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cycle proliferation of conventional T cells ex vivo. Relapse 
of AML was not prognosticated by Treg counts at onset of 
treatment or after the first cycle of immunotherapy. How-
ever, the magnitude of Treg induction was diminished in 
subsequent treatment cycles. Exploratory analyses implied 
that a reduced expansion of Tregs in later treatment cycles 
and a short Treg telomere length were significantly associ-
ated with a favorable clinical outcome. Our results suggest 
that immunotherapy with HDC/IL-2 in AML entails induc-
tion of immunosuppressive Tregs that may be targeted for 
improved anti-leukemic efficiency.
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Allo-SCT	� Allogeneic stem cell transplant
AML	� Acute myeloid leukemia
C1D1	� Cycle 1, day 1
C1D21	� Cycle 1, day 21
C3D1	� Cycle 3, day 1
C3D21	� Cycle 3, day 21
CR	� Complete remission
GvHD	� Graft-versus-host disease
HDC	� Histamine dihydrochloride
iTregs	� Induced regulatory T cells
LFS	� Leukemia-free survival
NOX2	� Nicotinamide adenine dinucleotide phosphate 

oxidase isoform 2
nTregs	� Natural regulatory T cells
OS	� Overall survival
qPCR	� Quantitative PCR
ROS	� Reactive oxygen species
Tcons	� Conventional T cells

Abstract  Regulatory T cells (Tregs) have been proposed 
to dampen functions of anti-neoplastic immune cells 
and thus promote cancer progression. In a phase IV trial 
(Re:Mission Trial, NCT01347996, http://www.clinicaltri-
als.gov) 84 patients (age 18–79) with acute myeloid leu-
kemia (AML) in first complete remission (CR) received 
ten consecutive 3-week cycles of immunotherapy with 
histamine dihydrochloride (HDC) and low-dose interleu-
kin-2 (IL-2) to prevent relapse of leukemia in the post-
consolidation phase. This study aimed at defining the 
features, function and dynamics of Foxp3+CD25highCD4+ 
Tregs during immunotherapy and to determine the potential 
impact of Tregs on relapse risk and survival. We observed 
a pronounced increase in Treg counts in peripheral blood 
during initial cycles of HDC/IL-2. The accumulating Tregs 
resembled thymic-derived natural Tregs (nTregs), showed 
augmented expression of CTLA-4 and suppressed the cell 
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Tregs	� Regulatory T cells
TSDR	� Regulatory T cell-specific demethylated 

region

Introduction

Regulatory T cells (Tregs) are Foxp3+CD25highCD4+ T cells 
with diverse immunosuppressive functions. Subsets of Tregs 
include natural Tregs (nTregs), that are thymus-derived but 
undergo further expansion in peripheral tissues, and induced 
Tregs (iTregs) that are converted from conventional T cells 
(Tcons) in the periphery [1–3]. Both subsets have been shown 
to suppress autoreactive lymphocytes and thus to limit the 
magnitude of innate and adaptive immune responses [2, 4, 
5]. Accordingly, impaired Treg function aggravates autoim-
mune diseases while Treg-mediated immunosuppression may 
inhibit pathogen clearance and promote chronic infection [6, 
7]. In addition to controlling autoimmunity, Tregs have been 
ascribed a role as mediators of cancer-related immunosup-
pression. Studies in murine models show that Tregs accumu-
late in several forms of experimental cancer and that deple-
tion of Tregs or strategies to target their immunosuppressive 
features reduce cancer growth [8, 9]. In many solid human 
cancers, Tregs accumulate in the tumor microenvironment 
and their presence typically, albeit not invariably, heralds 
advanced disease and poor survival [10–13].

Acute myeloid leukemia (AML) is characterized by rapid 
expansion of immature myeloid cells in bone marrow and 
other organs [14]. In AML, the malignant clone is report-
edly controlled by cellular immunity, including natural killer 
(NK) cells and subsets of cytotoxic (CD8+) T cells [15]. 
While relatively little is known about the role of Tregs for 
the efficiency of anti-leukemic immunity in AML [16, 17], 
several other immunosuppressive pathways of relevance to 
the course of disease have been described [18–20] including 
immunosuppression exerted by NOX2-derived reactive oxy-
gen species (ROS) released from myeloid cells [21]. Under 
conditions of NOX2-related oxidative stress, targeting of 
ROS formation using the NOX2 inhibitor histamine dihy-
drochloride (HDC) upholds NK cell and T cell function and 
improves the efficiency of NK- and T cell-activating agents 
such as interleukin-2 (IL-2) [22–25]. Monotherapy with 
IL-2 has yielded disappointment in several clinical trials in 
AML [26–31]. However, phase III trial results showed that 
the combination of HDC and low-dose IL-2 improves the 
leukemia-free survival (LFS) of AML patients in complete 
remission (CR) after chemotherapy [32], thus supporting 
the clinical relevance of NOX2-mediated immunosuppres-
sion in AML.

