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Abstract
We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin

proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have

defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in

C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We

now extended those findings by examining Ehd1-heterozygous mice since these mice sur-

vive to maturity in normal Mendelian numbers and provide a ready source of mature muscle.

We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-

tubules, including large intracellular aggregates that contained BIN1. The disorganized T-

tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of

the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2,

reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced

force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was suffi-

cient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout

the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine

kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data

indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1

and links T-tubules defects with elevated creatine kinase and myopathy.

Introduction
Loss of function mutations in BIN1, the gene encoding the membrane trafficking protein
BIN1/amphiphysin 2, cause severe forms of myopathy with muscle weakness evident at birth
[1,2]. Autosomal dominant mutations in DNM2, the gene encoding dynamin 2, another mem-
brane trafficking protein, also cause myopathy resulting in both mild and severe forms of dis-
ease [3,4]. Dynamins are large GTPases that alter actin dynamics and membrane trafficking by
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forming rings encasing membrane tubules and aiding in the fission process. Although dynamin
is ubiquitously expressed, DNM2mutations manifest with muscle weakness presumably
through gain-of-function activity that targets vesicles and membrane remodeling in muscle.
Recently, it has been shown that partial reduction of dynamin 2 protein was sufficient to rescue
the muscle pathology of myotubularin-deficient mice, suggesting a potential therapeutic role
for this large family of proteins [5]. Myotubularin is a phosphoinositide phosphatase, and loss
of functionMTM1mutations also cause myopathy [1].

Structural studies have shown a similarity between the G-domain of Eps15 Homology
Domain (EHD) proteins and dynamin, predicting a “pinchase” role for EHDs in regulating
membrane fission by assembling into spiral rings. This function was confirmed by studies with
lamprey EHD, l-EHD, in which l-EHD strongly inhibited excessive assembly of dynamin and
the formation of elongated vesicular structures [6]. Distinct from dynamin, EHDs directly
associate with other proteins through the EH domain which binds with proteins containing the
asparagine-proline-phenylalanine (NPF) motif typically followed by acidic residues such as
aspartic acid and/or glutamic acid [7]. This specific binding sequence is found in EHD binding
partners such as BIN1, Rab-interacting proteins, and the ferlin family proteins myoferlin and
Fer1L5. All of these proteins are implicated in aspects of vesicle trafficking and recycling [8,9].

The EHD family of proteins regulates multiple steps of endocytic and vesicle trafficking
[10,11]. The mammalian EHD family consists of four proteins, EHD1-4, while there is a single
EHD protein in both Drosophila (PAST-1) and C. elegans (RME-1). The EHD proteins contain
a P-loop within the N-terminal G-domain that hydrolyzes ATP, a central helical region, and a
C-terminal EH domain. Mutations in the P-loop or coiled-coil region have been shown to
interfere with ATP hydrolysis and alter oligomerization, a property essential for function [12].
Despite the absence of a transmembrane domain, EHD family members associate with the
membrane of vesicles and tubular structures. The ability of EHDs to associate with and form
membrane-bound tubules requires the P-loop, oligomerization, and protein/protein interac-
tion domains. BIN1 coimmunoprecipitates and colocalizes with EHD1, and EHD1 functions
in conjunction with BIN1 to refine the length and width of membrane tubules [9,13]. EHD
family members are highly related, approximately 70% between EHD1 and EHD2 and 86%
between EHD1 and EHD3, although patterns of tissue expression are distinct.

During muscle development, EHD proteins are differentially expressed. EHD2 is expressed
early in myoblasts before fusion to multinucleate myotubes, while EHD1 and EHD4 are
expressed during myotube formation and maturation [8]. In myotubes that have been
wounded, EHD2 is recruited to the site of sarcolemmal damage [11]. In the failing heart,
EHD3 levels are increased, suggesting a role for EHD3 in the remodeling cardiomyocyte [14].
Mature skeletal muscle relies on deep membrane invaginations, referred to as transverse, T-
tubules, in order to uniformly trigger rapid Ca2+ release throughout the myofiber and orches-
trate muscle contraction [15–17]. The remodeling of T-tubules in mature myofibers is not well
understood, but the presence of a rich T-tubule network provides the normal intracellular
localization to scaffold Ca2+-handling proteins including the ryanodine receptor and other
Ca2+ channels [16,18,19].

Because EHD1 is expressed in muscle and regulates membrane trafficking, we examined
mice heterozygous for an Ehd1 gene deletion that produces partial reduction of EHD1
[8,13,20]. Ehd1-heterozygous muscle was associated with elongated and ectopic T-tubule
structures in skeletal muscle and reduced force production ex vivo. T-tubule associated Ca2+-
handling proteins, including the dihydropyridine receptor (DHPR) and junctophilin, were
mis-expressed with increased DHPR and reduced junctophilin in Ehd1-heterozygous muscle.
The disrupted expression of Ca2+-handling proteins may explain the observed muscle weak-
ness in Ehd1-heterozygous muscle. Expression of dominant-negative EHD1 in muscle was
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found to induce similar T-tubule defects with aggregation and excessive accumulation, suggest-
ing that EHD1 acts to negatively remodel the T-tubule.

