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Caveolae are membrane microdomains described in many cell types involved in
endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are
found at the interface with the extracellular environment and are structured by caveolin
and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages
via signaling pathways, as well as non-chemical messages, such as stretching or shear
stress. Various pathogens or signals can hijack these gates, leading to infectious,
oncogenic and even caveolin-related diseases named caveolinopathies. By contrast,
preclinical and clinical research have fallen behind in their attempts to hijack caveolae
and caveolins for therapeutic purposes. Caveolae involvement in human disease is not
yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is
being considered in clinical trials as a possible biomarker of disease. This review briefly
summarizes current knowledge about caveolae cell signaling and raises the hypothesis
whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in
cell communication. Furthermore, because cell signaling is one of the most dynamic
domains in translating data from basic to clinical research, we pay special attention to
translation of caveolae, caveolin, and cavin research into clinical practice.

Keywords: caveolae, caveolins, cell communication, cell signaling, gatekeeper, hijack, oncogenic signal, clinical
trials

INTRODUCTION

The term “caveolae” is more than 60 years old and traces back to seminal electron microscopy
studies conducted independently by G.E. Palade (Palade, 1953; Bruns and Palade, 1968) and
E. Yamada of various tissues including endothelia (Yamada, 1955a,b; Smith and Ryan, 1972)
and muscle (Merrillees, 1960; Zampighi et al., 1975; Sawada et al., 1978). For a long time,

Abbreviations: A-MLV, Murine leukemia virus (Retroviridae); ARV, Avian reovirus (Reoviridae); BKV, BK virus
(Polyomaviridae); CrCov, Canine respiratory coronavirus (Coronaviridae); CSFV, Classical swine fever virus (Flaviviridae);
EBOV, Ebolavirus (Filoviridae); EHV, Equine herpesviruses (Herpesviridae); EV1, Echovirus type 1 (Picornaviridae); EV-71,
Enterovirus type 71 (Picornaviridae); FMDV, Foot-and-mouth disease virus (Picornaviridae); GCRV, Grass carp reovirus
(Reoviridae); HadV-C, Human mastadenovirus-C (Adenoviridae); HadV-D, Human mastadenovirus-D (Adenoviridae);
HBV, Hepatitis B virus (Hepadnaviridae); HCoV-229E, Human coronavirus (HCoV) 229E (Coronaviridae); HcoVO-
C43, Human betacoronavirus OC43 (Coronaviridae); HPV-31, Human papillomavirus type 31 (Papillomaviridae); ISKNV,
Infectious spleen and kidney necrosis virus (Iridoviridae); IVB, Infectious bronchitis virus (Coronaviridae); JEV, Japanese
encephalitis virus (Flaviviridae); MARV, Marburg virus (Filoviridae); MDRV, Muscovy duck reovirus (Reoviridae); MpyV,
Mouse polyomavirus (Polyomaviridae); PEDV, Porcine epidemic diarrhea virus (Coronaviridae); PPRV, Peste des petits
ruminants virus (Paramyxoviridae); Reovirus, Reovirus (Reoviridae); RSV, Respiratory syncytial virus (Paramixoviridae);
RVFV, Rift Valley fever virus (Phenuiviridae); SV40, simian virus 40 (Polyomaviridae); TGEV, transmissible gastroenteritis
virus (Coronaviridae); TVF, tiger frog virus (Iridoviridae).
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their function(s) remained elusive, until electron microscopy
studies complemented by biochemical investigations led to
in vitro functional studies and in vivo models. In 2001, Lisanti’s
lab produced the first caveolin knockout (KO) mouse strain
(Cav1−/−) (Razani et al., 2001). Further research revealed that
caveolae and their scaffold proteins are involved in specific
cellular processes, such as plasma microdomain organization and
cell signaling (Boscher and Nabi, 2012)—in both normal cells
(Sowa, 2012) or tumor cells (Hehlgans and Cordes, 2011)—
or even in a specific kind of tumor (Parat and Riggins, 2012).
Caveolae also are involved in cell migration and metastasis
(Nunez-Wehinger et al., 2014), mechano-reception (Nassoy and
Lamaze, 2012), and mechano-protection in certain tissues (Lo
et al., 2015). Embryologic development is a less explored area in
caveolin research (but for review, see Sohn et al., 2016).

