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Abstract

Background: Melanoma phenotype and the dynamics underlying its progression are
determined by a complex interplay between different types of regulatory molecules.
In particular, transcription factors (TFs), microRNAs (miRNAs), and long non-coding
RNAs (lncRNAs) interact in layers that coalesce into large molecular interaction
networks. Our goal here is to study molecules associated with the cross-talk between
various network layers, and their impact on tumor progression.

Results: To elucidate their contribution to disease, we developed an integrative
computational pipeline to construct and analyze a melanoma network focusing on
lncRNAs, their miRNA and protein targets, miRNA target genes, and TFs regulating
miRNAs. In the network, we identified three-node regulatory loops each composed
of lncRNA, miRNA, and TF. To prioritize these motifs for their role in melanoma
progression, we integrated patient-derived RNAseq dataset from TCGA (SKCM)
melanoma cohort, using a weighted multi-objective function. We investigated the
expression profile of the top-ranked motifs and used them to classify patients into
metastatic and non-metastatic phenotypes.

Conclusions: The results of this study showed that network motif UCA1/AKT1/hsa-
miR-125b-1 has the highest prediction accuracy (ACC = 0.88) for discriminating
metastatic and non-metastatic melanoma phenotypes. The observation is also
confirmed by the progression-free survival analysis where the patient group
characterized by the metastatic-type expression profile of the motif suffers a
significant reduction in survival. The finding suggests a prognostic value of network
motifs for the classification and treatment of melanoma.

Keywords: Melanoma, Systems biology, RNA motif, LncRNA, MiRNA, Transcription
factor, Network approach, Data integration
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Background
Melanoma is the most severe form of skin cancer. The incidence of melanoma has

risen globally with approximately 96,480 new cases to be diagnosed with almost 7230

estimated deaths in 2019 only in the USA (https://www.cancer.org/cancer/melanoma-

skin-cancer/about/key-statistics.html#references). It arises from melanocytes, the

pigment-producing cells in the basal layer of the epidermis. The progression of normal

melanocytes to metastatic melanoma involves a series of histopathological changes,

from radial growth to vertical growth followed by metastatic spread to distant sites [1].

Recent advancements in tools and technologies have generated heterogeneous multi-

omics data, providing an opportunity to study and understand the concerted aberra-

tions underlying tumor phenotypes [2]. Tumor phenotypes that involve extensive inter-

actions across cell types, at the cellular and tissue levels are particularly suited for

network-based approaches. In our previous work, we have discussed several types of

complex disease networks comprising both the protein-coding and the non-protein-

coding portions of the genome, along with circulatory components (proteins, metabo-

lites, etc.) to assess the risk of developing a metastatic phenotype [3]. Based on this

work, our goal here is to study the interplay between molecules in regulatory networks

and its implications in tumor progression. Integration of molecules across regulatory

layers composed of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), mRNAs,

and transcription factors (TFs) provides insights into molecular mechanisms that can-

not be understood by analyzing individual disease factors. Moreover, it is also recog-

nized that communication between regulatory layers is a highly non-linear process, and

that can be studied using network-based approaches [4].

Over the last decade, several studies demonstrated the role of miRNAs in the context

of tumor growth, invasion, and angiogenesis through translational repression or deg-

radation of their respective target mRNAs [5–7]. Similar to miRNAs, lncRNAs are ex-

quisitely regulated, highly diverse in function, and play an important role in

tumorigenesis [8]. However, due to diverse modifications at the levels of transcription,

post-transcriptional processing, and chromatin remodeling; the mechanistic impact of

most lncRNAs remain unknown [9]. One class of lncRNAs acts as sponges through the

presentation of excess miRNA binding sites that sequester miRNAs away from mRNAs,

thereby inducing de-repression of gene expression. Some lncRNAs function as decoy

molecules that regulate gene expression by competitive inhibition of protein function

through sequestration [10–12]. Even though the importance of their role is well estab-

lished in the context of cancer, only a few experimentally supported lncRNA-protein

and lncRNA-miRNA associations have been reported. In the present work, we first ex-

amined lncRNAs that are associated with tumor progression from non-metastatic to

metastatic melanoma phenotypes by regulating molecules from different regulatory

layers. Further, we constructed a network by incorporating melanoma-associated

lncRNAs, their potential binding partners (miRNAs and proteins), TFs regulating miR-

NAs, and melanoma-associated genes. We analyzed the integrated network to find mo-

lecular signatures associated with the cross-talk between various network layers in the

form of regulatory loops (lncRNA-miRNA-TF).

Furthermore, we integrated patient-derived TCGA skin cutaneous melanoma

(SKCM) RNAseq dataset, mean-normalized (per gene) across all TCGA cohorts onto

the regulatory network. We identified top-ranked motifs based on topological and non-
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topological properties of their constituting nodes. More specifically, we used the top-

ology parameters degree, betweenness centrality, closeness centrality, and clustering co-

efficient. The degree parameter corresponds to the number of edges attached to a

node. A node with a high degree is often called a ‘hub’ and is known to play a central

role in organizing the network. Hub nodes are more likely to be essential than non-

hubs because they have more interaction partners and thus have a higher chance to en-

gage in an essential interaction [13]. The betweenness centrality parameter indicates

the influence of a node on the control of information flow in the network. Nodes with

high betweenness centrality are also called ‘gatekeepers’ and control the communica-

tion between different network components [14]. The closeness centrality parameter

can be interpreted as a measure of how quickly a node can interact with other nodes of

the network. Such central nodes are important because they are easy to reach and be-

long to the core of the network where the majority of nodes interact quickly [15]. The

clustering coefficient parameter shows the degree of clustering of a typical node’s

neighborhood. This property describes the local network structure surrounding a node.

In integrated networks, clustering is considerably and significantly higher than expected

in random networks [16]. Among the non-topological properties, we have used disease

pathway association and context-specific expression profiles of the nodes.