Results

Transverse-tubule abnormalities in Ehd1-heterozygous muscle
The Ehd1-null allele was previously generated, and most homozygous null EHD1mice die in
utero or at birth [20,21]. The surviving mice develop male infertility [13,20]. We previously
examined myoblasts from Ehd1 null mice finding evidence for delayed endocytic recycling and
smaller myofibers [13]. Using a cell culture system, we found evidence for an interaction
between BIN1 and EHD1, and in the few surviving mice, complete loss of EHD1 in Ehd1-null
mice resulted in disorganized T-tubules [13].

BIN1 normally is essential for normal T-tubule development in muscle helps tether DHPR
to the T-tubule [13,22–25]. To determine whether endogenous BIN1 was altered in Ehd1-
heterozygous muscle, myofibers were isolated and stained with antibodies to BIN1 and DHPR.
Ehd1-heterozygous fibers displayed disordered T-tubules marked by BIN1 and DHPR fluores-
cence (Fig 1). The DHPR puncta were highly disorganized with ectopic T-tubules (Fig 1, white
arrowhead), similar to the disorganized T-tubule pattern seen in muscle from dysferlin-null
mice, a model of Limb girdle muscular dystrophy 2B [22]. High magnification imaging showed
BIN1 elongation that extended beyond the DHPR domain (Fig 1, yellow arrowhead), consis-
tent with expansion of the membranous network. Wildtype T-tubules, marked by BIN1 and
DHPR fluorescence, were found in the expected ordered pattern, with rare instances of elon-
gated BIN1 fluorescence (Fig 1). Large aggregates of T-tubules were visualized in Ehd1-
heterozygous fibers, with 27% of fibers showing this pattern (3/11 fibers). These aggregates
were positive for DHPR and BIN1, and this compared to 0% of aggregates in control, wildtype
muscle fibers (0/9 fibers) (Fig 1, white arrow).

Ca2+-handling proteins are enriched in T-tubules, and DHPR is one of the major proteins
that regulate Ca2+ release to coordinate muscle contraction [19,23]. Immunoblot and density
analysis revealed Ehd1-heterozygous muscle showed an increase of both BIN1 (+2.25 fold),
and DHPR (+5.4 fold) protein levels compared to WT (Fig 2A, n�3 of each genotype). Juncto-
philins span the endoplasmic reticulum (ER) / sarcoplasmic reticulum (SR) membranes to sta-
bilize T-tubules and to facilitate attachment to the plasma membrane [26]. Loss of JP1 or JP2
in mice results in disorganized triads and reduced Ca2+ homeostasis and ultimately embryonic
lethality [26,27]. Ehd1-heterozygous skeletal muscle had a 13-fold decrease of JP2 protein com-
pared to controls (Fig 2B, n�3 of each genotype) while JP1 protein expression was unchanged
between Ehd1-heterozygous skeletal muscle and controls (Fig 2C, n = 2 of each genotype).
The increased expression of BIN1 and DHPR in addition to the reduction of JP2 in Ehd1-
heterozygous mice correlates with disorganization of the T-tubule system. These data provide
evidence of a molecular network that functions to control T-tubule organization and is dysre-
gulated in Ehd1-heterozygous mice.

Ultrastructural T-tubule overgrowth in Ehd1-heterozygous muscle
T-tubule abnormalities are seen in multiple myopathic states, including the central nuclear
myopathies and dysferlin-mediated myopathies [1,2,28–31]. EHD1 regulates the formation of
small intracellular tubules in cell culture, and complete loss of Ehd1 produced T-tubule elonga-
tion [13]. Ultrastructural analysis of Ehd1-heterozygous muscle displayed similarly elongated
(Fig 2D, black arrow) and ectopic (Fig 2D, black dotted arrow) T-tubules, indicating that par-
tial reduction of EHD1 is sufficient to cause this effect. In mammalian muscle sarcomeres, a
triad is composed of a T-tubule centered between two terminal cisternae of sarcoplasmic
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reticulum (SR). Magnified ultrastructural images of Ehd1-heterozygous muscle showed dupli-
cated triad structures, containing additional T-tubule and SR units (Fig 2E). Additional images
from Ehd1-heterozygous muscle stained with potassium ferricyanide, which colors the T-
tubules black, outlined the duplicated T-tubule structures seen within a single triad (Fig 2F). T-
tubule abnormalities were quantified from 2-D ultrastructural images. Ehd1-heterozygous
muscle showed an increase in tubule structure abnormalities, 12.5%, compared to 1.7% in con-
trol muscle (Fig 2G, p = 0.04,>400 structures analyzed per genotype). This data indicates that
even partial reduction of EHD1 is sufficient for T-tubule remodeling.