The IL-2 component of the HDC/IL-2 regimen may 
expand Tregs as these cells express high-affinity IL-2 recep-
tors (CD25) and rely on exogenous IL-2 for proliferation 

[33, 34]. Treatment with IL-2 has been shown to increase 
the population of Tregs and reduce graft-versus-host mani-
festations in cancer patients receiving allogeneic stem cell 
transplants (allo-SCT) [35–38]. It is thus conceivable that 
IL-2-driven Treg expansion may limit the anti-leukemic effi-
ciency of HDC/IL-2 immunotherapy. For the present study, 
we monitored Treg number and function in AML patients in 
first CR who received HDC/IL-2 for relapse prevention in a 
phase IV trial. Our results imply that treatment with HDC/
IL-2 entails pronounced accumulation of nTregs in blood and 
that aspects of Treg function are relevant to relapse risk in 
AML.

Patients, materials and methods

Patients, study design and objectives

The Re:Mission trial (NCT01347996, registered at http://
www.clinicaltrials.gov) was a single-armed multicenter 
phase IV study that enrolled 84 patients (age 18–79) with 
confirmed AML in first CR who were not eligible for allo-
SCT. The patients received ten consecutive 21-day cycles 
of HDC/IL-2 during 18 months or until relapse or death. 
Each cycle comprised 0.5 mg histamine dihydrochloride 
(HDC; Ceplene®) and 16,400 U/kg human recombinant 
IL-2 (aldesleukin) that were administered by subcutaneous 
injection twice daily. The off-treatment periods in cycle 1–3 
were 3 weeks, while the off-treatment periods between cycle 
4–10 were extended to 6 weeks. All patients were followed 
for at least 24 months after enrollment. Fourteen patients 
discontinued prematurely from the study and were censored 
at the last captured follow-up date. The exclusion criteria 
for enrollment were identical to those employed in a previ-
ous phase III trial [32]. The primary endpoints comprised 
assessment of the quantitative and qualitative pharmacody-
namic properties of HDC/IL-2, including monitoring of T 
and NK cell phenotypes before and after treatment cycles 
while analyses of aspects of immunity versus outcome (LFS 
and overall survival; OS) were performed post hoc. Patient 
characteristics, including details regarding previous induc-
tion and consolidation therapy and risk group distribution 
are accounted for in previous publications [39–41] and in 
Table 1. The trial was approved by the Ethical Committees 
of each participating institution and all patients gave written 
informed consent before enrollment.

Isolation of PBMCs from healthy donors and patient 
samples

Buffy coats from healthy donors were obtained from the 
Blood Center at the Sahlgrenska University Hospital, Goth-
enburg, Sweden. To remove erythrocytes, the blood was 

http://www.clinicaltrials.gov
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mixed at a 1:1 ratio with 2% dextran and left to sediment. 
The upper phase was transferred to tubes containing Ficoll/
Lymphoprep (Alere AB, Lidingö, Sweden) and peripheral 
blood mononuclear cells (PBMCs) were isolated by den-
sity gradient centrifugation. The PBMCs were cryopre-
served until further use. Peripheral blood was collected 
from patients in the Re:Mission trial before and after the 
first and third treatment cycles, i.e., cycle 1, day 1 (C1D1) 
and cycle 1, day 21 (C1D21), cycle 3, day 1 (C3D1) and 
cycle 3, day 21 (C3D21). Patient PBMCs were isolated and 
cryopreserved at local sites and shipped on dry ice to the 
central laboratory (the TIMM Laboratory, Sahlgrenska Can-
cer Center, University of Gothenburg, Sweden) for analysis.