From the top-ranked motifs, we identify unique signatures that can be used to iden-

tify patients with a metastatic melanoma phenotype. Investigation of downstream mole-

cules regulated by these signatures helps in deciphering key processes responsible for

the development of metastatic phenotype. We suggest that the identified lncRNA-

associated regulatory network motifs have a prognostic value to assess the likelihood of

metastatic progression.

Results
The regulatory networks were obtained from a multi-step analysis including the identi-

fication of lncRNAs in melanoma, their potential binding partners (miRNAs and pro-

teins), melanoma-associated genes, and TFs regulating miRNAs. The developed

pipeline is summarized in Fig. 1. For miRNAs, experimentally validated information re-

lated to their target genes is available in several databases. However, for lncRNAs, the

information about their interaction partners is largely missing. In our study, we identi-

fied miRNAs that can potentially be sponged by melanoma-associated lncRNAs. For

that, we built an in-house Python script (Additional file 1: Data S1) to retrieve the nu-

cleotide sequences of melanoma-associated lncRNAs from the NCBI database. We then

used the RNAhybrid tool to identify energetically favorable hybridization sites for miR-

NAs in the target sequence based on dynamic programming. For each of the identified

174 complementary pairs (Additional file 1: Table S1A), we obtained the minimum free

energy (mfe) of hybridization and the position of the binding site on the lncRNA. For

visualization, hybridization maps of the putative miRNA binding sites on the lncRNAs

were generated (Additional file 1: Figures S1-S17). Many miRNAs were found to have

either partial or completely overlapping binding sites on the same lncRNA, which may

result in binding competition among miRNAs. To identify the miRNA with the highest

probability of binding, we assembled miRNA binding clusters from binding sites lo-

cated in close proximity to each other (distance ≤25 nt) as defined by Saetrom et al.

[17]. In each cluster, the miRNA with the most negative mfe of hybridization is selected
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Fig. 1 An integrative network-driven pipeline for discriminating non-metastatic and metastatic melanoma
phenotypes based on lncRNA-associated regulatory network motifs. a Intermolecular interaction data
between regulatory molecules (lncRNA, miRNA, and gene/TF) are extracted from public databases, literature,
and predicted using existing tools (RNAhybrid, RPISeq). b Interactions are merged together to generate an
integrated network. Topological properties of the network are investigated with the Network Analyzer
plugin in Cytoscape. Non-topological properties, including disease pathway association retrieved from KEGG
database and expression profiles of the nodes obtained from a melanoma-specific patient dataset from
UCSC Xena. c Important regulatory loops comprising of lncRNA-miRNA-TF are predicted with the help of
NetDS Cytoscape plugin. d Network motifs are prioritized using a multi-objective function by providing
user-defined weights in an iterative manner. e Calculation of motifs prediction accuracy and
survival analysis

Singh et al. BMC Bioinformatics          (2020) 21:329 Page 4 of 17



and accepted into a lncRNA-miRNA interaction network (Additional file 1: Figure

S18). Next, we searched miRTarBase for experimentally validated targets (mRNAs) of

melanoma-associated miRNAs in Homo sapiens at the post-transcriptional level and se-

lected only functional miRNA-target interactions (Additional file 1: Table S1B). The

protein products of many of these target genes act as TFs to regulate miRNA precursor

gene expression. Here, this translated into a total of 247 TF-miRNA interactions from

the TransmiR database as shown in Additional file 1: Table S1C and Figure S19. Fur-

thermore, to connect TFs with the lncRNA layer, we first imported protein sequences

from the NCBI Protein database using Python script (Additional file 1: Data S1) and

calculated interaction probabilities with the melanoma-associated lncRNAs from

Table 1. From the prediction results, we obtained a total of 129 pairs of lncRNAs and

TFs which are very likely to interact (Additional file 1: Table S1D). To further identify

associations among TFs present in the network, we searched the literature and obtained

a total of 22 TF-TF interactions which are reported in Additional file 1: Table S1E. Fi-

nally, we constructed an integrated regulatory network of melanoma (in Fig. 2) which

includes (i) lncRNA-miRNA; (ii) miRNA-target gene; (iii) TF-miRNA; (iv) lncRNA-TF;

and (v) TF-TF interactions. The main purpose of this integrated network is to deter-

mine the cross-talk among all the regulatory layers that give rise to the disease

phenotype.

Identification of regulatory network motifs composed of lncRNA, miRNA, and TF

For the identification of regulatory network motifs, the integrated network was trans-

formed into a format suitable for the NetDS Cytoscape plugin. Restricting the loop size

to three nodes, we obtained 4050 regulatory loops from the integrated network. From

this large set, we selected those loops (n = 600) that uniquely possess all three types of

regulatory components (miRNA, lncRNA, and TF). Further, we used various network

topological and non-topological parameters to rank regulatory loops (Additional file 1:

Table S1F). The parameters are described in the “Background” section.

Weighting of parameters for prioritization of motifs

To select the most representative and relevant motifs for the metastatic and non-

metastatic group, we prioritized the sets of motifs using a multi-objective function. The

function integrates both topological and non-topological parameters, and ranks the mo-

tifs. We assigned different weights to the nodes according to Eq. (1) discussed below.

Si j ¼ w1 jðDPAVGÞi þ
w2 j

4
ðBCAVGÞi þ

w2 j

4
ðCCAVGÞi þ

w2 j

4
ðCnCAVGÞi þ

w2 j

4
ðDegAVGÞi

þw3 jðRNAEXPÞi þ w4 jðmiRNAEXPÞi þ w5 jðT FEXPÞi
ð1Þ

Where Sij is the ranking score of each motif in different weighting scenarios

(i = 1 … n: motif and j = 1 … m: scenario), and w1j-5j are weighting factors govern-

ing the importance of the properties which are: DP, motif’s average node disease

pathway association i.e. number of motif nodes participating in KEGG pathways

(hsa05200-Pathways in cancer, hsa05206–MicroRNAs in cancer, and hsa05202-

Transcriptional misregulation in cancer); BC, motif’s average node betweenness

centrality; CC, motif’s average node clustering coefficient; CnC, motif’s average
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node closeness centrality; Deg, motif’s average node degree; and lncRNAEXP, miR-

NAEXP, TFEXP are metastatic and non-metastatic patient-derived expression profile

(pan-cancer normalized log2) of node0, node1, node2 from each motif (i) respect-

ively. Weighting scenarios for motif prioritization are given in Additional file 1:

Table S2. In the first five scenarios (set 1 and 2), we considered only non-

topological parameters while in later scenarios (set 3, 4 and 5) we included combi-

nations of all eligible parameters for motifs ranking. For each weighting scenario,

we calculated the result of the objective function for each network motif, and then

selected the top ten motifs from each of the 13 weighting scenarios implemented

in the multi-objective function. Finally, duplicate motifs were removed, resulting in

20 prioritized motifs in non-metastatic and 25 prioritized motifs in metastatic mel-

anoma (Additional file 1: Table S1G).