Reduced force production in Ehd1-heterozygous muscle
To assess muscle function ex vivo, muscle mechanical measurements were using the extensor
digitorum longus (EDL) muscle using a force transducer. Representative force tracings from
8-week-old wildtype and Ehd1-heterozygous mice showed reduced specific force production in
Ehd1-heterozygous muscles (Fig 3A). Twitch force in Ehd1-heterozygous EDLs (9.73 mN/
mm2) was reduced compared to wildtype (12.08 mN/mm2) (Fig 3B, n = 5 mice each, p<0.05).

Fig 1. Disordered T-tubules in Ehd1-heterozygous muscle.Myofibers were immunostained with anti-BIN1 (red) and anti-DHPR (green) antibodies.
Representative myofibers are shown. Ehd1-heterozygous (Ehd1+/-) fibers displayed disorganized (white arrowhead) and aggregated (white arrow) T-tubule
structures in 27% of myofibers, marked by DHPR, also evidenced in DIC images compared to 0% in control fibers. Ehd1-heterozygous muscle with extensive
BIN1 fluorescence extending beyond DHPR staining (yellow arrowhead). Scale 5μm.

doi:10.1371/journal.pone.0136679.g001
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Fig 2. Misexpression of triad proteins and expansion of the T-tubule compartment in Ehd1-heterozygousmuscle. (A) BIN1 and DHPR levels are
increased +2.25 and +5.4 fold in Ehd1+/- quadriceps muscle compared to WT correlating with the increase in T-tubule structures. Gel code bands are shown
as a loading control (LC). (B) Junctophilin 2 (JP2) protein levels were decreased 13-fold in Ehd1+/- quadriceps muscle compared to wildtype controls. Gel
code stained bands are shown as a loading control (LC). (C) Junctophilin 1 (JP1) protein levels were similar in Ehd1+/- quadriceps muscle compared to
wildtype controls. Gel code stained bands are shown as a loading control (LC). (D) Ultrastructural analysis reveals ectopic (dotted arrow) and elongated
(arrow) T-tubules in 8-week-old Ehd1-heterozygous muscle (Ehd1+/-) stained with potassium ferricyanide to color the T-tubule structures black. (E) Ehd1-
heterozygous muscle contains duplicated triads containing 2 T-tubules (black arrows) and 3 sarcoplasmic reticulum (SR) in 1 triad unit. Scale 0.5μm. (F)
Ehd1-heterozygous muscle stained with potassium ferricyanide, outlines duplicated T-tubule structures (two black arrows). Scale 0.5μm. (G) Ultrastructural
analysis of 2-D images reveals increased tubule abnormalities in Ehd1-heterozygous muscle, 12.5%, compared to 1.7% in control muscle (n>400 structures
per genotype, p = 0.04).

doi:10.1371/journal.pone.0136679.g002
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Maximal tetanic force production in Ehd1-heterozygous (56.92 mN/mm2) muscle was signifi-
cantly reduced compared to wildtype (85.72 mN/mm2) (Fig 3C, n = 5 mice each, p<0.05).
These data show that reduction of EHD1 is sufficient to cause appreciable muscle weakness in
mice.

Ehd1-heterozygous mice have myopathy but not dystrophy
It was shown previously that the complete genetic loss of Ehd1 ablated EHD1 protein expres-
sion in multiple tissues including heart and skeletal muscle [20,21]. Intermediate levels of
EHD1 were evident by immunoblot in Ehd1-heterozgous cardiac muscle [20]. Skeletal muscle
from 8–12 week old wildtype and Ehd1-heterozygous mice was assessed by immunoblot utiliz-
ing antibody against EHD1 (S1A Fig). Gelcode was used as a loading control. Ehd1-heterozy-
gous skeletal muscle has a reduction in EHD1 protein level (30% compared to wildtype 88%
p = 0.003, n = 4 muscles per genotype).

The pathway of muscle degeneration and regeneration is often characterized by discrete his-
tological features including internalization of nuclei, representative of myofiber repair after
injury, increased fatty and immune infiltration, and abnormal fiber distribution. In progressive

Fig 3. Reduction in EDL force production in Ehd1-heterozygous muscle. (A) Representative traces from
8-week male WT and Ehd1-heterozygous (Ehd1+/-) EDL muscles with stimulation pulses marked below the
force traces. Ehd1+/-muscle has reduced force. (B) Ehd1+/- EDL muscle has reduced twitch force (n > 5 per
genotype, p<0.05). (C) Ehd1+/- EDL muscle has reduced maximum tetanic force (n > 5 per genotype,
p = 0.05).