Staining and flow cytometry

Cryopreserved samples were quickly thawed, washed 
and stained with LIVE/DEAD fixable yellow stain (Life 

technologies, Grand Island, NY, USA). Thereafter, cells 
were washed and incubated with an antibody cocktail for 
surface markers in PBS containing 0.5% BSA and 0.1% 
EDTA or in Brilliant stain buffer (BD Biosciences, Stock-
holm, Sweden). The following anti-human monoclonal 
antibodies were purchased from BD Biosciences: CD3-
FITC (HIT3a), CD3-Brilliant Violet 711 (UCHT1), CD4-
APC-H7 (RPA-T4), CD8-PerCP-Cy5.5 (SK1), CD14-
FITC (MϕP9), CD25-Brilliant Violet 421 (M-A251), 
CD56-PE-Cy7 (NCAM16.2) and CD127-AF647 (HIL-
7R-M21). CTLA-4-PE-Cy7 (L3D10) was obtained from 
Biolegend (San Diego, CA, USA) and CD14-Qdot655 
(TüK4) from Life Technologies. For intracellular stain-
ing with Foxp3-PE (3G3; Miltenyi Biotec, Auburn, CA) 
and Helios-AF647 (22F6; BD Biosciences), cells were 
fixed and permeabilized using the Foxp3 fixation/per-
meabilization kit (eBioscience, San Diego, CA, USA) 
according to the manufacturer’s protocol. A 4-laser BD 
LSRFortessa SORP flow cytometer (405, 488, 532, 
and 640 nm; BD Biosciences) was employed to analyze 
samples. Data analysis was performed using the FlowJo 
software, version 7.6.5 or later (TreeStar, Ashland, OR, 
USA), or FACSDiva software, version 6 or later (BD 
Biosciences). Samples with less than 25% viability were 
excluded.

Blood samples were available from 81 out of 84 
patients. Differential counts of whole blood were per-
formed at local sites and were utilized to calculate abso-
lute counts of Tregs in blood. Notably, the definition of 
Tregs in this study was restricted to Foxp3+CD25highCD4+ 
cells. All available samples were analyzed for Treg con-
tent. If an analysis failed according to pre-defined cri-
teria (experimental failure, few cells, poor cellular 
viability), a second sample was thawed for re-analysis. 
If the second attempt also failed to generate data, the 
sample was excluded from analysis. A thorough analy-
sis of expression of Treg markers (including CTLA-4 and 
Helios) was performed in 25 randomly selected patients. 
These patients were largely representative of all partici-
pating patients in terms of age (mean age for selected 
group 57.7 years (23.8–76.5 years) vs. mean age for all 
patients 58.6 years (19–77 years), risk group classifi-
cation according to recommendations by the European 
LeukemiaNet [42] [among the selected patients 6 (24%) 
belonged to the favorable group, 14 (56%) to the interme-
diate group and 3 (12%) to the adverse group, 2 (8%) not 
done, whereas among all patients 34 (40.5%) belonged to 
the favorable group, 38 (45.2%) to the intermediate group 
and 7 (8.3%) to the adverse group, 5 (6%) not done] and 
French American British (FAB) classification (data not 
shown). All successfully analyzed samples, according to 
the pre-defined criteria stated above, were included in 
this report.

Table 1   Patient characteristics

n (%)
All 
patients 
(n = 84)

Sex
 Female 44 (52)
 Male 40 (48)

Risk group
 Favorable risk 34 (40)
 Intermediate I 25 (30)
 Intermediate II 13 (15)
 High risk 7 (8)
 Not done 5 (6)

Karyotype
 Normal 44 (52)
 Favorable 14 (17)
 Unfavorable 7 (8)
 Other 15 (18)
 Not done 4 (5)

Mutation status
 NPM1 n = 69

25 (36)
 FLT3 n = 72

6 (8)
 CEBPA n = 42

3 (7)
Induction courses
 1 63 (75)
 >1 21 (25)

Consolidation courses
 0–2 41 (49)
 >2 43 (51)
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Treg methylation analysis

Tregs (CD4+CD14−CD25hiCD127low) were sorted from blood 
samples recovered at the end of treatment cycle 3 (C3D21) 
and from healthy subjects. Sorted cells (at least 40,000 cells 
per assay) were washed before being frozen in 200 µl PBS. 
The DNA methylation status of 15 CpG-motifs within the 
Treg-specific demethylated region (TSDR) was analyzed by 
bisulphite sequencing performed by Epiontis GmbH (Berlin, 
Germany) as previously described [43]. Only male subjects 
were included in analyses of Treg methylation status cells 
since the FOXP3 gene locus is located on the X-chromosome 
[44] and X-chromosome inactivation in females would likely 
influence results.