Table 1 Experimentally validated melanoma-associated lncRNAs in Homo sapiens

Melanoma-associated lncRNAs

LncRNA name NCBI accession Alias Dysfunction
Type

Function PMID

BANCR NR_047671 LINC00586 Regulation Cell migration 22581800

CASC15 NR_015410 LINC00340;
CANT; lnc-SOX4–1

Regulation Progression and
phenotype
Switching

26016895

CDKN2B-AS1 NR_047538 PCAT12; CDKN2B-AS;
NCRNA00089; p15AS;
ANRIL; CDKN2BAS;
CDKN2B-AS

Regulation Epigenetic
silencing

27461581

GAS5 NR_002578 NCRNA00030; SNHG2 Regulation Cell migration and
invasion

26846479

H19 NR_131223 ASM1; WT2; ASM; BWS;
LINC00008; NCRNA00008;
D11S813E

Expression Pathogenesis of
melasma

19968822

HOTAIR NR_047528 NCRNA00072; HOXC11-AS1;
HOXAS; HOXC-AS4

Regulation Cell migration
and invasion

23862139

LINC00032 NR_026679 C9orf14; NCRNA00032 Mutation Nevus development 17099875

LINC00673 NR_036488 HILNC75; LUCAIR1; SLNCR1;
HI-LNC75; SLNCR; ERRLR01

Expression Invasion 27210747

MALAT1 NR_002847 NEAT2; LINC00047;
NCRNA00047; HCN;
PRO2853

Expression Cell migration 24892958

MGC16025 NR_026664.1 LOC85009; MELOE Expression Immunosurveillance 27486971

MIR31HG NR_027054 LncHIFCAR; hsa-lnc-31 Regulation Transcriptional
regulator

25908244

PTENP1 NR_023917.1 PTEN-rs; PTH2; PTENpg1;
PTEN2; psiPTEN

Regulation Tumor suppressor 21833010

SAMMSON NR_110000 LINC01212 Regulation Cell growth and
survival

27008969

SNHG5 NR_003038 C6orf160; LINC00044;
NCRNA00044; U50HG

Expression Pathogenesis of
metastatic melanoma

26440365

SPRY4-IT1 NR_131221 SPRIGHTLY Regulation Cell invasion &
proliferation

25344859

TUG1 NR_002321 LINC00080; TI-227H;
NCRNA00080

Regulation Tumor growth
and metastasis

29543785

UCA1 NR_015379 LINC00178; UCAT1;
CUDR; onco-lncRNA-36;
NCRNA00178

Expression Cell migration 24892958
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Regulatory connections between nodes of the prioritized motifs

We compared prioritized sets of motifs associated with metastatic and non-metastatic

melanoma. We obtained three regulatory network motifs in the metastatic melanoma

phenotype whose constituting nodes did not appear in any of the prioritized motifs in

case of patients with non-metastatic melanoma.

The first motif features the lncRNA small nucleolar RNA host gene 5 (SNHG5),

which binds to the protein cyclin-dependent kinase 4 (CDK4). We predicted this inter-

action using the tool RPISeq, which assigns a high likelihood of binding to this inter-

action pair (0.979 and 0.75 through SVM and RF classifier, respectively). The

expression profile of SNHG5 and its role in facilitating CDK4 expression in tumorigen-

esis have been defined in the literature [18]. We also found that SNHG5 contains a

complementary binding site for the miRNA hsa-let-7a-3p. This implies the sequestra-

tion of the miRNA from its target, suggesting that SNHG5 can act as a sponge for the

miRNA hsa-let-7a-3p. Next, we obtained a reverse correlation between the expression

of miRNA hsa-let-7a-3p and its target protein CDK4, suggesting that CDK4 could also

be down-regulated by hsa-let-7a-3p. This interaction was experimentally detected by

Kim et al. [19].

The second motif contains the GATA-binding protein 3 (GATA3), the lncRNA

SNHG5, and miRNA hsa-let-7a-3p. The interaction probabilities obtained for GATA3

and SNHG5 are 0.75 (RF) and 0.954 (SVM), respectively. This implies that SNHG5 by

binding and sequestering can alter the function of GATA3. It is also apparent that

SNHG5 has a sponge effect on miRNA hsa-let-7a-3p as discussed earlier. Further,

Fig. 2 Interaction network of lncRNA, miRNA, and TF in melanoma. Each rectangular node (peach color)
indicates lncRNAs which acting as miRNA sponges and affect proteins. Each octagon node (yellow color)
indicates experimentally validated TFs which regulate (activation or repression) miRNAs. The network shows
miRNAs (rectangular node, cyan color) that negatively regulates the expression of target genes, and it also
includes interactions between TFs. The network comprises 174 nodes, including melanoma-associated
lncRNAs (17), miRNAs (132), and TFs (25). Network edges (total 655) are colored by the type of interaction
between the nodes which are as follows: T bar-shaped edge for functional MTI (light blue color), repression
(dark green color), down-regulation (black color); broadhead shaped-arrow for activation (purple color), up-
regulation (black color), regulation (purple color); and an undirected edge for binding (fluorescent
green color)
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miRNA hsa-let-7a-3p is predicted to bind to the target site on the GATA3 transcript

and negatively regulate the expression of GATA3 protein. This interaction was exam-

ined in breast cancer through HITS-CLIP performed by Pillai et al. [20].