doi:10.1371/journal.pone.0136679.g003
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muscular dystrophy, these factors increase over time, as myofiber degeneration outpaces myo-
fiber repair. To determine if Ehd1-heterozygous mice display signs of muscular dystrophy, due
to the decreased levels of EHD1, we evaluated the muscle histopathology of both young and
aged mice. Ehd1-heterozygous muscles contained multiple small myofibers versus age-matched
wildtype controls, indicative of fiber splitting and/or regeneration (S1B Fig). The mean cross-
sectional area (CSA) of Ehd1-heterozygous myofibers was reduced in muscles from young ani-
mals (S1C Fig, p = 0.003 for triceps muscles). We examined the distribution of myofiber size
in muscle and found that 8-week-old Ehd1-heterozygous muscle specifically lacked the
largest myofibers and contained an increased number of smaller myofibers (S1D Fig). To
assess this distribution, we compared variances utilizing an F-test and determined that there
was an unequal distribution of fibers (p<0.0001). Internal nuclei were rarely seen in Ehd1-
heterozygous triceps muscle and WT controls at 8-weeks of age (p = 0.64, n = 3 mice per geno-
type, n>1000 fibers). There was no evidence of fibrosis or fatty infiltration seen in muscular
dystrophy in young or old animals (S1E Fig).

Ehd1-heterozygous mice have significantly elevated serum creatine
kinase
Creatine kinase (CK) generates phosphocreatine to allow more ready use of ATP in high
energy demand cells like myofibers. CK leaks from muscle into the serum after intense exercise
or injury, or in muscle disease [32]. Interestingly, serum CK levels were markedly elevated at
birth (P0) in Ehd1-heterozygous mice (Ehd1+/- 4641 U/L vs WT controls 532 U/L, p<0.0001)
(Fig 4A). Serum CK levels were persistently elevated in Ehd1-heterozygous mice throughout
their lives with CK levels more than 40-fold higher than wildtype controls at all ages analyzed
(n = 4WT, n = 6 Ehd1+/-, p< 0.002) (Fig 4B). Blood urea nitrogen (BUN) and creatinine levels
were normal in Ehd1-heterozygous mice, consistent with normal clearance through the kidney
(BUN for Ehd1-heterozygous was 32.4 mg/dL versus 30.4 mg/dL for wildtype, n = 5WT, n = 4
Ehd1+/-, p = 0.7; creatinine for Ehd1-heterozygous was 0.23 mg/dL compared to 0.26 mg/dL
for wildtype controls, n = 3 WT, n = 2 Ehd1+/-, p = 0.4). These data indicate a muscle origin
for serum CK elevation occurring in the absence of overt histopathological changes.

CK and other muscle proteins are hypothesized to leak into the serum with sarcolemmal
disruption [33]. Sarcolemmal disruption can also be monitored by measuring uptake of vital
tracers such as the small molecular mass marker Evans blue dye [34]. Eight-week-old wildtype
and Ehd1-heterozygous mice were injected with dye and muscles were harvested for analysis.
WT and Ehd1-heterozygous muscle displayed similar levels of dye uptake (Fig 4C). There was
no significant difference in the dye uptake of any muscle group assayed (quadriceps (p = 0.92),
gluteus/hamstring (p = 0.80), triceps (p = 0.66), gastrocnemius/soleus (p = 0.75), abdominal
muscles (p = 0.81), and diaphragm (p = 0.98) between Ehd1-heterozygous muscle compared to
wildtype controls (n = 6WT, n = 7 Ehd1+/-) (S2 Fig). The absence of muscle breakdown in
Ehd1-heterozygous muscle in the presence of markedly elevated serum CK links T-tubule
defects with CK release.

Functional EHD1 is required for proper BIN1 localization and T-tubule
formation in vivo
To determine if EHD1 modulates mature T-tubules, we conducted in vivo electroporation
using plasmid expression of EHD1-mCherry or EHD1T72A-mCherry. The T72A substitution
abrogates the ATPase activity of EHD proteins, creating a enzymatically dead EHD1 protein
[12]. These plasmids were co-electroporated along with a plasmid expressing BIN-GFP into
wildtype myofibers, and myofiber imaging was conducted seven days after electroporation to

EHD1 Remodels T-Tubules

PLOS ONE | DOI:10.1371/journal.pone.0136679 September 1, 2015 7 / 17



Fig 4. Ehd1-heterozygousmice have elevated creatine kinase levels. (A) Serum creatine kinase (CK)
levels are highly elevated in Ehd1-heterozygous (Ehd1+/-) mice at birth (n > 10 of each genotype, p<0.0001).
(B) CK levels are consistently elevated in Ehd1+/-mice at 8wk, 6m, and 14m compared to WT controls (n� 6
of each genotype, p<0.0002). (C) Evans blue dye uptake was measured from excised tissues (absorbance
per mg tissue). Graph expressed as an average of all tissues. Evans blue dye uptake (measured as
absorbance) is similar in Ehd1+/- andWT (n>6 animals per genotype, ns, nonsignificant).

