs1990760 (946A/T) 
polymorphism produce an increased IFN-III response following 
CVB3 infection, likely through IRF-1 signaling, when compared 
to individuals with a risk-associated genotype (946T/T) (32). 
It is uncertain whether this additional expression of IFN-λ 
has protective qualities or whether it is simply a compensatory 
mechanism for lower IFN-I signaling from MDA5. However, 
IFN-λ-treated DCs are able to promote the specific proliferation 
of TREG cells in  vitro and IFN-λ treatment has been exhibited 
to improve pathology of RA in mice by reducing inflammatory 
neutrophils (82, 83). Collectively, this signifies IFN-III may be 
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contributing to diabetes pathogenesis and should be further 
studied.

TiMiNG iS iMPORTANT FOR THe  
viRAL eTiOLOGY OF T1D

Acute versus Persistent infections
With regards to T1D induction, it is unclear whether virus 
infections are being sustained or acute infections are initiating 
mechanisms which go on unregulated even after viral clearance. 
If the virus becomes persistent, remnants of the infection linger 
within tissue-specific microenvironments to provide continuous 
stimulation of innate receptors to produce chronic inflammation 
as illustrated in Figure 2. Some picornaviruses such as Theiler’s 
murine encephalomyelitis virus have been shown to persist 
in certain tissues to provide sufficient inflammation to drive 
autoimmunity (84). Conversely, acute infections may be priming 
the host and establishing events which direct an autoreactive 
effector response. Initial infections may be activating pathways 
which proceed with incessant positive feedback likely due to 
genetic differences which result in functional variations in innate 
compsonents, receptor activation/deactivation, and/or signaling 
pathway elements.

Coxsackievirus B is a positive sense ssRNA virus with a 
tropism for the pancreas, heart, and liver; however, it does not 
appear to establish cytolytic infections of pancreatic beta cells 
(85). Rather, CVB is likely promoting a pro-inflammatory 
environment within the pancreas to elicit autoimmunity (86). 

Infecting human islets with CVB3 induces potent expression of 
type I and III IFN, MDA5, RIG-I, and TLR3 along with a variety 
of inflammatory cytokines (32). Clinical evidence suggests some 
individuals who develop a loss of tolerance against insulin early 
in life (1–3 years) have an impaired capacity to mount a sufficient 
defense against the enterovirus viral capsid protein, viral protein 
1 (VP1), that may cause an inability to sufficiently clear CVB fol-
lowing infection (87). Correspondingly, persistent pancreatic cell 
CVB4 infections have been shown to induce epigenetic changes 
by promoting production of dysregulated microRNAs targeting 
T1D risk genes (88).

Prolonged viral infections may be providing sustained activa-
tion of PRR signaling for the expression of IFN-I, IFN-III, and 
inflammatory cytokines, leading to a robust lymphocyte response 
and induction of autoimmunity. Low-grade enterovirus infec-
tions have been demonstrated to be established and maintained 
within the pancreatic islets of patients recently experiencing 
onset of T1D (3–9  weeks prior) but rarely in healthy controls 
(89). Persistent enteroviral presence has also been detected in the 
gut mucosa of T1D patients, however, viral genomes seem to be 
maintained in the absence of viral protein expression or produc-
tion of infective particles (90). It is not clear whether defective 
replication is allowing production of the viral genes without 
assembly of virus particles or if virus components are simply 
persisting in the tissue after infections. However, conformational 
differences and modification of viral PAMPS may be dictating 
innate signaling. Stem-loop structures in long dsRNA are prefer-
entially recognized by MDA5, while 5′ di- or triphosphate motifs 
on dsRNA are sensed by RIG-I (28, 91). Deletion or alterations 
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in the structural composition of viral genomic PAMPs may be 
altering innate receptor signaling. CVB is known to persist in 
myocardial tissues following naturally occurring deletion of 
5′ end terminal genomic sequences resulting in reduced virus 
replication and loss of cytopathicity (92–94). A recent study has 
shown that 5′ terminally deficient CVB persists also in the pan-
creas of NOD mice for at least several weeks following an acute 
wave of infection (95). The 5′ end of the CVB genome includes a 
cloverleaf-like tertiary structure which may be favorably sensed 
by MDA5; however, it is unknown exactly how innate sensing 
is affected with these terminal deleted viruses. Persistence of 
modulated enteroviruses may be providing sustained innate 
activation for prolonged inflammatory responses in and/or 
around the islets that result in the loss of self-tolerance in T1D. 
Alternatively, loss of structurally relevant motifs for RLR sens-
ing may actually render receptors like MDA5 unable to bind the 
modified dsRNA ligands.

Temporal Determinants of T1D-Related 
virus infections
A systematic review compiling and analyzing clinical studies 
over approximately the last two decades, found that individuals 
had about 10 times higher odds of having enterovirus infec-
tions before or during onset of diabetes or prediabetes when 
compared to controls (24). Patients experiencing fulminant 
T1D directly following suspected enterovirus infection had 
strong expression of MDA, RIG-I, and VP1 in the islets when 
compared to T1D and non-diabetic control patients (96). 
Furthermore, mononuclear cells which infiltrate the pancreata 
of patients experiencing fulminant T1D had high expression of 
TLR3 and TLR4 (96). A recent study by Laitinen et al. screen-
ing systematically collected blood samples from birth through 
seroconversion for T1D-related autoantibodies and progression 
to clinical T1D, found that children were at higher T1D risk if 
infected with CVB1 (97). However, the patient was protected if 
exposed to either CVB3 or CVB6 prior to CVB1. Phylogenetic 
similarity between CVB1, CVB3, and CVB6 indicates the pos-
sibility that cross-protection between highly related enterovirus 
serotypes may be occurring. Additionally, CVB1 infection has 
been often followed by the appearance of islet autoantibodies 
about 6 months later (98, 99).