Treg suppression assay

Patient samples collected on C3D21 with a Treg content 
of 15–40% of the CD4+ population were used in Treg sup-
pression assays ex vivo. PBMCs collected from healthy 
donors served as control. Cells were stained with anti-
human monoclonal antibodies as described above. Tregs 
(CD4+CD14−CD25hiCD127low) and conventional CD4+ T 
cells (Tcons; CD4+CD14−CD25lowCD127hi) were sorted on 
a 3-laser BD FACSAriaIII flow cytometer (405, 488 and 
640 nm; BD Biosciences). The gating strategy is shown 
in Supplementary Fig. 2. The sorted Tcons were stained 
with CellTrace™ violet (Life Technologies) and 35,000 
cells per well were seeded together with 2 µg/ml soluble 
anti-CD28, in X-VIVO™ 15 serum-free medium (Lonza 
Group Ltd, Basel, Switzerland) to a 384-well plate coated 
with anti-CD3 (OKT3; eBioscience). An equal number of 
Tregs (35,000/well) was added to half of the wells. After 
4–5 days of culture the proliferation of Tcons was deter-
mined by measuring the intensity of the CellTrace™ vio-
let staining on an LSRFortessa SORP flow cytometer (BD 
Biosciences).

Quantitative PCR telomere length assay

Tregs (CD4+CD25hiCD127low) were sorted from patient 
blood samples recovered at C3D1 and C3D21 or from 
healthy controls. Cells were sorted into 96-well plates 
(Life Technologies) for direct cell lysis and kept at −80 °C 
until analysis. Optimally, four technical replicates of 400 
cells/well were obtained from all blood samples. Protease 
from Streptomyces griseus (2 μg; Sigma-Aldrich) diluted in 
PBS (Life Technologies) was added to each well followed 
by incubation at 37 °C for 10 min and enzyme inactiva-
tion at 95 °C for 15 min. The plates were centrifuged at 
3000 rpm for 5 min. Quantitative PCR (qPCR) was per-
formed using a CFX384 Touch Real-Time PCR Detection 
System (Bio-Rad). Primers designed by Cawthon [45] were 

used for amplification of a short fixed-length product at a 
copy number proportional to telomere length, and of the 
single copy gene albumin, in separate wells. Each 10-µl 
qPCR reaction contained 1X TATAA SYBR GrandMas-
ter Mix (TATAA Biocenter), 400 nM of each primer, and 
2 µl protease-treated DNA. Each technical replicate was 
assayed in duplicate. The thermal cycling profile was 95 °C 
for 1 min, 2 cycles of 94 °C for 15 s and 49 °C for 15 s, and 
40 cycles of amplification (94 °C for 15 s, 62 °C for 10 s 
and 74 °C for 15 s). Formation of the correct PCR products 
was confirmed by melting-curve analysis. Relative telomere 
lengths were determined by normalizing the telomere qPCR 
signals against signals observed in the corresponding albu-
min gene assays.

Statistical analyses

Single comparisons of Treg, Tcon and NK cell phenotypes 
were performed by paired Student’s t test in accord-
ance with the pre-defined statistical plan. Patients were 
dichotomized by the median Treg cell number, frequency 
and telomere length for analyses of LFS (log-rank test). 
LFS was defined as the time in days from start of immu-
notherapy with HDC/IL-2 to relapse or death from any 
cause using data available at the trial closing date (October 
13, 2014), i.e., when patients had been followed-up for at 
least 24 months. Cox multivariable regression analysis that 
included age and number of induction cycles as potential 
confounders was utilized to further determine the impact 
of Treg distribution on LFS. Statistical analyses were per-
formed using Graphpad Prism (Graph Pad Software, La 
Jolla, CA, USA) and IBM SPSS Statistics (IBM Corp., 
Armonk, NY, USA) software. All indicated p values are 
two-sided.