Technological progress in cell imaging has improved our
understanding of how biochemical components of caveolae
assemble into a functional ultrastructural domain of the cell
membrane. Knockout animal models have added more to a
comprehensive picture of these microdomains. Tracking the
literature describing all of these membrane microdomains
means navigating a flood of publications on caveolae and their
scaffold proteins, caveolins, and cavins. Of about 100 reviews
published in the last 5 years, only a few offer an integrated
view (Cheng and Nichols, 2016; Han et al., 2016; Busija et al.,
2017; Lamaze et al., 2017; Bhogal et al., 2018; Filippini et al.,
2018; Parton et al., 2018; Leo et al., 2020). An inventory of
(un)resolved issues regarding caveolae is exquisitely summarized
in a recent review unconventionally entitled “Caveolae: The
FAQs” (Parton et al., 2020).

This review briefly summarizes the knowledge in caveolae cell
signaling and assesses the status of these microdomains as both
gatekeepers and gateways in cell communication. Furthermore,
because cell signaling is one of the most dynamic domains in
translating data from basic to clinical research, special attention
will be paid to caveolae, caveolins, and cavins research translation
into clinical practice.

ULTRASTRUCTURE OF CAVEOLAE,
RELATED TO CAVEOLINS, AND CAVINS
EXPRESSION

Based on the first electron micrograph reports, caveolae
were categorized and further evaluated as endocytotic vesicles
(Gabella, 1978; Levin and Page, 1980; McGuire and Twietmeyer,
1983; Noguchi et al., 1987; Severs, 1988; Anderson, 1993).
Organized as omega-shaped plasma membrane microdomains
(segments of membrane with special lipid composition; Field,
2017), caveolae have been studied in experimental setups relying
on cholesterol depletion (Liu and Pilch, 2008; Grundner and
Zemljic Jokhadar, 2014). However, cholesterol is also enriched
in other membrane microdomains, such as lipid rafts and
chlatrin coated pits. Cholesterol depletion affects with variable
degree a significant number of endocytotic pathways (reviewed
in Thottacherry et al., 2019), thus generating results that
lack specificity. Caveolae have been described in many cell

types, including endothelial cells, smooth and striated muscle
cells, interstitial cells of the heart (Gherghiceanu et al., 2009),
adipose cells, fibroblasts, and Schwann cells of myelinated or
unmyelinated peripheral nerve fibers (Figure 1). The number
of caveolae varies in different cell types and has been reported
to be up to 10,000/cell in endothelial cells (Couet et al., 1997c)
and about 1,000,000/cell in adipocytes (Thorn et al., 2003). The
number of caveolae also varies in smooth muscle cells of different
tissues from Wistar rats, with 0.48 c/µm in the muscularis
mucosa of stomach, 0.57 c/µm in the media of the aorta, 0.74
c/µm in the bladder, and 1.06 c/µm in the myometrium (Popescu
et al., 2006). More so, the number of caveolae seems to be
modified in pathological conditions, and a decreased number of
caveolae in aortic smooth muscle cells has been associated with
hypertension (Potje et al., 2019).