In the third motif, comparatively a high-probability pairing was obtained between

the lncRNA urothelial cancer-associated 1 (UCA1) and the protein AKT Serine/

Threonine Kinase 1 (AKT1), which is higher than first and second motif (0.973

and 0.9 through SVM and RF classifier, respectively). The expression of UCA1 is

positively correlated with AKT1 activity and this interaction was experimentally

confirmed by Yang et al. [21]. Further, UCA1 down-regulates miRNA hsa-miR-

125b-1 by sequestration, serving as a sponge with high-degree complementarity at

the binding sites. In turn, AKT1 negatively regulates miRNA hsa-miR-125b-1 at

the transcriptional level [22].

Validation of the prioritized motifs in predicting non-metastatic and metastatic

phenotype

As the obtained three motifs were prioritized in the metastatic melanoma phenotype,

we hypothesized that these motif signatures can be used to distinguish metastatic mel-

anoma patients from others. To validate our hypothesis, we investigated the expression

profile of lncRNA, miRNA, and TF using RNAseq data from 477 TCGA (SKCM) sam-

ples available at https://gdc.xenahubs.net version 08-07-2019 [23]. Out of 477 patient

samples, we found 408 samples with expression profiles of the nodes constituting all

the identified regulatory network motifs.

First, we grouped patient samples (total 408) into metastatic and non-metastatic

phenotype based on their clinical pathologic_stages. For that, we classified tumor

samples belonging to stages 0, I, IA, IB, II, IIA, IIB, IIC as non-metastatic; and

stages III, IIIA, IIIB, IIIC, IV as metastatic [24]. The assignment of melanoma

tumor stage generally requires a large number of clinical parameters (such as

serum LDH level, the mitotic rate per mm2, ulceration status, level of invasion,

metastatic volume, number of nodal metastasis, tumor thickness, etc.) and is highly

critical to decide therapy regime. To evaluate whether the three unique regulatory

network motifs identified in the metastatic melanoma phenotype can help to dis-

tinguish metastatic patients, we classified patients based on the motifs’ expression

patterns (up-regulation/down-regulation of nodes) (Table 2). For each node, we ob-

tained the canonical expression pattern (up-regulation or down-regulation) in

metastatic melanoma from literature. This allowed us to define the motifs’ signa-

ture patterns in metastatic samples. For each sample, we then calculated the fold

change of each motif node with respect to its overall-mean expression in all 408

samples (Additional file 1: Table S3). The 408 samples were then classified as

metastatic if the respective genes’ up−/down-regulation profile matched the motif

in question’s signature pattern, or as non-metastatic otherwise (Additional file 1:

Table S1H-J). With this classification scheme, the highest prediction accuracy was

reached by motif 3 (ACC = 0.88), followed by motif 1 (ACC = 0.81) and motif 2

(ACC = 0.60) as represented in Fig. 3. Overall, the results indicate that motif 3

(UCA1/AKT1/hsa-miR-125b-1) has the best predictive power in distinguishing

metastatic and non-metastatic phenotypes of SKCM tumor samples.
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Furthermore, we used data from the previous dataset and performed survival analysis

considering progression-free survival time using GraphPad Prism 7.05 [25]. For this, we

stratified the cohort into three subgroups; 1) samples conforming to the signature ex-

pression patterns; 2) samples conforming to the anti-signature expression patterns (i.e.

expression pattern opposite to the signature in Table 2); and 3) samples that do not

conform to either signature or anti-signature patterns. The log-rank (Mantel-Cox) test

was used to compare the survival distributions. We observed a significant correlation

between the three subgroups regarding motif signatures and progression-free survival

time (Fig. 4). The results obtained from the overall comparison indicated that all the

three motifs can distinguish metastatic melanoma patients with a significant time dif-

ference (at P-value< 0.0001). We also observed that motif 3 showed the largest survival

time difference (1889 days) between Signature and Anti-Signature, followed by motif 1

(675 days) and motif 2 (255 days), which is in accordance with our earlier findings in

the ROC analysis. Further, motif 3 was best able to differentiate the three patient sub-

groups in a pairwise fashion (Signature vs Anti-Signature, P-value = 0.0019 and Signa-

ture vs Others, P-value< 0.0001; in Additional file 1: Table S1K). Altogether, our

analysis suggested that the expression profiles of nodes in motif 3 (UCA1/AKT1/hsa-

miR-125b-1) can be used for quick assignment of metastatic or non-metastatic pheno-

types to melanoma patients.

Discussion
In this article, we study the interplay of molecules (lncRNAs, miRNAs, and TFs) and

their integration across regulatory layers of networks to decipher tumor phenotypes

and the underlying mechanisms of melanoma metastasis. A network-driven pipeline is

developed which combines heterogeneous genomic datasets related to lncRNAs in mel-

anoma, their potential binding partners (lncRNA-miRNA; lncRNA-TF), melanoma-

associated genes (miRNA-target gene), TFs regulating miRNAs (TF-miRNA), and TF-

TF interactions to determine the cross-talk between various network layers, and their

impact on tumor progression and disease phenotype. The study exclusively identified

three lncRNA-associated regulatory network motifs in metastatic patients based on the

calculation and prioritization of topological and non-topological properties. The ap-

proach was evaluated by investigating the expression profile of the motifs and used

them to classify patients into metastatic and non-metastatic phenotypes. The prediction

Table 2 The expression pattern (up-regulation or down-regulation) of motif nodes in Signature
and Anti-Signature

Variable Signature Anti-Signature

Motif 1 CDK4 (UP) CDK4 (DOWN)

SNHG5 (UP) SNHG5 (DOWN)

hsa-let-7a-3p (DOWN) hsa-let-7a-3p (UP)

Motif 2 GATA3 (DOWN) GATA3 (UP)

SNHG5 (UP) SNHG5 (DOWN)

hsa-let-7a-3p (DOWN) hsa-let-7a-3p (UP)

Motif 3 AKT1 (UP) AKT1 (DOWN)

UCA1 (UP) UCA1 (DOWN)

hsa-miR-125b-1 (DOWN) hsa-miR-125b-1 (UP)
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accuracy is calculated for each motif through ROC analysis. Subsequently, the method

was applied to study three subgroups of patients (Signature, Anti-Signature, and

Others) and performed a survival analysis considering progression-free survival time.