Results

Expansion of Tregs in blood during cycles 
of immunotherapy

Peripheral blood was drawn before and after the first and 
third 3-week cycle of HDC/IL-2 immunotherapy and ana-
lyzed for content of Tregs with Foxp3+CD25highCD4+ phe-
notype. A pronounced increase in the absolute numbers of 
blood Tregs (Fig. 1a, b) and in the percentage of Tregs among 
CD4+ cells (Fig. 4a) was observed during the first HDC/
IL-2 treatment cycle. No significant changes in the absolute 
counts of Foxp3−CD4+ T cells were observed during treat-
ment cycles (data not shown). Treg levels in blood contracted 
to baseline levels after completion of a treatment cycle and 
were again induced during subsequent treatment cycles 
albeit to a significantly lower extent (Figs. 1b, 4a).
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In a first attempt to determine the impact of Treg levels on 
clinical outcome, patients were dichotomized by the median 
Treg count at onset of therapy (cycle 1, day 1; C1D1) or 
after the first treatment cycle (C1D21) followed by analysis 
of LFS. The Treg counts before or after the first treatment 
cycle did not predict LFS (Fig. 1c). Also, LFS did not differ 
between patients who were dichotomized based on high or 
low induction of Tregs during cycle 1 (Fig. 1c) or between 
patients in upper or lower quartiles of Tregs at onset or during 
therapy (p > 0.5, data not shown).

The majority of expanded Tregs show stable Foxp3 
expression

To determine the origin and stability of the expanded Tregs, 
we analyzed the methylation status of the Treg-specific dem-
ethylated region (TSDR) in the FOXP3 gene locus in Tregs 
purified after a HDC/IL-2 treatment cycle. A demethylated 

promoter reflects a stable Foxp3 expression, which is char-
acteristic of thymic-derived nTregs. The TSDR region in Tcons 
as well as in iTregs is, on the other hand, generally methylated 
[43, 46]. As shown in Fig. 2a, b, the TSDR in the FOXP3 
gene locus of the expanded Tregs was predominantly dem-
ethylated. The accumulating Tregs thus showed stable Foxp3 
expression and hence resembled nTregs, which was further 
supported by their expression of Helios (Fig. 2c), a marker 
proposed to identify nTregs [47].

Immunosuppressive features of expanded Tregs

Numerous immunosuppressive features have been attrib-
uted to Tregs, including the constitutive expression of the 
inhibitory receptor CTLA-4 [48]. During cycles of HDC/
IL-2, the expression of cell surface CTLA-4 on Tregs, but 
not on Tcons, was significantly increased followed by con-
traction to baseline levels between cycles (Fig. 3a, b). In 

%62%3.3

12D1C1D1C

Foxp3

C
D

25

1D1C-12D1C12D1C1D1C

ba

c

Fig. 1   Tregs expand during immunotherapy with HDC/IL-2. a Repre-
sentative dot plots of Tregs (defined as Foxp3+CD25highCD4+) before 
(cycle 1, day 1, C1D1) and after (C1D21) the first HDC/IL-2 treat-
ment cycle. b Box plots represent blood counts of Tregs before (D1) 
and after (D21) cycles 1 and 3 of immunotherapy (C1D1 n  =  59, 
C1D21 n = 53, C3D1 n = 51, C3D21 n = 50, Student’s paired t test). 

c Patients were dichotomized by the median for low number of Tregs 
in black and high number of Tregs in red, at onset of immunotherapy 
(C1D1; left panel) or end of cycle 1 (C1D21; mid panel). The right 
panel shows the LFS of patients with low or high induction of Treg 
cell numbers during the first treatment cycle as analyzed by the log-
rank test
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line with the above-referenced findings for Treg induction 
(Fig. 1c), the expression level of CTLA-4 on Tregs did not 
significantly impact on patient outcome in terms of LFS 
(data not shown).

We next determined whether the accumulating Tregs 
retained the immunosuppressive features of normal Tregs. 
To this end, Tregs (CD4+CD14−CD25hiCD127low) and 
Tcons (CD4+CD14−CD25lowCD127hi) were FACS-sorted 
from patient blood after a treatment cycle followed by 
assessment of the proliferation of anti-CD3/anti-CD28-
stimulated Tcons in the presence or absence of Tregs. The 
patient-derived expanded Tregs reduced the proliferation 
of autologous Tcons as efficiently as did Tregs from healthy 
blood donors (Fig. 3c–e). Of note, the patient-derived Tcons 
proliferated more vigorously in response to anti-CD3/

anti-CD28-stimulation compared with healthy donor Tcons 
(Fig. 3c, d), likely reflecting their primed status at the end 
of a HDC/IL-2 cycle.

