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Abstract

Trillions of microbes such as bacteria, fungi, and viruses exist in the healthy human gut

microbiome. Although gut bacterial dysbiosis has been extensively studied in multiple scle-

rosis (MS), the significance of the fungal microbiome (mycobiome) is an understudied and

neglected part of the intestinal microbiome in MS. The aim of this study was to characterize

the gut mycobiome of patients with relapsing-remitting multiple sclerosis (RRMS), compare

it to healthy controls, and examine its association with changes in the bacterial microbiome.

We characterized and compared the mycobiome of 20 RRMS patients and 33 healthy con-

trols (HC) using Internal Transcribed Spacer 2 (ITS2) and compared mycobiome interac-

tions with the bacterial microbiome using 16S rRNA sequencing. Our results demonstrate

an altered mycobiome in RRMS patients compared with HC. RRMS patients showed an

increased abundance of Basidiomycota and decreased Ascomycota at the phylum level

with an increased abundance of Candida and Epicoccum genera along with a decreased

abundance of Saccharomyces compared to HC. We also observed an increased ITS2/16S

ratio, altered fungal and bacterial associations, and altered fungal functional profiles in MS

patients compared to HC. This study demonstrates that RRMS patients had a distinct myco-

biome with associated changes in the bacterial microbiome compared to HC. There is an

increased fungal to bacterial ratio as well as more diverse fungal-bacterial interactions in

RRMS patients compared to HC. Our study is the first step towards future studies in delin-

eating the mechanisms through which the fungal microbiome can influence MS disease.
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Introduction

Multiple Sclerosis (MS) is a neuroinflammatory autoimmune disease that affects ~2.5 million

people worldwide. Though MS has different clinical subtypes, most of the patients (~85%)

present with relapsing-remitting MS (RRMS). The precise etiopathogenesis of MS is unclear,

but both genetic and environmental factors have been suggested to play an important role in

susceptibility and the pathogenesis of MS. In recent years multiple groups, including ours,

have highlighted the role of gut bacteria in the pathobiology of MS [1–8], and it has emerged

as an important environmental factor. However, the gut microbiome consists of non-bacterial

microbes such as fungi, viruses, and archaea [9,10], yet the role of the fungal microbiome

(mycobiome) is not well studied in MS.

Although fungi make up approximately 0.1% of the gastrointestinal tract [10,11], their impact

on human health is significant due to their ability to regulate local and systemic host immune

responses [12,13]. The importance of the fungal microbiome on the immune system was demon-

strated in a study where mice that were rewilded had increased intestinal abundance of fungi

along with an expansion of granulocytes compared to laboratory mouse controls [13]. While in

human peripheral blood 50–70% cells are neutrophils, only 10–25% cells are neutrophils in

mouse peripheral blood [14]. Additionally, an oral antifungal treatment of mice in a colitis model

showed increased disease severity and exacerbated allergic airway disease with increased Aspergil-
lus,Wallemia, and Epiccocum and decreased Candia spp [12]. Moreover, oral administration of a

mixture of these three fungi (Aspergillus amstelodami, Epicoccum nigrum, andWallemia sebi) was

sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease

[12]. The importance of the mycobiome in human health and disease is validated by studies show-

ing alterations in mycobiome composition in various autoimmune diseases such as inflammatory

bowel disorders (IBD), ankylosing spondylitis (AS), and type 2 diabetes mellitus (DM) and in

pwMS (people with MS) compared to healthy controls (HC) [15–18]. These studies have also

shown correlations between bacterial and fungal microbiota that are altered in disease states. The

relationship between gut bacteria and fungi has been demonstrated in the murine model where

bacteria outnumbered fungi by greater than three times prior to antibiotic administration, but

after antibiotic administration bacterial abundance dropped three-fold while fungal abundance

increased around 40-fold [19]. Thus, all these observations suggest that the gut mycobiome might

play an important role in the health and disease including MS.