doi:10.1371/journal.pone.0136679.g004
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permit time for cell recovery and protein expression. Normally, EHD1 and BIN1 proteins
localized in discrete, organized T-tubules throughout the myofiber (Fig 5A, top panel). How-
ever, when EHD1T72A was electroporated in conjunction with BIN1, EHD1T72A localized to
the T-tubule less efficiently than EHD1 resulting in disrupted BIN1-mediated T-tubule forma-
tion. Specifically, expression of EHD1T72A caused ectopic and elongated BIN1-positive tubule
formation in myofibers (Fig 5B, white arrow). Abnormal T-tubule formation was assessed
using the directionality plugin in Fiji [35–37]. Transverse (T)- tubules are represented at an
angle of 0 degrees, while any deviation of this tubule direction is expressed on the histogram
accordingly. Electroporation of wildtype EHD1 and BIN1 resulted in tubules plotted only at 0
degrees, indicative of their longitudinal nature. In contrast, EHD1T72A and BIN1 expression
resulted in two peaks, one peak at 0 degrees and a secondary peak at 90 degrees indicative of
lateral branches developing from the longitudinal tubules in EHD1T72A expressing fibers
(Fig 6). A lower magnification image of the enhanced BIN1 tubule formation caused by expres-
sion of the dominant negative EHD1T72A mutant is shown in Fig 5B (white arrow). These
data suggest EHD1 negatively regulates BIN1 tubule formation in vivo in skeletal muscle.

Discussion

Reduced EHD1 leads to a reduction in T-tubule remodeling
The EHD1 family of proteins has been implicated in protein-protein interactions necessary for
membrane trafficking and especially the formation of intracellular vesicular structures
[9,13,38]. BIN1, a BAR domain containing protein implicated in membrane bending, co-
immunoprecipitates and colocalizes with EHD1, and EHD1 functions in concert with BIN1 to
refine the length and width of membrane tubules [9,13]. Pant et al. used C. elegans to discover
the importance of the BIN1-EHD interaction for endocytic recycling, the process by which ves-
icles are returned to the membrane. The role of EHDs in trafficking and membrane tubulation
was investigated in a cell-based system demonstrating a role for EHD-like proteins in vesicula-
tion and tubulation [38]. We previously co-expressed BIN1 and EHD1 in C2C12 cells, a cell
model of muscle development, finding that ectopic intracellular tubules formed in the presence
of dominant negative EHD1 and that Ehd1-null muscle had T-tubule overgrowth [13]. Each of
these cell systems lacks T-tubules, so the current findings in Ehd1-heterozygous muscle links
partial reduction of EHD1 proteins to the maintenance and remodeling of T-tubules in mature
muscle. The association of malformed T-tubules with disrupted expression of Ca2+-handling
proteins may account for the muscle weakness observed in Ehd1-heterozygous muscle. How-
ever, alternative mechanisms could lead to muscle weakness, for example the leak of CK from
muscle could contribute to altered energy stores (see below).

T-tubule structure and Ca2+ regulation
Efficient muscle contraction requires tight control of intracellular Ca2+, which is enabled by an
extensive membrane network to trigger Ca2+ release throughout the sarcomere [16]. Skeletal
and cardiac muscle cells each have deep invaginations of the surface plasma membrane,
referred to as the transverse (T-) tubule network. The T-tubules are interwoven with the mem-
branous sarcoplasmic reticulum (SR). Disruption of T-tubule structure is seen in a variety of
myopathies, and collectively these disorders have been referred to as “triadopathies” [39]. Mod-
ulation of BIN1 expression has been shown to result in impaired Ca2+ channel trafficking and
aberrant Ca2+ transient activity in striated muscle [24,25]. Ehd1-heterozygous muscle displayed
excessive and disorganized T-tubules, increased BIN1 protein levels, and reduction of juncto-
philin 2 (JP2) protein expression. Junctophilins directly link the T-tubule and sarcoplasmic
reticulum (SR) membranes, anchoring the T-tubule and maintaining the proper spacing and
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Fig 5. EHD1modulates BIN1mediated tubule formation in vivo.Myofibers were electroporated with BIN1-GFP and wildtype EHD1-mCherry or
EHD1T72A-mCherry. Imaging occurred one week post-electroporation. (A & B) EHD1 and BIN1 normally align in ordered T-tubules in live skeletal muscle.
Expression of EHD1T72A results in mislocalization of EHD1T72A and ectopic tubule formation (white arrow), marked with BIN1 staining. Lowmagnification
images are shown below. Scale 5μm. BIN1 mislocalization occurred in 11/11 EHD1T72Amyofibers, while 0/11 EHD1myofibers expressed BIN1
mislocalization.