The results suggested a prognostic value of motif 3 (UCA1/AKT1/hsa-miR-125b-1) for

discriminating metastatic and non-metastatic melanoma phenotypes with a high pre-

diction accuracy (ACC = 0.88). It is also confirmed from the observation that the

Fig. 3 The ROC space of the three motif signature-based classifiers for their ability to discriminate
metastatic from non-metastatic melanoma samples. The graph shows the superiority of motif 3 in both
sensitivity and specificity. The contingency tables are given below the motifs (True positives TP, True
negatives TN, False positives FP, and False negatives FN), followed by additional performance metrics
(Precision PPV, F1 measure, and Accuracy ACC) for the three classifiers
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expression profile of motif 3 clearly distinguishes patients with metastatic melanoma

phenotype by the lowest mean survival time of 1429 days (at P-value< 0.0001).

Further, to identify the role of the factors in motifs with good predictive power

(CDK4/SNHG5/hsa-let-7a-3p and UCA1/AKT1/hsa-miR-125b-1) in the regulation of

various metastatic tumors, we used Target Mine web server [26] and selected BH

method (Benjamini-Hochberg) for P-value adjustment. For miRNA functional associ-

ation with tumors, we used TAM 2.0 [27] to compare the queries (hsa-let-7a-3p, hsa-

miR-125b-1) with the reference miRNA sets and inferred their disease associations.

The results are plotted in a doughnut chart and a bar graph (Fig. 5). From the func-

tional analysis, we identified pathways in which the constituents of the identified motifs

Fig. 4 Kaplan–Meier plots for progression-free survival probability of patient subgroups (Signature, Anti-
Signature, and Others). This is based on the expression pattern of motif-constituting nodes as defined in
Table 2. Patients that do not follow either Signature or Anti-Signature expression patterns are added in
Others group. For each group, the number of patients (N) and mean progression-free survival time (MS) in
days is provided. The log-rank test was used to assess differences in survival time between all three
patient subgroups
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participate. The obtained top 20 significant pathways are cancer-associated, especially

the ‘breast cancer’ and ‘chronic myeloid leukemia’ pathways are found to be enriched

with most of the regulatory molecules of the motifs. This indicates the possibility that

the screened motifs are also associated with increased risk for developing metastatic

breast cancer and chronic myeloid leukemia. Furthermore, UCA1 and hsa-miR-125b-1

participation were found in 90% of cancer pathways which might suggests that they

play a role not only in melanoma progression but also in other metastatic tumors.

There are some limitations to our approach. First, regarding the detailed annotations

of the lncRNAs, miRNAs, TFs, and their molecular associations; we observed a poor

overlap in the results derived from the different databases and tools. This is probably

due to different data resources or algorithms used to predict these interactions. Second,

our major focus in this study is on lncRNAs and their interacting miRNA, and TF part-

ners. However, several other relevant interactions can take place in different contexts

and may influence the outcome. Hence, a comprehensive view of interactions between

lncRNAs and miRNAs or TFs is still required. Third, in cases where the direction of

regulation (activation/repression) between biomolecules is not reported in the litera-

ture, we have taken as ‘0’ such as lncRNA-miRNA interactions and few lncRNA-TF in-

teractions. So, here the experimental observations’ confirming the nature of their

association is missing. Lastly, the expression profile of motifs investigated from RNAseq

data are limited by false positives and false negatives. To overcome this, we applied adj.

P-value< 0.05 for differential screening to control the FP and FN errors.

Conclusions
The study considers melanoma as an integrated system of regulatory molecules rather

than an outcome of isolated molecular events. Our integrated pipeline applies network-

based approaches to identify key regulatory components (lncRNA, miRNA, and TF) of

the network which enabled a deeper investigation into tumor initiation and progres-

sion. Generalizing this pipeline to other datasets would significantly help in the

Fig. 5 Functional pathway analysis of the constituting nodes of motif 1 and 3 (hsa-miR-125b-1, hsa-let-7a-
3p, SNHG5, UCA1, AKT1, and CDK4) showing the involvement of each node over categories of cancer
pathways in a doughnut chart. The bar graph shows the top 20 significant cancer pathways sorted by P-
value< 0.05 and Z-score > 1.65. The length of the bar represents the significance of that specific pathway
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identification of phenotype-based predictive factors for other disease models. The result

of the present study reveals multi-level interactions between regulatory layers of a mel-

anoma network can be accessed at https://vcells.net/miRNAs-and-lncRNAs-in-melan-

oma/. We have uncovered a potential role for the regulatory network motif UCA1/

AKT1/hsa-miR-125b-1 in melanoma. There is an 88% chance that the expression pro-

file of the motif will correctly distinguish a patient phenotype as non-metastatic or

metastatic melanoma. The result of survival analysis also indicates that the motif has a

good discriminating ability. The findings provide more insights into a systems level un-

derstanding of melanoma progression that comes through the cross-talk between

lncRNA, TF, and miRNA regulatory layers.

Methods
We used computational strategies that combine heterogeneous genomic data to identify

potential coding (TFs) and non-coding (lncRNAs and miRNAs) genes associated with

the biogenesis, development, and differentiation of melanoma cells. Figure 1 provides a

schematic representation of the developed pipeline.

Data collection

We obtained experimentally validated melanoma-associated lncRNAs (in Homo sapi-

ens) from databases such as LncRNADisease [28], Lnc2Cancer [29], and EVlncRNAs

[30], and manually curated them for their functions and associated aliases (in Table 1).