Based on the association of gut mycobiota in other autoimmune diseases and also in pwMS,

which was recently showed by Shah et al [18], we hypothesized that the gut fungal microbiota

might be altered in MS patients. Therefore, in this study we profiled the fungal microbiota and

associated fungal functional characteristics in RRMS patients (MS) (n = 20) and compared them

with those of HC (n = 33). We also analyzed the bacterial microbiome of the same patients to

determine the correlation between the fungal and bacterial microbiome. We observed that the MS

patients have a distinct fungal microbiome compared to HC, with differential abundances of mul-

tiple fungal genera and fungal functions as well as altered fungal-bacterial relationships. A distinct

fungal microbiome in RRMS patients could have implications in the pathogenesis of MS, poten-

tially through functional differences and altered interactions with the bacterial microbiome.

Methods

Standard protocol approvals, registrations, and patient consents

The study was done in accordance with the guidelines approved by the University of Iowa

Institutional Review Board (IRB) (#201512717). A prior written informed consent was

obtained from all the subjects to participate in the study.
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Human subjects enrollment

Relapsing-Remitting Multiple Sclerosis (RRMS) patients (n = 22) who fulfill the McDonald

diagnostic criteria for MS were recruited from the Neuroimmunology Clinic at the University

of Iowa Hospital Clinics (UIHC) at the University of Iowa. Healthy controls (HC) (n = 34)

were also recruited through the University of Iowa (Table 1). Individuals eligible for the study

were those 18–63 years of age with a diagnosis of RRMS. All patients were either on MS treat-

ment or not on treatment for at least three months prior to enrollment. Patients and healthy

controls were asked to provide samples at least four weeks after their last dose of oral antibiot-

ics or laxatives, and at least three months after their last colonoscopy. Those with active preg-

nancy or a history of bariatric surgery were excluded from the study.

Human sample collection

Stool samples were collected by patients and HC in Commode Specimen Collection kits

(Fisher PA, USA) provided to them by our laboratory along with the instruction sheet and

shipped on frozen gel packs to our laboratory by overnight delivery. Once in the laboratory,

the stool was aliquoted and stored at -80 degrees until DNA extraction. The same collection

kits, instruction sheets, and processing methods were used for fecal samples from MS patients

and HC.

DNA extraction and sequencing

Microbial DNA was extracted from each fecal sample using Qiagen DNeasy PowerLyser

PowerSoil Kit (Qiagen, Germantown, MD) per the manufacturer’s instructions using a bead-

beating step (PowerLyzer 24 Homogenizer, Omni International, USA). The fungal micro-

biome was analyzed using Two-step PCR as described previously for bacterial microbiome

analysis [20] except instead of 16S rRNA, we targeted the internal transcribed spacer 2 (ITS2)

region of fungal 18S rRNA using the following primers: forward primer 86 F(50-30) GTGAAT
CATCGAATCTTTGAA and reverse primer 4R (50-30) TCCTCCGCTTATTGATATGC [21]. We

choose ITS-2 primer over others (ITS-1, 18s- etc.) as a previous study comparing different fun-

gal primers showed that ITS-2 specific primer allowed detection of maximum number of fun-

gal OTUs [21]. Fungal PCR conditions were as follows: 95˚C for 5 min, 35 cycles of 95˚C for

30s, 59˚C for 30s, 72˚C for 30s, and 72˚C for 10 min. Bacterial 16S rRNA sequencing was per-

formed as per protocol published by our lab [20].

Table 1. Biometric and MS patient treatment data.

HC MS p-value

Age: Mean ± SD 42 ± 14 43 ± 7.7 t-test: 0.61

Sex: Male/Female 5 / 28 5 / 15 Fisher: 0.48

BMI: Mean ± SD 24 ± 3.7 30 ± 7.9 t-test: 0.015

Treatment: Yes / No NA 16 / 4 NA

Treatment

Interferon beta 3

Glatiramer acetate 4

Ocrelizumab 3

Dimethyl fumarate 6

Not on treatment 4

https://doi.org/10.1371/journal.pone.0264556.t001
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Metagenomic profiling

The raw fungal ITS2 (internal transcribed spacer 2) sequence data was processed utilizing

DADA2 [22]. In brief, the reads were trimmed to remove the primer sequences, then truncated

based on a quality score of 25. Reads were then denoised to infer the exact sequence variants

by resolving single-nucleotide errors. Paired forward and reverse reads were merged, and any

resulting chimeras were removed to produce amplicon sequence variants (ASVs). These ASVs

were then assigned fungal taxonomy at the genus level using a naive Bayesian classifier method

and the UNITE database (Version 8.2) [23]. After the removal of three samples (2 MS and one

HC) with less than 1000 reads, 20 MS samples and 33 HC samples were available for fungal

profiling, with a median number of reads of 37,331.