Treg exhaustion and short Treg telomere length predict 
favorable clinical outcome

The analyses accounted for above indicated that the Tregs 
that accumulated during HDC/IL-2 immunotherapy did 
not negatively impact on clinical outcome despite showing 
features of immunosuppression. In addition to Tregs, NK 
cell counts were markedly increased in blood during treat-
ment cycles of HDC/IL-2 (Fig. 4a, b). The favorable impact 
of aspects of NK cell biology on the outcome of patients 
in this trial is described in detail elsewhere [40, 41]. To 

CpG ID
NA AMP772:45

Methylation [%] NA AMP772:58
100 AMP772:83
90 AMP772:155
80 AMP772:190
70 AMP772:209
60 AMP772:218
50 AMP772:226
40 AMP772:230
30 AMP772:236
20 AMP772:239
10 AMP772:249
0 AMP772:257

AMP772:298
AMP772:303

Tcon Healthy donors Re:Mission patientsa

cb

Fig. 2   Expanded Tregs resemble thymic-derived nTregs. a Methyla-
tion pattern of 15 CpG islands in the TSDR, located in the FOXP3 
gene locus, for sorted Tcons from healthy donors (n = 2), sorted Tregs 
from healthy donors (n = 8) and sorted Tregs from Re:Mission patients 
(n = 9) with samples collected after treatment cycle 3 (C3D21). The 
color code indicates percentage methylation of each CpG island with 
yellow representing absence of methylation and blue 100% methyla-

tion. NA not analyzed. b Bars show the mean methylation of each 
CpG-site for healthy donors (n  =  8) and Re:Mission trial patients 
(n  =  9). Error bars display standard error of the mean (SEM). c 
Expression of Helios in Tregs before and after cycle 1 and cycle 3 
of treatment with HDC/IL-2 (C1D1 n  =  16, C1D21 n  =  22, C3D1 
n = 13, C3D21 n = 14). Statistical analyses were performed by Stu-
dent’s paired t test
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further elucidate the reasons for the apparent inability of 
the accumulating Tregs to adversely affect patient outcome, 
we compared the kinetics of Treg and NK cell accumula-
tion during immunotherapy. As shown in Fig. 4a, b, the 

magnitude of Treg induction, but not that of NK cell induc-
tion, was reduced in later treatment cycles. Furthermore, 
patients displaying high reduction in the fraction of Tregs 
at the end of cycle 3 compared with the end of cycle 1 

Fig. 3   Expanded Tregs from Re:Mission trial patients are immuno-
suppressive. Median fluorescence intensity (MFI) of CTLA-4 on Tregs 
(a) and Tcons (b) in patient blood before and after treatment cycles 1 
(C1D1 n = 19, C1D21 n = 25) and 3 (C3D1 n = 16, C3D21 n = 17). 
c Representative histograms of Tcon proliferation from a healthy donor 
and a Re:Mission patient. Black lines show the proliferation of Tcons 

in wells without Tregs and red shaded areas show proliferation of Tcons 
when Tregs were added in a ratio of 1:1. Division index (d) and pro-
liferation index (e) are shown for Tcons from healthy donors (n = 5) 
and Re:Mission trial patients (n = 4) at the end of treatment cycle 3. 
Statistical analyses were performed by Student’s paired t test
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showed significantly improved LFS (Fig. 4c). This differ-
ence remained significant in a multivariable analysis cor-
recting for potential confounders for LFS (p = 0.025, Cox 
multivariable regression analysis).

To clarify the mechanism underlying the decline in Treg 
induction during later treatment cycles, we set up an assay to 
determine telomere length by qPCR. Tregs were FACS-sorted 
from patient samples before and after treatment cycle 3 and 
analyzed for telomere length. The Treg telomere length did 
not differ significantly before and after a treatment cycle 
(Fig. 4d). However, short Treg telomeres at the end of treat-
ment cycle 3 were significantly associated with reduced 
relapse risk (Fig. 4e).