Similarly, we derived experimentally validated melanoma-associated miRNAs (in Homo

sapiens) from databases MiR2Disease [31] and miRBase [32]. Experimentally validated

melanoma-associated gene targets of mature miRNAs were collected from miRTarBase

[33]. Further, FASTA sequences of lncRNAs and proteins were retrieved from NCBI

(https://www.ncbi.nlm.nih.gov) in batch fashion using a Python script.

Prediction of miRNAs and proteins that interacts with lncRNAs

Sequence complementarity between lncRNAs and miRNAs was assessed using RNAhy-

brid [34]. The parameters selected for analysis included an upper energy threshold of −

15 kcal/ mole and a restriction to the top 25 human interactors per lncRNA. The P-value

and minimum free energy (mfe) of hybridization were calculated for hybrid structures.

The regulatory direction of binding interactions between lncRNA and miRNA is taken as

‘0’. Since miRNA suppresses target genes, all the regulatory directions were represented as

inhibitory ‘-1’. Subsequently, we investigated the proteins which are associated with mel-

anoma and checked their interactions with lncRNAs from Table 1 using the RNA-Protein

interaction prediction (RPISeq) tool [35]. The tool provides sequence-based predictions

based on Support Vector Machine (SVM) and Random Forest (RF) classifiers trained on

RPI2241 and RPI369, datasets of RNA-protein interactions. We set a probability value >

0.5 for positive interactions, and selected threshold values by taking the median predicted

values of the positive interactions for both classifiers (i.e. SVM ≥ 0.95 and RF ≥ 0.75). We

also searched for the NPInter 3.0 database for registered lncRNA-TF interactions [36].

Regulatory direction from lncRNA to TF was manually searched from literature either as

activation ‘+1’ or repression ‘-1’. For those cases where the appropriate regulatory role of

lncRNA on TF is missing in the scientific literature, we considered the direction of
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interaction as binding ‘0’. In addition, we collected transcriptional regulatory information

between miRNAs and melanoma-associated proteins which act as TFs from the TransmiR

database [37]. In this case, the regulatory direction was defined based on the ‘Action Type’

parameter from the TransmiR database. We considered activation and regulation as ‘+1’,

while repression is encoded by ‘-1’. Lastly, we derived TF-TF interactions using the Biso-

genet Cytoscape plugin [38]. The regulatory direction between TF-TF was manually ob-

tained from the published literature.

Network construction and analysis

The regulatory relationships were constructed and visualized using Cytoscape 3.7.0

(https://cytoscape.org/) [39]. Various topological properties including centrality param-

eters (degree, closeness centrality, betweenness centrality, and clustering coefficient)

were calculated for each node using the Network Analyzer plugin in Cytoscape [40].

Motif finding and survival analysis

Regulatory network motifs were identified in the integrated network using the NetDS

Cytoscape plugin [41]. To identify the most relevant motifs for the non-metastatic and

metastatic melanoma phenotypes, we followed a method proposed in Khan et al. in 2017

[42]. The method requires the (i) calculation of topological properties of the nodes consti-

tuting a motif, (ii) motif-disease pathway associations, (iii) assignment of a differential ex-

pression value for a motif based on the change in expression values of the constituent

nodes, and (iv) using a weighted multi-objective function as shown in Eq. (1) to rank im-

portant motifs. More details of the pseudo code to reproduce the result are given in Add-

itional file 1: Data S2. To identify key molecular signatures from the top-ranked motifs,

we first divided patient samples into two groups (i.e. metastatic and non-metastatic mel-

anoma phenotypes) based on their respective clinical stages. Further, we analyzed the ex-

pression profile of nodes associated with regulatory network motifs (i.e. up-regulation or

down-regulation from their overall mean expression value calculated using all the melan-

oma patient samples). Patients, where the nodes expression profile (i.e. up-regulation or

down-regulation) matches to the signature patterns, are reclassified as metastatic patients,

whilst others are assigned to non-metastatic group. This reclassification of patients were

compared to the melanoma phenotype based on the clinical pathologic_stages to calculate

the prediction accuracy of motifs. Analysis of data was performed using MedCalc Statis-

tical Software v14.8 [43]. Later, the top-ranked motifs are analyzed for progression-free

survival probability using Kaplan-Meier survival analysis.

Web interface for visualizing and analyzing the network

To facilitate exploration of the reconstructed network and the analyzed data for inter-

ested parties, we uploaded them to the web platform for visualization of biochemical

networks vCells https://vcells.net/miRNAs-and-lncRNAs-in-melanoma/. The uploaded

network was annotated with additional identifiers for genes, miRNAs, and lncRNAs to

allow quick access to external databases. The vCells platform provides tools to project

data on top of the molecules in the network, e.g. for expression or differential expres-

sion, and to extract sub networks of interest. The network itself is also offered as a

downloadable file.

Singh et al. BMC Bioinformatics          (2020) 21:329 Page 14 of 17

https://cytoscape.org/
https://vcells.net/miRNAs-and-lncRNAs-in-melanoma/


Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03656-6.

Additional file 1: Table S1A. Predicted lncRNA-miRNA interactions; Table S1B. MiRNA-target gene interactions;
Table S1C. TF-miRNA interactions; Table S1D. Predicted lncRNA-TF interactions; Table S1E. TF-TF interactions;
Table S1F. Topological and non-topological parameters calculated for each node of regulatory network motif;
Table S1G. Prioritized motifs for metastatic and non-metastatic melanoma phenotype; Table S1H. Predictive sta-
tistics for motif 1; Table S1I. Predictive statistics for motif 2; Table S1J. Predictive statistics for motif 3; Table S1K.
P-value identified from pairwise and overall comparison of three patient subgroups; Table S2. Weighting scenarios
for ranking of motifs; Table S3. Patient-derived RNAseq expression profile (pan-cancer normalized log 2) of nodes
in three prioritized motifs (lncRNA/miRNA/TF); Figures S1-S17. Hybridization maps of putative miRNAs binding
sites across lncRNA sequences; Figure S18. LncRNA-miRNA interaction network. Rectangular nodes designate
lncRNA (peach color) and miRNA (cyan color). The network consists of 47 nodes (including 17 lncRNAs and 30 miR-
NAs) and 174 prioritized edges link the pairs of lncRNA and miRNAs in cluster; Figure S19. TF-miRNA interaction
network. Experimentally validated target genes of miRNAs which act as TFs are represented by octagon nodes (yel-
low color) and miRNAs are showed by rectangular nodes (cyan color). The network is comprised of 146 nodes with
25 TFs and 121 miRNAs. The edges of the network (total 247) signify predictions of miRNA regulation by TFs.
Arrow-headed lines are for activation (purple color) and bar-headed lines are for repression (green color); Data S1.
Python script for retrieval of FASTA sequences from NCBI; Data S2. Pseudo code for ranking of network motifs.