The raw sequence data of the V3-V4 region of bacterial 16S rRNA was processed utilizing

DADA2. These sequences were processed as described above for ITS sequences, and the final

ASVs were assigned bacterial taxonomy at the kingdom to species levels using the Silva data-

base (version 138.1) [24] with a median number of reads of 49,976.

Functional profiling

The functional profile of the gut mycobiome was generated using FungalTraits database [25].

Of the 142 identified fungal genera in this study, 86 had functional entries in this database, and

the functional profile of each sample was then inferred using its fungal composition and the

functional data of each of these 86 fungal genera.

Statistical analysis

Analysis and figure generation of alpha diversity, beta diversity, and differential abundance of

all features was performed entirely in R (Version 4.0.3) using the vegan [26] and ggpubr [27]

packages with custom R scripts. Prior to statistical analysis, the fungal and bacterial datasets

were each constant-sum scaled to one million reads and generalized log-transformed. The fun-

gal and bacterial data were then filtered to remove low prevalence taxa. Alpha diversity and dif-

ferential abundance analysis between the MS and HC groups were performed using the

Wilcoxon test, and p-values were adjusted using the Benjamini-Hochberg algorithm. PERMA-

NOVA was performed to analyze the statistical significance of beta-diversity clustering using

the adonis2 function from the vegan package.

Inter-kingdom correlation analysis was conducted between the bacteria and fungi at the

genus level using Spearman’s rank correlation, and only correlations showing p-value less than

0.05 are reported. Bootstrapped random forest analysis was conducted using the Boruta pack-

age [28] at the suggested significance level of 0.01 with 500 trees for 100 iterations.

Results

Fungal microbiota of RRMS patients is different from healthy controls

To characterize the fungal microbiome diversity, we sequenced fecal samples of 20 RRMS

patients and 33 healthy controls (HC) using ITS2 rRNA sequencing. A total of 136 fungal gen-

era were identified, with 31 unique to the HC group, 73 unique to the MS group, and 32 pres-

ent in both groups. Alpha diversity using the Chao1 index showed greater richness in MS than

in HC (Fig 1A), though this was not statistically significant (p> 0.08). Principal coordinate

analysis of beta diversity using Bray-Curtis dissimilarity (Fig 1B) demonstrated distinct clus-

tering of the mycobiome of MS compared with HC (p = 0.011), while gender (p = 0.32) and

Body Mass Index (BMI) status (p = 0.73) did not show a significant effect on mycobiome com-

position. Interestingly, beta-diversity analysis of the MS group did not demonstrate a
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significant effect of treatment with dimethyl fumarate (p = 0.872) on the mycobiome composi-

tion (S1A Fig). Including other disease modifying treatments (DMTs) with at least 3 samples,

no significant effect was shown for treatment (p = 0.163; S1B Fig), gender (p = 0.197), or BMI

status (p = 0.414).

Overall, the two most prominent phyla by relative abundance were Ascomycota and Basi-
diomycota (Fig 1C), and the top five fungal genera were Saccharomyces, Candida,Malassezia,

Penicillium, and Cladosporium (Fig 1D), comprising 75.5% of all the identified fungal genera

in the samples.

Examining the differential abundance between the MS and HC groups at the phylum level

showed a lower abundance of Ascomycota (padj = 0.011) and higher abundance of Basidiomy-
cota (padj = 0.011) in the MS group compared to HC (padj = 0.011 and 0.011, respectively).

Previous studies in IBD and AS have shown that there is a strong negative correlation between

Basidiomycota and Ascomycota characterized by a higher Basidiomycota/Ascomycota ratio in

IBD [17] and AS [16]. In this study, we also observed that MS patients have an increased Basi-
diomycota/Ascomycota ratio (p = 0.0053) compared to HC (Fig 1E). Thus, our data demon-

strates a phylum-level shift in MS towards Basidiomycota and away from Ascomycota.