Discussion

Upon diagnosis, AML patients receive induction chem-
otherapy aiming to achieve CR, which is defined as the 
microscopic disappearance of leukemic cells and the 
return of normal hematopoiesis. Despite additional courses 
of chemotherapy (consolidation), relapse in CR is com-
mon and significantly explains why the long-term survival 
of adult AML patients remains in the range of 30–40% 
[14]. A large body of evidence, including the graft-versus-
leukemia reaction that mediates relapse prevention after 
allo-SCT, implicates functions of cytotoxic T cells and 
NK cells in controlling the malignant clone in AML [15, 

ba

edc T12D3C-12D1C reg telomere length

Fig. 4   Expansion of Tregs is reduced in later cycles of immunother-
apy. Box plots display (a) the frequency of Tregs within the CD4+ 
compartment (C1D1 n = 59, C1D21 n = 63, C3D1 n = 52, C3D21 
n  =  53), and (b) frequency of NK cells as percentage of lympho-
cytes (C1D1 n = 62, C1D21 n = 63, C3D1 n = 53, C3D21 n = 53), 
before (D1) and after (D21) the first and third HDC/IL-2 treatment 
cycle. Statistical analyses were performed by Student’s paired t test. 
c Patients were dichotomized by the median for low (black) or high 

(red) reduction in Treg percentage from the end of cycle 1 to the end 
of cycle 3, and LFS was analyzed by the log-rank test. d Relative tel-
omere length of Tregs FACS-sorted from patient blood obtained before 
and after the third treatment cycle or from healthy blood donors 
(Ctrl). e Kaplan–Meier plot comparing the LFS of patients with Treg 
telomere lengths on C3D21 below (black) and above (red) the median 
(log-rank test)
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39–41]. The purported role of cell-mediated immunity for 
the surveillance of leukemic cells in AML has inspired the 
development of immunotherapeutic strategies, in particu-
lar for patients in CR who harbor a minimal yet potentially 
life-threatening burden of leukemia (reviewed in [15]).

HDC/IL-2 is currently the only documented effective 
non-transplant immunotherapy for relapse prevention in 
AML beyond the chemotherapy phase [15, 32]. As the IL-2 
component of this regimen may induce Tregs [35–38] the 
present study was designed to determine the magnitude of 
Treg induction during immunotherapy, the origin and func-
tion of accumulating Tregs and the potential impact of Tregs 
on relapse risk. We therefore analyzed serial blood sam-
ples from patients in first CR participating in the phase IV 
Re:Mission trial (n = 84) who received ten 3-week cycles 
of HDC/IL-2 after the completion of consolidation chem-
otherapy. The frequency of Tregs at the onset of immuno-
therapy was within or below the range in healthy subjects 
(3.1 ± 2.2% of CD4+ T cells; mean ± SD), which is in agree-
ment with a recent study of AML patients in CR [49]. Treg 
counts increased considerably during cycles of HDC/IL-2, 
in particular during the first treatment cycle. At the end of 
the first cycle, Tregs typically comprised 15–25% of the CD4+ 
cell population in blood. These results concur with previous 
reports of Treg induction during treatment of cancer patients 
with IL-2 [35, 37, 38] and is likely explained by IL-2 acting 
via the high-affinity IL-2 receptor CD25 that is constitutively 
expressed by nTregs. However, randomized comparisons are 
required to exclude the possibility that the HDC component 
contributed to Treg induction. While we did not have access 
to bone marrow samples in this study, we reason that a simi-
lar increase in Treg counts is likely to occur also in the bone 
marrow, since the number of Tregs in blood and bone marrow 
were previously reported to be highly correlated [50].

We then asked whether the expanded population of Tregs 
showed stable or transient expression of Foxp3. In these 
cells, the TSDR in the FOXP3 gene locus was highly dem-
ethylated implying stable Foxp3 expression and suggest-
ing that the reduction of Treg counts between cycles was 
explained by Treg apoptosis rather than the Tregs being repro-
grammed into Tcons. Moreover, there was no increase in the 
number of Tcons during or between treatment cycles (data 
not shown). The thymus-derived nTregs are known to have 
a demethylated TSDR in the FOXP3 gene locus while this 
region generally is more methylated in iTregs. With the pre-
caution that the TSDR region may become demethylated 
also in iTregs in response to antigen stimulation in the pres-
ence of IL-2 [51], we propose that the expanded Tregs were 
mainly derived from proliferating nTregs.