Abbreviations
lncRNA: Long non-coding RNA; miRNA: microRNA; TF: Transcription factor; TCGA: The Cancer Genome Atlas;
SKCM: Skin Cutaneous Melanoma; KEGG: Kyoto Encyclopedia of Genes and Genomes; NCBI: National Center for
Biotechnology Information; SVM: Support Vector Machine; RF: Random Forest; TAM: Tool for Annotations of miRNAs;
BANCR: BRAF-activated non-protein coding RNA; CASC15: Cancer susceptibility 15; CDKN2B-AS1: CDKN2B antisense
RNA 1; GAS5: Growth arrest specific 5; H19: Long intergenic non-protein coding RNA 8; HOTAIR: HOX transcript
antisense RNA; LINC00032: Long intergenic non-protein coding RNA 32; LINC00673: Long intergenic non-protein cod-
ing RNA 673; MALAT1: Metastasis associated lung adenocarcinoma transcript 1; MIR31HG: MIR31 host gene; PTEN
P1: Phosphatase and tensin homolog pseudo gene 1; SAMMSON: Survival associated mitochondrial melanoma specific
oncogenic non-coding RNA; SNHG5: Small nucleolar RNA host gene 5; SPRY4-IT1: SPRY4 intronic transcript 1;
TUG1: Taurine up-regulated 1; UCA1: Urothelial cancer associated 1; CDK4: Cyclin dependent kinase 4; GATA3: GATA
binding protein 3; AKT1: AKT serine/threonine kinase 1; MTI: miRNA-target gene interaction

Acknowledgements
Not applicable.

Authors’ contributions
SKG conceptualized the study; SKG, OW and NS designed the methodology; NS and SKG performed the formal
analysis; NS, SKG and ME wrote the paper; NS and ME performed the visualization; NS carried out the investigation
and validation; SKG, OW and JV supervised and gave suggestions on the manuscript; NS, ME, JV and SKG substantively
revised the manuscript. All authors have read and approved the final manuscript.

Funding
S.K.G., J.V. and O.W. acknowledge the support by the German Federal Ministry of Education and Research (BMBF) as
part of the projects e:Bio SysMet [0316171], e:Bio MelEVIR [031L0073A and 031L0073B], and e:Med MelAutim
[01ZX1905A and 01ZX1905B]. S.K.G. is funded by the University of Rostock and J.V. is funded by the STAEDTLER-
Stiftung.

Availability of data and materials
The reconstructed network of melanoma is publicly accessible at https://vcells.net/miRNAs-and-lncRNAs-in-melanoma/.
FASTA files of lncRNAs and proteins used in this study are available in the NCBI repository https://www.ncbi.nlm.nih.
gov/. The accession numbers of lncRNAs are listed in Table 1 and GI numbers of proteins are included in
Supplementary Table S1B. Mature miRNA sequences are obtained from miRBase [32]. All data generated and analysed
during this study are included in this research article and its supplementary information files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing of interest, financial or otherwise.

Author details
1Department of Biochemistry, Babu Banarasi Das University, Faizabad Road, Lucknow, Uttar Pradesh 226028, India.
2Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Faculty of
Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Hartmannstr.14, 91052 Erlangen, Germany.
3Department of Systems Biology and Bioinformatics, University of Rostock, 18059 Rostock, Germany. 4Chhattisgarh

Singh et al. BMC Bioinformatics          (2020) 21:329 Page 15 of 17

https://doi.org/10.1186/s12859-020-03656-6
https://vcells.net/miRNAs-and-lncRNAs-in-melanoma/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Swami Vivekanand Technical University, Bhilai, Chhattisgarh 491107, India. 5Stellenbosch Institute for Advanced Study
(STIAS), Wallenberg Research Centre at Stellenbosch University, Mostertsdrift, Stellenbosch 7600, South Africa.

Received: 27 January 2020 Accepted: 13 July 2020

References
1. Ciarletta P, Foret L, Ben Amar M. The radial growth phase of malignant melanoma: multi-phase modelling, numerical

simulations and linear stability analysis. J R Soc Interface. 2010;8(56):345–68.
2. Singh N, Gupta SK. Recent advancement in the early detection of melanoma using computerized tools: an image

analysis perspective. Skin Res Technol. 2019;25(2):129–41.
3. Singh N, Freiesleben S, Wolkenhauer O, Shukla Y, Gupta SK. Identification of antineoplastic targets with systems

approaches, using resveratrol as an in-depth case study. Curr Pharm Des. 2017;23(32):4773–93.
4. Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, Sogayar MC, Ferreira CE. Modeling gene expression

regulatory networks with the sparse vector autoregressive model. BMC Syst Biol. 2007;1(1):39.
5. Beyer S, Fleming J, Meng W, Singh R, Haque S, Chakravarti A. The role of miRNAs in angiogenesis, invasion and

metabolism and their therapeutic implications in gliomas. Cancers. 2017;9(7):85.
6. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem.

2017;8(1):45.
7. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R. Activating RNAs associate with mediator to

enhance chromatin architecture and transcription. Nature. 2013;494(7438):497.
8. Liu C-J, Gao C, Ma Z, Cong R, Zhang Q, Guo A-Y. lncRInter: a database of experimentally validated long non-coding RNA

interaction. J Genet Genomics. 2017;44(5):265.
9. Quinn JJ, Zhang QC, Georgiev P, Ilik IA, Akhtar A, Chang HY. Rapid evolutionary turnover underlies conserved lncRNA–

genome interactions. Genes Dev. 2016;30(2):191–207.
10. Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and

malignant hematopoiesis. Blood. 2017;130(18):1965–75.
11. Morriss GR, Cooper TA. Protein sequestration as a normal function of long noncoding RNAs and a pathogenic

mechanism of RNAs containing nucleotide repeat expansions. Hum Genet. 2017;136(9):1247–63.
12. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer.