Interestingly, within the Ascomycota phylum, the genera Candida (padj = 0.021) and Epicoc-
cum (padj = 0.021) were more abundant in the MS group (Fig 2A & 2B), while only Saccharo-
myces (padj = 0.021) was depleted in the MS group (Fig 2B) compared with HC. Species-level

analysis showed Saccharomyces cerevisiae comprising 88% of the Saccharomyces genus and

Candida albicans comprising 81% of the Candida genus across all samples. Thus, our study

finds that MS patients have a distinct mycobiome compared to HC with enrichment or deple-

tion of certain fungi.

Random forest analysis to identify the potential discriminating fungi. We next assessed the

ability of the gut mycobiota profile to predict disease phenotype in our samples. A boot-

strapped random forest algorithm of 500 trees was used to generate a predictive model based

on the gut mycobiota profiles of the samples. The Boruta algorithm was then utilized to iden-

tify the fungal genera that were most important in distinguishing between MS and HC samples

at a significance level of 0.01.

Interestingly, the four aforementioned genera, Candida, Saccharomyces, Epicoccum, and

Malassezia, were again identified (Fig 2C). The Boruta algorithm additionally identified Peni-
cillium which is decreased in MS, andMalassezia, which is increased in MS (Fig 2C), as a sig-

nificantly important feature in distinguishing MS from HC. Thus, the random forest

classification analysis suggests that these fungal taxa could be important discriminators

between MS and HC.

Functional profile of gut mycobiome in MS patients

Analysis of the mycobiome functional profile determined from the FungalTraits database

revealed several enzymes whose enrichment differed significantly between MS and HC sam-

ples. Levels of amino acid permease (padj = 0.029), cellobiohydrolase (padj = 0.011), endoglu-

canase (padj = 0.029), and invertase (padj = 0.0211) were lower in MS patients compared to

HC (Fig 3), while amylase (padj = 0.011) was increased in these patients (Fig 3). These results

suggest potential differences in fungal metabolism and functional phenotypes in the gut of MS

patients.

Gut bacterial microbiome of RRMS patients is different from healthy controls. We also

characterized the bacterial microbiome of the same samples using 16S rRNA (V3-V4)

sequencing. A total of 285 bacterial genera were identified, with 196 genera in the HC group

and 185 genera in the MS group. Alpha diversity by Chao1 index demonstrated decreased
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Fig 1. Fungal microbiota of RRMS patients is different from healthy controls. (A) Fungal ASV richness estimated by Chao1 index in MS and HC.

(B) Principal coordinate analysis of Bray-Curtis dissimilarity of HC and MS shows that the mycobiome of HC and MS are distinct (PERMANOVA:

p = 0.011). Ellipses correspond to a 95% confidence intervals around the centroids for each group. (C) Bar plot showing the relative abundances of

fungal phyla. Basidiomycota was increased and Ascomycota was decreased in MS compared to HC. (D) Bar plot showing the top 10 fungal genera in HC

and MS (determined by average relative abundance across all samples). The top 10 genera account for 85.5% of all identified fungal genera. (E)

Basidiomycota/Ascomycota ratio is significantly increased in MS (p = 0.0053).

https://doi.org/10.1371/journal.pone.0264556.g001
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Fig 2. Differentially abundant fungal genera in RRMS versus healthy controls. (A) Bar plot showing relative

abundances of differentially abundant taxa (p< 0.05) at the phylum, family, and genus level. (B) Differentially

abundant fungal genera in MS and HC using Wilcoxon signed rank test and adjusted for multiple comparisons with

the Benjamini-Hochberg method at a significance level of 0.05. Candida, Epicoccum, andMalassezia are increased in

MS compared to HC. Saccharomyces is decreased in MS compared to HC. Penicillium was identified in random forest
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bacterial richness in the MS group compared with the HC group (p = 0.020; Fig 4A), aligning

with our previous study showing less bacterial diversity in the gut of MS patients [2]. Addition-

ally, the MS and HC groups clustered separately on principal coordinate analysis of beta diver-

sity using Bray-Curtis dissimilarity (p = 0.004; Fig 4B), indicating distinct microbiota profiles.