doi:10.1371/journal.pone.0136679.g005
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connectivity for normal excitation-contraction (EC) coupling [26]. Genetic loss of JP1 or JP2
results in reduced Ca2+ signaling resulting in cardiac failure and embryonic lethality [26,27].
Reduction of JP1 or JP2 in skeletal muscle fibers results in disruption and loss of the triad struc-
ture and altered Ca2+ release from SR [40]. Furthermore, in cardiomyocytes, JP2 reduction
resulted in altered T-tubule orientation promoting an increase in longitudinal tubule formation
[41]. We hypothesize that partial loss of EHD1 results in loss of negative regulation of BIN1
activity. With unregulated BIN1 activity, T-tubules extend and grow in an uncoordinated man-
ner, a hypothesis supported by their ectopic position within muscle. The reduction of JP2 pro-
tein expression further modulates T-tubules in excess of sarcoplasmic reticulum, and overall
disorganized and inadequate triad junction formation. The abnormal morphology of T-
tubules, coupled with the marked reduction of JP2, is a muscle substrate that would be expected
to display abnormal Ca2+ handling properties. Further examination of Ca2+ transients, SR
release, and store operated Ca2+ entry in Ehd1-heterozygous myofibers is required.

Dysferlin localizes to the T-tubule specifically at the triad junction, and loss of dysferlin
(Dysf) results in altered Ca2+ homeostasis [22]. Like Ehd1-heterozygous mice, Dysf-null mice
have similar T-tubule abnormalities and DHPR aggregates [22]. We have previously shown

Fig 6. EHD1T72A is a negative regulator of BIN1mediated tubule formation in vivo. Representative images of myofibers coelectroporated with
BIN1-GFP and EHD1-mCherry or EHD1T72A-mCherry in wildtype myofibers. Images were processed identically in Fiji and are shown with T-tubules running
horizontally. When coelectroporated with EHD1, BIN1 localizes to ordered T-tubules. Graphically this corresponds to the horizontal axis clustering around 0
degrees. Coexpression of EHD1T72A results in mislocalization of BIN1 tubules, causing lateral extensions between longitudinal tubules. Quantification
shows a cluster of tubules both at 0 degrees, T-tubules, and at 90 degrees, L-tubules (arrow). Scale 5μm.

doi:10.1371/journal.pone.0136679.g006
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that EHD1 weakly binds the C2B domain of DYSF and colocalizes at the T-tubule with DYSF
[8,13]. The T-tubule abnormalities in Dysf-null mice associate with a reduction in muscle force
[31,42]. Due to the co-localization of DYSF and EHD1, we hypothesize that these models share
a similar set of defects. Previous studies have also shown a role for BIN1 and DYSF in stabiliz-
ing the L-type Ca2+ channel, which provides an additional molecular mechanism by which
EHD1 deficiency may act [22,24].

Creatine kinase elevation with abnormal T-tubules
The normal function of CK within a cell is to catalyze the conversion of creatine to form phos-
phocreatine consuming ATP and generating ADP [43]. In addition to the elongated and
ectopic T-tubule, we found markedly elevated serum CK levels in Ehd1-heterozygous mice
without outward signs of myofiber necrosis or damage. This same finding is seen in caveolin-
3-null and young ferlin-null mouse models that show mild changes in histopathology, and T-
tubule abnormalities [28,31]. We hypothesize that CK may be transported from muscle into
the serum by the disorganized T-tubules. Chou et al. showed human muscle biopsies from indi-
viduals with elevated serum CK levels had abnormal tubule structures compared to more than
50 healthy control subjects [44]. Chou concluded that the T-tubule was the primary location
resulting in increased CK leak from muscle.

Ehd1-heterozygous muscle displays significant weakness compared to wildtype littermate
muscle using ex vivo force experiments. Similar to Ehd1-null mice, Ehd1- heterozygous muscle
contains primary, structural T-tubule deformities at an early age similar to BIN1 and DNM2
mutations, newly subcategorized as “triadopathies” [39]. Functional deficiencies of the T-
tubule occur as a secondary consequence in a number of muscle diseases [45–47]. In contrast,
there is now an emerging subset of inherited muscle disorders with primary T-tubule and
membrane defects, and many of these mutations lead to congenital forms of myopathy. The
data presented here indicates that EHD1 is implicated in T-tubule formation and function, and
suggests that EHD1 is a potential candidate gene for unresolved genetic myopathy.

Materials and Methods

Animals
The Ehd1-null allele was previously generated by deleting exon 1 [20]. Mice were maintained
on a mixed C57Bl/6 and 129Sv background, and housed in a specific pathogen free facility in
accordance with Institutional Animal Care and Use Committee (IACUC) regulations. Eutha-
nasia was performed through carbon dioxide or anesthetic gas inhalation followed by cervical
dislocation and removal of the heart. All methods using living animals in this study were per-
formed in ethical accordance with the American Veterinary Medical Association (AVMA) and
under protocols fully approved by both the Institutional Animal Care and Use Committee
(IACUC) at the University of Chicago (protocol 70619) and the IACUC at Northwestern Uni-
versity Feinberg School of Medicine (protocol number ISO00000911). Consistent with the
approvals stipulated by these protocols, all efforts were made to minimize suffering.