The protein scaffold composition of caveolae was resolved
by mass spectrometry and cryoelectron tomography (Ludwig
et al., 2013, 2016). The main scaffolding proteins are members
of the caveolin family [caveolin (Cav)-1, -2, and -3], which
associate as homo- or heterooligomers. The protein expression
of caveolins differs in various tissues, as well as in their
propensity to associate in heterooligomers. Caveolins have an
even wider distribution, being detected even in cells that do
not organize caveolae. Cav-1 is the main protein to form
caveolae in non-muscle cells, alone or with Cav-2 (de Almeida,
2017), and its absence results in a lack of caveolae at least
in endothelial and smooth muscle cells (Figure 2). Cav-2 KO
mice show evidence of severe pulmonary dysfunction without
disruption of caveolae (Razani et al., 2002). Cav-1/3 double-
KO mice are viable but lack both muscle and non-muscle
caveolae and develop a severe cardiomyopathic phenotype (Park
et al., 2002). Cav-3 is the main scaffold protein of muscle cell
membrane caveolae (Sohn et al., 2016). Mutations in this gene
lead to skeletal muscle disease through multiple pathogenetic
mechanisms, and Cav-3 deficiency has led to the recognition
of a new category of pathologies labeled the caveolinopathies.
These conditions include sarcolemmal membrane alterations,
disorganization of the skeletal muscle T-tubule network, and
disruption of distinct cell-signaling pathways. To date, 30 Cav-
3 mutations have been identified in the human population. Cav-3
defects underlie four distinct skeletal muscle disease phenotypes:
limb girdle muscular dystrophy, rippling muscle disease, distal
myopathy, and hyperCKemia. In addition, one Cav-3 mutant
has been described in a case of hypertrophic cardiomyopathy
(Gazzerro et al., 2010).

In addition, cavin proteins (cavins 1–4) are recruited from
cytosol to caveolae in the presence of caveolins and are required
to stabilize the caveolar structure by multiple low-affinity
interactions with caveolins and membrane lipids (Parton et al.,
2018; Figure 3).

Similar to Cav-1, cavin-1 is required for caveolae formation,
and KO of either leads to caveolae loss (Hill et al., 2008; Liu
and Pilch, 2008). Cavin-2 deficiency in mice causes tissue-specific
loss of caveolae, affecting lung endothelium and adipose tissue
but not the endothelium in skeletal and cardiac tissue (Hansen
et al., 2013). In vitro, cavin-2 induces membrane curvature in
caveolae (Hansen et al., 2009), serves as part of a cholesterol

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2020 | Volume 8 | Article 581732

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-581732 October 21, 2020 Time: 20:6 # 3

Dudãu et al. Caveolae in Cell Communication

FIGURE 1 | Transmission electron microscopy of cells with caveolae (arrows): endothelial cells (A,B), smooth (C) and striated (D) muscle cells, Schwann cell (E),
and perineurial fibroblast (F). Caveolae in a section parallel to an endothelial cell plasma membrane (B) shows numerous caveolae as single units or clustered
forming rosettes (encircled). E, endothelial cell; cp, clathrin-coated pit; WP, Weibel–Palade bodies in endothelial cell; smc, smooth muscle cell; cm, cardiac muscle
cell; Sch, Schwann cell; Fb, fibroblast (image collection, Department of Ultrastructural Pathology, “Victor Babes” Institute of Pathology, Bucharest).

sensor, and relocalizes cavin-1 from the cytosol to the plasma
membrane (Breen et al., 2012). Cavin-3 does not play a major
role in caveolae formation and composition (Liu et al., 2014a).
Less is known about the pathogenic impact of cavin mutations
in humans. Cavin-1 mutations cause secondary deficiency of
caveolins, resulting in muscular dystrophy with generalized
lipodystrophy (Hayashi et al., 2009). Also, muscle hypertrophy,
muscle mounding, mild metabolic complications, and elevated
serum creatine kinase levels have been observed in these patients
(Dwianingsih et al., 2010; Rajab et al., 2010). Cavin-1 mutations
also are associated with congenital general lipodystrophy type 4
(Shastry et al., 2010; Jelani et al., 2015; Patni et al., 2019). Cavin-
4 (MURC) has been associated with dilated cardiomyopathy
(Rodriguez G. et al., 2011; Szabadosova et al., 2018).