The five most prominent bacterial phyla across all the samples were Actinobacteria, Bacter-
oidetes, Firmicutes, Proteobacteria, and Verrucomicrobiota, accounting for 98.8% of all identi-

fied bacteria (S2 Fig), and of these the top 50 genera account for 94.8% of all identified bacteria

(Fig 4C) with Bacteroides, Alistipes, Agathobacter, Blautia, Faecalibacterium, and Akkermansia
comprising around 50% of all genera.

Within the Bacteroidetes phylum, the Barnesiellaceae (padj = 4.4e-3) family and one of its

genera, Barnesiella (padj = 5.9e-3), as well as the genus Odoribacter (Odoribacteraceae family;

padj = 0.045) were decreased in the MS group compared to HC (S3 Fig and Fig 4D). The other

differentially abundant family, Eggerthellaceae (Actinobacteria phylum; padj = 6.3e-3) and one

of its genera, Eggerthella (padj = 2.4e-4), were overabundant in MS compared to HC (S3 Fig

and Fig 4E). Within the Firmicutes phylum, an uncultured genus of the Oscillospiraceae family

(OscillospiraceaeUCG 003) was depleted in the MS group compared to HC (padj = 0.045)

while Blautia (padj = 0.045) andHungatella (padj = 0.045) were increased in MS (Fig 4E). We

have previously also shown Prevotella to be significantly decreased in MS patients and benefi-

cial in alleviating symptoms of EAE in mice through modulation of the gut microbiome [2,29].

In this study, the relative abundance of Prevotella was decreased in the MS group, though not

significantly (padj = 0.70; Fig 4C). Similarly, Akkermansia was increased in MS but did not

analysis as a significant feature and was decreased in MS, though the Wilcoxon test did not reach statistical significance

after adjusting for multiple comparisons. Abundance values are sum-scaled to 1 million and generalized log-

transformed. The � symbol indicates p-value<0.05. (C) Importance of features determined by random forest and

tested for significance with the Boruta algorithm at a significance level of 0.01.

https://doi.org/10.1371/journal.pone.0264556.g002

Fig 3. Functional profile of gut mycobiome in MS patients. Differentially enriched fungal functions using Wilcoxon signed rank test and

adjusted for multiple comparisons with the Benjamini-Hochberg method at a significance level of 0.05. Amino acid permease,

cellobiohydrolase, endoglucanase, and invertase are decreased in MS compared to HC. Amylase is increased in MS compared to HC.

Abundance values are sum-scaled to 1 million and generalized log-transformed.

https://doi.org/10.1371/journal.pone.0264556.g003
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Fig 4. Gut bacterial microbiome of RRMS patients is different from healthy. (A) Bacterial ASV richness estimated by Chao1 index showing decreased

bacterial richness in MS (p = 0.020). (B) Principal coordinate analysis of Bray-Curtis dissimilarity of HC and MS showing that the microbiome of HC and

MS are distinct (PERMANOVA: p = 0.004). Ellipses are visual and do not correspond to any statistical analysis. (C) Relative abundance of top 50 abundant

bacteria at the genus level. (D) Differentially abundant bacteria between HC and MS using Wilcoxon signed rank test and adjusted for multiple

comparisons with the Benjamini-Hochberg method at a significance level of 0.05. Abundance values are sum-scaled to 1 million and generalized log-

transformed. The �,��, and ��� symbol indicates p-values of<0.05,<0.01,<0.001, respectively.

https://doi.org/10.1371/journal.pone.0264556.g004
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reach statistical significance (padj = 0.73; Fig 4C). Overall, the shift in the bacterial microbiome

in MS patients in this study reveals a number of genera, several of which have already been

described in MS microbiome literature.

Correlation between gut mycobiome and microbiome

Comparing mycobiome changes with alterations in the bacterial microbiome of the samples

show that with decreased bacterial richness comes increased fungal richness. The ITS2/16S

ratio is increased in the MS group compared to the HC group (p = 0.040; Fig 5A). Across all

samples, bacterial and fungal richness were negatively correlated (R = -0.28, p = 0.042; Fig 5B).

Spearman correlation analysis reveals distinct fungal and bacterial interactions in MS and

HC (Fig 5C). The microbial interactions in the HC group are dominated by negative correla-

tions between several bacteria and six fungi. Meanwhile, the MS group exhibited more diverse

relationships between the two kingdoms, with numerous positive associations appearing

between various fungi and bacteria. MS patients with increased Blautia and Lactococcus in

their stool had decreased Saccharomyces and increased Candida. Candida was also positively

associated with Alistipes and Akkermansia.