We observed that the Tregs accumulating at the end of 
a HDC/IL-2 treatment cycle expressed elevated levels of 
CTLA-4, which reportedly contributes to the immunosup-
pression exerted by these cells [48]. Also, the expanded 

Tregs suppressed the proliferation of Tcons in co-culture 
assays ex vivo. While it is conceivable that Treg induction 
may dampen the development of cell-mediated immunity 
of relevance to elimination of residual leukemia, our initial 
analysis did not reveal associations between the magnitude 
of Treg induction during initial cycles of immunotherapy and 
clinical outcome. It is conceivable, however, that the lack 
of association between Treg induction and clinical outcome 
may result from effects of HDC—a NOX2 inhibitor—on 
the immunosuppressive properties of Tregs. This possibility 
is supported by a previous study showing that immunosup-
pressive features of CD8+ Tregs rely on functional NOX2 
[52]. However, monotherapy with IL-2 has been reported 
to increase Treg counts and limit the extent of graft-versus-
host disease (GvHD) after allo-SCT in cancer patients, 
apparently without negatively affecting survival [35]. In 
accordance, results presented by Martelli et al. implied that 
allo-transplanted patients with acute leukemia who received 
donor-derived Tregs in conjunction with Tcons for protection 
against GvHD did not show increased relapse risk [53].

A more detailed analysis of Treg kinetics during treatment 
with HDC/IL-2 revealed that aspects of Treg function may 
indeed impact on clinical outcome. We observed that the 
magnitude of Treg induction was frequently blunted in later 
treatment cycles and that a reduced Treg accumulation in 
cycle 3 weakly but significantly prognosticated low relapse 
risk, thus supporting that sustained presence of Tregs may 
adversely impact on prognosis. In contrast, the induction of 
NK cells in blood remained largely stable throughout cycles 
of immunotherapy. The mechanisms underlying the differ-
ent kinetics of NK cell and Treg induction should be further 
studied. However, in people over the age of 45 the supply of 
thymic nTregs is minimal and is sustained mainly by periph-
eral proliferation [54]. We thus speculate that the supply 
of nTregs may become exhausted during repeated cycles 
of immunotherapy, in contrast to the bone marrow supply 
of NK cells. In support of this assumption, we observed 
a significantly reduced accumulation of Tregs in later treat-
ment cycle only in patients  >45-years-old (Supplementary 
Fig. 1a).

The proliferation of normal somatic cells is limited by the 
length of telomeres, which typically progressively shorten 
with increasing age [55]. Accordingly, we observed a sig-
nificant correlation between short Treg telomere length and 
age among the participating patients (Supplementary Fig. 1b). 
Despite high age being a dominant predictor of relapse risk 
in AML [56], short Treg telomeres at the end of a treatment 
cycle was observed mainly in older patients and significantly 
prognosticated favorable LFS. In agreement with the above-
referenced hypothesis of Treg exhaustion during immunother-
apy, we propose that short Treg telomere length may reflect a 
reduced capacity of nTregs to undergo proliferation and, hence, 
exert immunosuppression in subsequent treatment cycles.
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While the preliminary nature of these findings should be 
emphasized, we speculate that immunosuppressive nTregs 
may be targeted for improved anti-leukemic efficacy of 
HDC/IL-2 immunotherapy. This view gains support from 
previous studies in which Tregs were targeted during immu-
nostimulation with IL-2 in experimental leukemia using 
the combination of anti-CD25, aiming to deplete Tregs, 
and IL-2. This combination significantly improved the 
survival of leukemia-bearing mice over either treatment 
alone [57]. In further support for a role of Tregs in AML 
immunotherapy, Bachanova et al. reported that patients 
with relapsed or refractory AML showed encouraging CR 
rates and disease-free survival following depletion of host 
Tregs prior to the adoptive transfer of haploidentical NK 
cells and IL-2 [58]. Targeting Tregs, for example by use of 
antibodies blocking CTLA-4, may thus be considered in 
IL-2-based AML immunotherapy. An alternative approach 
to minimize a potential negative impact of Tregs may be to 
replace the IL-2 component with modified IL-2 variants or 
IL-15 that activate anti-leukemic effector cell populations 
with reduced or absent expansion of CD25high expressing 
Tregs [59–61].
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