Cancer Sci. 2018;109(7):2093–100.
13. He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet. 2006;2(6):e88.
14. Abbasi A, Hossain L, Leydesdorff L. Betweenness centrality as a driver of preferential attachment in the evolution of

research collaboration networks. J Informetr. 2012;6(3):403–12.
15. Du Y, Gao C, Chen X, Hu Y, Sadiq R, Deng Y. A new closeness centrality measure via effective distance in complex

networks. Chaos. 2015;25(3):033112.
16. Opsahl T. Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc Networks.

2013;35(2):159–67.
17. Sætrom P, Heale BS, Snøve O Jr, Aagaard L, Alluin J, Rossi JJ. Distance constraints between microRNA target sites dictate

efficacy and cooperativity. Nucleic Acids Res. 2007;35(7):2333–42.
18. Li Y, Guo D, Zhao Y, Ren M, Lu G, Wang Y, Zhang J, Mi C, He S, Lu X. Long non-coding RNA SNHG5 promotes human

hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis. 2018;9(9):888.
19. Kim S-J, Shin J-Y, Lee K-D, Bae Y-K, Sung KW, Nam SJ, Chun K-H. MicroRNA let-7a suppresses breast cancer cell

migration and invasion through downregulation of CC chemokine receptor type 7. Breast Cancer Res. 2012;14(1):R14.
20. Pillai MM, Gillen AE, Yamamoto TM, Kline E, Brown J, Flory K, Hesselberth JR, Kabos P. HITS-CLIP reveals key regulators of

nuclear receptor signaling in breast cancer. Breast Cancer Res Treat. 2014;146(1):85–97.
21. Yang C, Li X, Wang Y, Zhao L, Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through

PI3-K dependent pathway in bladder carcinoma cells. Gene. 2012;496(1):8–16.
22. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis

C. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity.
2009;31(2):220–31.

23. Goldman M, Craft B, Zhu J, Haussler D. The UCSC Xena system for cancer genomics data visualization and interpretation
[abstract 2584]. Cancer Res. 2017;77:2584. Available: https://cancerres.aacrjournals.org/content/77/13_Supplement/2584.

24. Dickson PV, Gershenwald JE. Staging and prognosis of cutaneous melanoma. Surg Oncol Clin. 2011;20(1):1–17.
25. Inc. GS. GraphPad Software, Inc. GraphPad Prism Users Guide. La Jolla: GraphPad Software; 2014.
26. Chen Y-A, Tripathi LP, Mizuguchi K. TargetMine, an integrated data warehouse for candidate gene prioritisation and

target discovery. PLoS One. 2011;6(3):e17844.
27. Li J, Han X, Wan Y, Zhang S, Zhao Y, Fan R, Cui Q, Zhou Y. TAM 2.0: tool for MicroRNA set analysis. Nucleic Acids Res.

2018;46(W1):W180–5.
28. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q. LncRNADisease: a database for long-non-

coding RNA-associated diseases. Nucleic Acids Res. 2012;41(D1):D983–6.
29. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L. Lnc2Cancer: a manually curated database

of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res. 2015;44(D1):D980–5.
30. Zhou B, Zhao H, Yu J, Guo C, Dou X, Song F, Hu G, Cao Z, Qu Y, Yang Y. EVLncRNAs: a manually curated database for

long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res. 2017;46(D1):D100–5.
31. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for

microRNA deregulation in human disease. Nucleic Acids Res. 2008;37(suppl_1):D98–D104.
32. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene

nomenclature. Nucleic Acids Res. 2006;34(suppl_1):D140–4.
33. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M. miRTarBase: a

database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2010;39(suppl_1):D163–9.

Singh et al. BMC Bioinformatics          (2020) 21:329 Page 16 of 17

https://cancerres.aacrjournals.org/content/77/13_Supplement/2584


34. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;
34(suppl_2):W451–4.

35. Muppirala UK, Lewis BA, Dobbs DL. Computational tools for investigating RNA-protein interaction partners. J Comput
Sci Comput Biol. 2013;6(4):182.

36. Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y, Chen R. NPInter v3. 0: an upgraded database of noncoding RNA-associated
interactions. Database. 2016;2016:baw057.

37. Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res. 2009;
38(suppl_1):D119–22.

38. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R. BisoGenet: a new tool for gene
network building, visualization and analysis. BMC Bioinformatics. 2010;11(1):91.

39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software
environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

40. Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of biological networks.
Bioinformatics. 2007;24(2):282–4.

41. Le D-H, Kwon Y-K. NetDS: a Cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop
structures of biological networks. Bioinformatics. 2011;27(19):2767–8.

42. Khan FM, Marquardt S, Gupta SK, Knoll S, Schmitz U, Spitschak A, Engelmann D, Vera J, Wolkenhauer O, Pützer BM.
Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict
receptor protein signatures. Nat Commun. 2017;8(1):198.

43. Schoonjans F. ROC curve analysis with MedCalc. MedCalc. 2018. [online] Available: https://www.medcalc.org/index.php.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Singh et al. BMC Bioinformatics          (2020) 21:329 Page 17 of 17

https://www.medcalc.org/index.php

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Identification of regulatory network motifs composed of lncRNA, miRNA, and TF
	Weighting of parameters for prioritization of motifs
	Regulatory connections between nodes of the prioritized motifs
	Validation of the prioritized motifs in predicting non-metastatic and metastatic phenotype

	Discussion
	Conclusions
	Methods
	Data collection
	Prediction of miRNAs and proteins that interacts with lncRNAs
	Network construction and analysis
	Motif finding and survival analysis
	Web interface for visualizing and analyzing the network

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