Additionally, Epicoccum and Cladosporium are negatively correlated with Prevotella. Peni-
cillium is negatively correlated with Parasutterella andHoldemania and positive correlated

with Terrisporobacter and Turicibacter. Aspergillus shares only positive correlations with multi-

ple bacteria: Paludicola, an uncultured genus of the Oscillospiraceae family, and an uncultured

genus of the Butyricicoccaceae family. This demonstrates a shift towards potentially more com-

plex bacterial-fungal relationships in MS patients compared to HC.

Discussion

Our study characterizes the gut fungal microbiome (mycobiome) profile of RRMS patients

compared with healthy individuals and identify connections between the mycobiome and bac-

terial microbiome. Overall, the results of this study demonstrate that the mycobiota of MS

patients differs from that of healthy individuals with enrichment of Candida and Epicoccum,

lower relative abundance of Saccharomyces, and increased ITS2/16S ratio in MS patients.

Thus, our study highlights the important role of the understudied fungal microbiome in MS.

The gut fungal microbiome (mycobiome) profile of individuals with RRMS is a very young

field. While this manuscript was under review, Shah et al characterized the gut fungal micro-

biome (mycobiome) profile of pwMS patients using ITS1 amplicon sequencing and showed

that pwMS exhibit gut fungal dysbiosis compared to healthy individuals [18]. They found that

Saccharomyces and Aspergillus were relatively more abundant in patients with either RRMS,

PPMS, SPMS, and CIS compared to healthy individuals [18]. Our study focuses on RRMS

patients and adds to the analysis by Shah et al by demonstrating differences in the mycobiome

of MS patients compared to healthy individuals using ITS2 amplicon sequencing. We also

identified connections between the gut mycobiome and microbiome and examined possible

differences in fungal functional profiles. We chose the ITS2 region for fungal profiling instead

of ITS1 as a previous study comparing these two regions in fungal identification of the human

gut microbiome demonstrated that ITS2 allowed for improved identification of taxa in the gut

microbiome samples [30]. Indeed, while Shah et al identified 59 genera, another study in

patients with colonic polyps identified 479 genera using the ITS2 region [31]. Additionally, the

mycobiota of MS patients differs from that of healthy individuals with enrichment of Can-
dida–one of the major fungal genus in the human gut [32]. However, the previous study by

Shah et al reported very low levels (<1%) of Candida. We also observed that the Epicoccum
genus was relatively increased in MS patients while Saccharomyces was relatively decreased.
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Fig 5. Correlation between gut mycobiome and microbiome. (A) Ratio of ITS2 to 16S compared between groups. (B) Linear

regression of fungal and bacterial richness shows a negative correlation (Spearman’s R = -0.28, p = 0.042). (C) Correlation matrix

between bacteria and fungi using Spearman correlation. Values range from -1 to 1 with positive values as orange and red and negative

values as purple and blue (-1� R� 1). Only statistically significant correlations (p<0.05) are shown.

https://doi.org/10.1371/journal.pone.0264556.g005
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Additionally, an increased ITS2/16S ratio in MS patients pointed to an overall relative increase

in fungal diversity compared to bacterial diversity in the disease state.

We observed that Ascomycota and Basidiomycota were the main phyla present in MS and

HC. Ascomycota and Basidiomycota were negatively correlated with each other which had

been previously shown in other autoimmune diseases such as IBD [17] and AS [16]. MS

patients had increased Basidiomycota compared to Ascomycota and an increase in the Basidio-
mycota/Ascomycota ratio, similar to a previously reported ratio in IBD [17]. Meanwhile in AS

patients, Ascomycota abundance was increased and Basidiomycota abundance was decreased

[17]. These related findings suggest that shifts in Ascomycota and Basidiomycota proportions

might play a role in the pathogenesis of inflammatory diseases including MS. We detected two

fungal genera, Candida and Epiccocum, with higher relative abundance, and one genus, Sac-
charomyces, with lower abundance in MS compared to HC. Although fungi belonging to the