Biogenesis and stabilization of caveolae are further supported
by accessory proteins, such as membrane curvature–regulating
protein PACSIN2/Syndapin II, Eps-15 homology domain 2
ATPase, and receptor tyrosine kinase–like orphan receptor 1
(Lamaze et al., 2017). Both syndapin II (Koch et al., 2012; Senju
and Suetsugu, 2015) and III (Seemann et al., 2017) were shown to
be important in membrane shaping and stabilization of caveolae.

Apart from proteins, caveolae have a high cholesterol content,
sphingomyelin, and phosphatidylserine to serve as anchoring

points for cavins (Lamaze et al., 2017). The reverse of this
interaction—how caveolae and their protein constituents affect
lipid metabolism—is less studied (Ariotti et al., 2014; Chen et al.,
2014; Golani et al., 2019).

Clustering of caveolae has been observed in different cells as
“caveolar cluster-rosettes” or “multiple bulbs packed in a flower-
like fashion,” and mechanisms of assembling in superstructures
have been examined by computational analysis (Golani et al.,
2019). The assumption has been that attractive forces originating
from the energy of membrane deformation generated by the
bulbs are responsible for this feature. The mechano-protective
role of these structures (Szabadosova et al., 2018) putatively relays
on the ability to disintegrate upon cell stretching (Golani et al.,
2019). Formation of clusters of caveole is promoted by caveolar
neck proteins EDH 1, 2, and 4, which partially compensate
for each other to protect the cell against mechanical stress
(Yeow et al., 2017).

Novel imagistic methods began to call into question some of
putative characteristic features of caveolae: the specific smooth
omega shape was actually an artifact of glutaraldehyde fixation
(Schlormann et al., 2010), high resolution scanning EM and
quick-freeze deep-etch techniques detected striations or ridges
on the cytoplasmic side (Izumi et al., 1991), also detectable
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FIGURE 2 | Transmission electron microscopy of endothelial cells (A,C) and smooth muscle cells (B,D) from wild-type (A,B) and Cav-1 KO (C,D) mice. Caveolae
(arrows) are present in endothelial cells (E), pericytes (P), and smooth muscle cells (smc) in wild type (A,B). Note the lack of caveolae in cells from Cav-1 KO mice
(C,D) (image collection, Department of Ultrastructural Pathology, “Victor Babes” Institute of Pathology, Bucharest).

on flattened caveolae (Rothberg et al., 1992). A 3-D electron
tomographic study showed a spiral organization of the coating
(Lebbink et al., 2010), adding evidence to previous suggestions
that caveolae are indeed covered by a spiky coat (Richter et al.,
2008). This protein complex has been designated the caveolar
coat complex, consisting of Cav-1, Cav-2 and cavins 1, 2, and 3,
found in a rather strict stoichiometry of cavin-1: total caveolin—
1:4. Cavins 2 and 3 were detected in a ratio of 1:2 to cavin-
1 (Ludwig et al., 2013). This stoichiometry was confirmed by
further studies and the coatomer organization of the caveolae
was unraveled. Cavin-1 homotrimers or heterotrimers of cavins
(cavin 1 to either cavin 2 or 3 in a stoichiometry of 2–3:1) are
the core constituent of the coat, interacting with approximately
12 caveolin molecules (Krijnse Locker and Schmid, 2013). Using
single-molecule analysis of fluorescently tagged cavins, Gambin
et al. (2013) showed that in cavin hetrotrimers, expression of
cavin 2 and 3 was mutually exclusive and the ratio of cavin
1: cavin 2 may vary, whereas the ratio of cavin 1: cavin 3
was 3:1. A ratio of Cav-1:cavin 1 of 3–4:1 was also confirmed.
Cryoelectron tomography revealed that this caveolar coat has
an inner layer composed of caveolins that assemble into a
polyhedral cage, and a peripheral filamentous layer composed