Characterizing temporal relationships between infection and 
autoimmunity onset are incredibly intricate due to the incred-
ibly multifactorial nature of the pathogen, the hosts, and the 
disease. The timing of pathogen exposure and an individual’s age 
likely has crucial impact on immunological development (100). 
It was recently determined that weaning pups from a colony 
of NOD mice with low incidence of T1D in a “diabetogenic 
environment” (i.e., with a colony of NOD mice with high T1D 
incidence) is able to transfer rates of diabetes development by 
adapting similar gut microbiota and promoting development of 
B cells in the mesenteric lymph nodes which are inherently more 
easily activated (101). This transmittance is only evident when 
the mice are weaned together, as this environmental exposure 
does not affect rate of diabetes onset when mice are co-housed 
starting at 3 weeks of age. Mustonen et al. performed a clinical 

analysis among children with HLA-dependent T1D genetic risk 
(exhibited DR3-DQ2 and/or DR4-DQ8 haplotypes) in Finland, 
Estonia, and Russian Karelia to determine disease trends in T1D 
susceptibility (102). Children who exhibited seroconversion of 
T1D-related autoantibodies had their first infection earlier and 
overall had more infections in the first year of their lives especially 
in the respiratory tract. Furthermore, those which progressed 
to T1D had twice as many infections in the first 3 years of their 
lives than non-diabetic children. It can be questioned, however, 
whether inherent susceptibility to T1D also confers lower toler-
ance to pathogens or whether the children experienced onset of 
T1D due to stress of the frequency of infections they experienced. 
A report from The Environmental Determinants of Diabetes in 
the Young study has confirmed that young children experienc-
ing recent respiratory infections withstand a heightened risk of 
developing T1D-related autoimmunity; however, more work 
is necessary to determine specific viral agents present in the 
preceding months before autoantibody seroconversion (103).

While enteroviruses remain the most likely candidate for 
T1D onset, numerous other viruses have been shown to have 
roles in promoting or protecting T1D (104). Links between 
many viruses, however, seem to be more circumstantial and 
less evident. For instance, a study was performed examining the 
spatio-temporal exposure of viruses using geographical disease 
incidence rates in France and relating that data with mapping 
of T1D patient residences and the timing of the patients’ T1D 
onset (105). This analysis indicates a positive correlation between 
summer diarrhea and influenza-like infections at 1–3  years of 
age with eventual development of T1D while there was negative 
relationship between varicella. Additionally, evidence suggests 
autoreactivity in NOD mice may be induced as a consequence 
of an immunological response against endogenous retrovirus-
secreted microvesicles in the islets (106). Recently, a study using 
high-throughput proteomic profiling of antibodies in new-onset 
T1D patients found serum antibodies exhibit a significant reac-
tivity against Epstein–Barr virus viral antigens (107). Ultimately, 
a multifactorial and heterogenous contribution from multiple 
environmental agents is likely for T1D pathogenesis.

CONCLUSiON

The increased incidence of autoimmunity witnessed in developed 
nations likely signifies a deleterious shift in pathogenic environ-
ment especially early in life. This may be due to modern altera-
tions in the host–pathogen paradigm developed over milleniums 
of co-evolvement. Epidemiological studies have not indicated 
an emergence of infections that could adequately explain such 
a significant increase in autoimmunity. Thus, it is likely caused 
by an alteration in how individuals respond to environmental 
and pathogenic stressors. One rationalization for this change, the 
“hygiene hypothesis,” states that a reduction in pathogenic and 
environmental antigen exposure particularly during develop-
ment has caused the immune system to produce over-exaggerated 
responses resulting in increased rates of autoimmunity. Decreased 
interaction with typical environmental antigens has fostered 
inexperience by innate host receptors, causing over-sensitization 
and improper stimulation of inflammatory pathways.
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Environmental induction of T1D via viral infection may 
essentially require a “perfect storm” of immune reactivity where 
genetic susceptibility allows PRR signaling to render a target 
organ susceptible to attack by self-reactive lymphocytes. A bal-
ance of signaling by different receptors including RLRs and TLRs 
is providing opposing forces to simultaneously promote and 
inhibit autoimmunity and certain environmental stressors may be 
sufficient to tip that balance toward autoimmunity by inducing 
pro-inflammatory signaling. Ultimately, the timing, pathogenesis, 
and target site of infection influences the likelihood of antigen-
non-specific bystander activation of autoreactive B and T  cells. 
Understanding these pathways may hold a high degree of therapeu-
tic potential to block onset of autoimmunity by mediating antigen 
exposure, developing relevant vaccines, and managing molecular 
pathogenesis mechanisms which confer disease development.
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