Candida species are considered commensal microbes, this genus has also been linked with

pathogenicity, especially in individuals with compromised immunity due to antibiotic usage,

immunodeficiency, or gut barrier breach [33]. Interestingly, Candida species overgrowth had

been reported in other autoimmune diseases such as IBD [17,34]. Thus, it is possible that bac-

terial dysbiosis and inflammatory conditions in the gut create favorable environments for

expansion of Candida species which can then exacerbate inflammatory diseases such as MS

and IBD through induction of pro-inflammatory responses. In contrast to Candida, Saccharo-
myces—which is considered a beneficial fungus—has been shown to be decreased in IBD. Our

findings showing a decreased abundance of Saccharomyces and increased abundance of Can-
dida in MS is in concordance with previous findings in IBD [17]. Additionally, in colitis it has

been observed that S. cerevisiaemay exhibit regulatory effects on the host, notably by inducing

higher IL-10 production from dendritic cells compared to Candida [17]. Moreover, colonic tis-

sue of mice receiving S. cerevisiae [35] showed increased expression of IL-10, suggesting that

either S. cerevisiae has anti-inflammatory potential or it is poorly adapted to an inflammatory

environment [17]. As MS is an inflammatory disease, gut mucosal inflammation might explain

the decrease in Saccharomyces and increase in Candida.

Gut bacterial profiling in this study revealed an increased relative abundance ofHungatella,

Eggerthella, and Blautia as well as decreased relative abundance of Odoribacter, Barnesiella,

and an unidentified genus of Oscillospiraceae. These findings align with previous MS micro-

biome studies showing increased relative abundance of Blautia and Eggerthella in MS [2,3]

and decreased relative abundance of Barnesiella [1]. Additionally, one study using a mouse

model had shown increased Odoribacter in mice with relapsing-remitting EAE [36]. Previous

studies have shown depletion of Prevotella and higher abundance of Akkermansia in MS

patients [1,2,37], and while we also observed similar trends, these did not reach statistical sig-

nificance. A number of factors could have contributed to differences in the microbiome pro-

files of our study, including different 16S rRNA variable region-specific primers, a recently

developed analysis pipeline using ASV instead of OTU-based taxonomic mapping, as well as

the geographical origin of the samples [38–40]. Our patients are on different DMT treatments

which can also modulate gut microbiome and intestinal permeability, but our results did not

demonstrate a significant impact of treatment with dimethyl fumarate on the fungal micro-

biome. Shah et al also did not find a different mycobiome between patients treated with DMTs

(n = 11) compared to those who were not-treated (n = 9) at six months. They also compared

the mycobiome changes in three pwMS on dimethyl fumarate (DMF) but found no consistent

changes in genus abundances nor alpha diversity after treatment at the six-month point [18].

Additionally, our female to male ratio of 5:1 in this study is higher than 3:1 [1,2] and 2:1 [8] in

previous studies, which could contribute to differences. Though our findings combined with

those by Shah et al were unable to identify an effect of DMT on the mycobiome, future studies
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with larger sample sizes will be required to determine precise relationship between DMT and

the human gut mycobiome.

In a healthy state, there is a symbiosis between bacteria, fungi, viruses, and the host. Similar

to bacteria, commensal fungi have been shown to play a significant role in maintaining

immune homeostasis, and perturbation of the healthy mycobiome can influence the local and

peripheral immune systems directly or indirectly through modulation of bacterial populations

[41–43]. Fungi may directly interact with the immune system in the gut and influence innate

and systemic immune response. Intestinal fungi and their metabolic products may also leak

out of the enteric luminal surfaces and activate immune cells [12,44–46]. Besides the direct

effect of fungi on the host, relationships between fungi and bacteria might play a critical role in

host immunity. Fungi and bacteria can compete for nutrients and adhesion sites and modulate

the environment [47,48]. Antibiotics have been linked to increasing growth of fungi in the

human intestinal tract [49]. In the mouse model, increased fungal abundance was observed

after antibiotic treatment which reduced after antibiotic cessation, pointing towards a balanc-

ing mechanism between microbiota and mycobiota in the gut [17,19]. Decreased bacterial

diversity favors the growth of certain fungal species, and certain fungi can switch from com-

mensal to pathogenic phenotypes [48]. In this study, we observed decreased bacterial alpha

diversity and increased fungal to bacterial richness in MS compared to HC, as evident from

the ITS2/16S ratio, suggesting that in MS the gut might favor fungi at the expense of bacteria.