Muscle analysis
Quadriceps and triceps muscles were dissected, formalin fixed and embedded in paraffin. Sec-
tions from the mid-belly of the muscle were stained with hematoxylin and eosin. Using Image
J, the mean fiber cross sectional area was calculated by counting individual fibers within at least
five random images from at least three Ehd1-heterozygous and two wildtype mice. Statistics
were performed with Prism (Graphpad, La Jolla, CA) using an unpaired t-test.
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Immunoblotting
Proteins in lysates of 2-3month old wildtype and Ehd1-heterozygous quadriceps muscles,
(n� 2), were transferred to membranes and were immunoblotted with anti-BIN1 (1:1000, sc-
23918, Santa Cruz, Dallas, TX), rabbit polyclonal anti-EHD1 (1:5000, [10]), anti-DHPR
(1:1000, ma3-920, Thermo Scientific, Rockford, IL), anti-Junctophilin 2 (1:1000, sc-51313,
Santa Cruz, Dallas, TX), anti-Junctophilin 1 (1:1000, 40–5100, Thermo Scientific, Rockford,
IL) antibodies. Secondary antibodies, goat anti-rabbit, and goat anti-mouse conjugated to
horseradish peroxidase (Jackson ImmunoResearch) were used at a dilution of 1:2500. Blocking
and antibody incubations were done in Starting Block T20 (Invitrogen, Grand Island, NY) for
all antibodies and rinsed with TBS-T. Memcode and gelcode stains were used to mark proteins
for loading controls (Life Technologies, Grand Island, NY). Chemiluminescence substrate,
Kodak Biomax MS film, and a UVP BioSpectrum Imaging System (Upland, CA) were used for
detection.

Muscle Preparation and Mechanics
Intact extensor digitorum longus (EDL) muscles from 8-week-old male mice were excised in reg-
ular rodent Ringer’s solution (in mM: 146 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, and 10 HEPES, pH
7.4) essentially according to the Treat-NMD standard operating procedure. Muscles were sus-
pended in a vertical tissue bath containing oxygenated Krebs solution (in mM: 121 NCl, 5 KCl,
1.8 CaCl2, 0.5 MgCl2, 0.1 EDTA, 0.4 NaH2PO4, 24 NaHCO3, and 5 glucose, pH 7.4 with contin-
uous bubbling 95% O2/5% CO2) and maintained at 25°C. The isolated muscles were stimulated
with 0.5 ms pulses at 1 A via two parallel platinum electrodes flanking the muscle. The length of
each EDL was adjusted to that which produced the maximal twitch force (L0), which was mea-
sured using fine calipers. Maximal twitch and tetanic force were elicited with a series of three
twitch/tetanus trains given 3 minutes apart, each train consisting of a single twitch followed by
10 secs rest then a 500-ms/150-Hz tetanus. At the conclusion of each experiment, each muscle
was blotted and immediately weighed. All data were analyzed offline following data import into
Clampfit software (Molecular Devices, Clampfit v10.2.0.14). The magnitude of isometric twitch
and tetanus were determined as the peak twitch and peak tetanus force. All peak force measure-
ments were normalized to cross-sectional area and expressed as specific force (sP0; mN/mm2).
Statistical significance was determined by t-test using Prism software.

Electron microscopy and Tubule Analysis
Quadriceps muscles from 2-month old wildtype and Ehd1-heterozygous mice were dissected.
To visualize the T-tubules, muscles were fixed in 2.5% glutaraldehyde with 75 mM calcium
chloride in 0.1mM sodium cacodylate for 3 hours, postfixed in 2% osmium tetroxide contain-
ing 0.8% potassium ferricyanide for 2 hours at 4°C, rinsed, dehydrated in ethanol, and embed-
ded in epoxy resin modified from [29]. Samples were sectioned and stained with 1% uranyl
acetate followed by lead citrate. Images were taken on a Philips CM10 electron microscope.
Analysis was performed on 2D images. T-tubules were scored abnormal if ectopic duplicated
or longitudinal in orientation. Three mice per genotype were analyzed equaling a total of
greater than 400 structures per genotype. Statistics were performed with Prism (Graphpad, La
Jolla, CA) using an unpaired t-test.

Evans Blue Dye Assay
As described previously in [48]. Briefly, Evans blue dye (E-2129, Sigma) was dissolved in phos-
phate buffered saline (PBS) at 10 mg/ml. Each animal received an intraperitoneal injection of
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dye at 5 μl/g body weight. Approximately 48 hours after injection, tissues were harvested, finely
minced, weighed and incubated at 55°C in 1ml of formamide for 2 hours with shaking. Spec-
trophotometric absorbance was measured at 620 nm. Statistics were performed with Prism
(Graphpad, La Jolla, CA) using an unpaired t-test.

Serum Biomarker Assay
Age-matched wildtype and Ehd1-heterozygous blood samples were collected from the vascula-
ture of pups sacrificed by cervical dislocation (P0) or eye bleeds (8wk, 6m, 14m) using heparin-
treated capillary tubes (Fisher, Pittsburgh, PA) into serum separator tubes (Becton Dickinson,
Franklin Lakes, NJ) and centrifuged for 10 min at 8000 g. The plasma fractions were frozen
and stored at −80°C. Creatine kinase activity was determined with the EnzyChrom CK Assay
kit (BioAssay Systems, Hayward, CA) and a FluoStar Optima plate reader (BMG Labtech,
Cary, NC). Statistics were performed with Prism (Graphpad, La Jolla, CA) using an unpaired t-
test.

Plasmids and Electroporation
EHD1-mCherry and EHD1 T72A-mCherry were described previously. pcDNA3 EHD1-GFP
and EHD1 T72A-GFP were generated by subcloning a carboxy-terminal EGFP tag into EHD1
or EHD1T72A pcDNA3 using BamH1 and Xho1 restriction enzymes (New England Biolabs,
Ipswich, MA). pEGFPC1-muscle Amphiphysin II (BIN1 variant 8) was purchased from
Addgene (Cambridge, MA). FDB fibers were transfected by the in vivo electroporation meth-
ods described in detail in [49]. Muscle fibers were isolated as described and studied seven days
after electroporation to allow for recovery and protein expression in the electroporated mus-
cles. Images were acquired on the Leica SP5 II STED-CW super resolution laser scanning con-
focal microscope in conventional mode.

FDB preparation and Immunofluorescence Microscopy
The flexor digitorum brevis (FDB) muscle bundle was dissected and placed in 1ml of DMEM
containing BSA plus collagenase solution pre-warmed to 37°C in a 12-well plate. After 2 hours,
fibers were triturated in Ringers solution. Fibers were fixed on coverslips with 4% paraformal-
dehyde blocked in 1X phosphate-buffered saline (PBS) containing 10% fetal bovine serum and
triton, and then immunostained at 1:100 with anti-DHPR (ma3-920, Thermo Scientific, Rock-
ford, IL) and at 1:100 with anti-BIN1(sc-30099, Santa Cruz, Dallas, TX). The anti-EHD1 rabbit
antibody was previously described [10]. Goat anti-rabbit conjugated to Alexa 488 and goat
anti-mouse 594 were used at 1:2000. Slides were mounted with Vectashield with DAPI. Images
were captured using a Leica SP5 II STED-CW super resolution laser scanning confocal micro-
scope in standard mode.

Immunofluorescence Microscopy Tubule Analysis
Images were acquired as above and Fiji was used for the following steps. Images were rotated
such that the Transverse (T)-tubules were orientated in the horizontal plane. Images were
manipulated identically as follows: background fluorescence was subtracted, threshold was
adjusted and then the directionality plugin was run. 0 degrees is equivalent to the transverse-
tubule, while 90 degrees is equivalent to the longitudinal-tubules [35–37]. Histograms were
generated in Prism (Graphpad, La Jolla, CA).
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Supporting Information
S1 Fig. Decreased EHD1 expression and reduced myofiber size in Ehd1-heterozygous mice.
(A) Muscle lysates were prepared from 2-3m old WT and Ehd1+/- quadriceps muscle and
immunoblotted with anti-EHD1. Ehd1+/- muscle showed a 60% reduction in EHD1 protein
expression levels p = 0.003 (n = 4 per genotype). Gel code is shown as a loading control (LC).
(B) Ehd1+/- triceps muscle shows smaller myofibers and myofiber splitting (long arrow) at
8-weeks of age by H&E staining. (C) Ehd1+/- fibers have reduced mean cross sectional area
(CSA) compared to WT controls at 8-weeks (n>500 fibers, p = 0.008). (D) Histogram showing
the shift (green arrows) in myofiber CSA in Ehd1+/-muscle at 8-weeks (n>500 fibers,
p<0.001). (E) Hallmark signs of dystrophy were lacking in 14-month old WT and Ehd1-
heterozygous (Ehd1+/-)muscle stained with hematoxylin and eosin. Scale 50μm.
(TIF)

S2 Fig. Normal Evans Blue Dye uptake in Ehd1-heterzygous muscle tissues. EBD was
injected into 8-week-old WT and Ehd1-heterozygous (Ehd1+/-)mice. Forty-eight hours post
injection tissues were harvested and analyzed for EBD uptake (expressed as absorbance per mg
of tissue). The level of EBD uptake was non-significant for all muscles analyzed between WT
and Ehd1+/- (n� 6 for both genotypes).
(TIF)
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