The microbial interactions in the HC group are dominated by negative correlations

between several bacteria and fungi. However, our MS group exhibited more diverse relation-

ships between the bacteria and fungi. Specifically, MS patients with increased Candida also

had increased Alistipes, Akkermansia, and Lachnospiraceae GCA, and those with increased Sac-
charomyces also had increased Lactococcus, Blautia, and Romboutsia. It has been shown that in

healthy mucosa, yeast (e.g., Candida albicans) is kept at low levels or excluded by the indige-

nous bacterial microbiota by the mechanism of colonization resistance which is not yet defined

[50]. In fact, a previous study showed that germ-free mice are highly susceptible to Candida
infection and antibiotic treatment leads to an expansion of the fungal population [19,51].

Additionally, studies in IBD and ankylosing spondylitis have shown correlations between the

relative abundance of Saccharomyces and numerous bacterial genera that have been associated

with these diseases. Thus, our study along with previous studies highlight a role of fungal-bac-

terial interactions in MS as well as other autoimmune diseases.

Functional profiling of the fungal communities in this study suggests modulation of fungal

carbohydrate and amino acid pathways. More specifically, while the functional profile of the

MS group mycobiome suggested decreased cellulose metabolism by the gut mycobiome

(decreased cellobiohydrolase and endoglucanase), starch metabolism by amylase was sug-

gested to be increased. Invertase, which was decreased in MS, can be produced by fungi,

mainly Saccharomyces cerevisiae [52]. It hydrolyzes sucrose into glucose and fructose and also

has antibacterial and antioxidant properties [53]. Sucrose provides a primary substrate for the

generation of starch and cellulose [54]. Both cellulose and starch are carbohydrates that can be

metabolized into short-chain fatty acids (SCFAs) in the human gut [55]. However, while the

metabolism of starches has been shown to increase fecal butyrate levels [56], metabolism of cel-

lulose-related structures [57] leads to increased gut propionate levels [58].

Currently, there are limited tools for functional analysis of the mycobiome, and this study

utilized a still growing database of fungal functional profiles. These profiles have been curated

by compiling the results of numerous observational and experimental studies spanning over

10,000 fungal genera as of December 2020 [25]. Furthermore, studies examining the functional

traits of fungi have shown that many of these traits are conserved at the genus and species lev-

els, thus identification at these levels allows for reasonable functional inferences [59]. However,
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functional profiling of fungi is difficult due to the difficulty of culturing fungi and their highly

varied, environmentally dependent trophic modes [25]. The quality of these profiles derived

from ITS1/2 sequencing data will continue to improve as the field progresses and fungal data-

bases grow. Alternatively, while more cost and time-intensive, whole genome sequencing of

the mycobiome would provide detailed data for more reliable functional analysis of the

mycobiome.

We acknowledge that our small sample size is a limitation of the study. We didn’t observe

any effect of different drug treatments including dimethyl fumarate on fungal composition.

However due to small sample size, we cannot rule out the impact of treatment on the myco-

biome and gut barrier integrity. Another limitation of this study was the different BMI distri-

butions in the HC and MS groups with latter showing higher BMI. Interestingly, BMI was not

significantly correlated to most of the differentially abundant bacteria or fungi except for

Eggerthella. Nonetheless, future studies would benefit from larger sample sizes in order to bet-

ter isolate the microbiota differences related to MS from those related to BMI and different

treatment groups.

Conclusion

We observed that RRMS patients exhibit an altered gut mycobiome along with an altered gut

microbiome. RRMS patients also showed variations in bacterial and fungal relationships with

increased ratios of fungal/bacterial abundance and richness. Shifts in fungal functional profiles

were also observed in RRMS patients compared to HC. Thus, our data suggest that the myco-

biome may play an important role in the pathobiology of MS. Whether changes in the myco-

biome play a role in initiating MS pathophysiology or modulating its presentation, or whether

the pathology of MS leads to changes in the fungal mycobiome remains an important question

for future studies.
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