of cavins (Ludwig et al., 2016), responsible for the spiral aspect
noticed in deep-etch studies. Using mutational analysis and
cryoelectron investigations, Stoeber et al. (2016) proposed a
regular dodecahedron model for the cavin coat Cav-1 oligomers
associate into discs that occupy the faces of the dodecahedron.
Superresolution microscopy studies further proposed a modular
superstructure of caveolae, constructed on smaller scaffolds of
Cav-1 oligomers, which can dimerize and oligomerize into the
polyhedral caveolae coat (Khater et al., 2018, 2019a,b).

From a functional point of view, caveolae initially were
considered to be endocytotic vesicles, but following early
ultrastructural reports, Popescu et al. (1974) proposed a specific
role in calcium signaling and smooth muscle contraction.
That step opened the way to the “renaissance in thinking of
caveolae as organizing centers for signal transduction” (Ostrom
and Insel, 1999), a shift in scientific perception supported by
identification and further study of the first caveolin (Rothberg
et al., 1992). Ever since, opinions about what deserves the
most attention in caveolins research have been shifting, from
markers for caveolae to demonstrate co-localization of other
proteins to these membrane-microdomains (Bilderback et al.,
1997; Lupu et al., 1997; Scherer and Lisanti, 1997; Wu et al., 1997),
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FIGURE 3 | The protein scaffold of caveolae. The proteins forming the caveolae coat are named caveolins and cavins. The main proteins of the coat are caveolin-1
(which oligomerizes in homooligomers or heterooligomers with caveolin-2) and cavin-1 which forms homotrimers or heterotrimers with cavin-2 or cavin-3. The
curvature of the neck of the caveolae is dependent on EH-domain containing protein 2 (EDH2) and pacsins. Created with BioRender.com.

to active players involved in protein–protein interactions and
recruitment of other proteins, to caveolin scaffolding domains
(CSDs) (Couet et al., 1997a). Caveolins were found to co-purify
with different kinases and to participate in signaling events (Li
et al., 1995, 1996a; Couet et al., 1997b). Still, interaction between
caveolins and various proteins via caveolin-binding motifs was
challenged, based on the variety of the latter, their structural
role and their accesibility to interacting proteins (Byrne et al.,
2012; Collins et al., 2012). Nevertheless, aberrant cell signaling
is a hallmark of cancer, and caveolins were reported to be
deregulated in tumor pathogenesis (Razani et al., 2000; Del
Pozo and Schwartz, 2007; Quest et al., 2008). An early yet
continuous trend in caveolae research has been their involvement
in the physiology of muscle tissue (Gabella, 1971), leading
to studies of caveolins in muscle contraction (Thyberg, 2000;
Betz et al., 2001; Ohsawa et al., 2004) mechanosensing (Boyd
et al., 2003; Spisni et al., 2003) and muscle disease (Galbiati
et al., 2001; Tanase et al., 2009). They are now also considered
dynamic membrane reservoirs, providing mechanoprotection
against membrane damage upon changes in membrane tensions
(Sinha et al., 2011), which leads to flattening of caveolae and
lateral diffusion of Cav-1, followed by slow reconstruction
(Tachikawa et al., 2017).

CAVEOLAE IN CELL COMMUNICATION

To date, functional studies have shown that caveolaedo not
simply convey extracellular signals but also are actively involved
in their modulation. Caveolin binding is reported to inhibit
kinase activity for (i) heterotrimeric G proteins, with caveolin
interacting directly with multiple G protein alpha subunits,
including G(s), G(o), and G(i2) (Song et al., 1996); (ii) members
of the Ras superfamily, such as H-Ras (Song et al., 1996)
and RhoC (Lin et al., 2005); and (iii) Src tyrosine kinases (Li
et al., 1996a), acting as negative regulators and sequestering
them to the plasma membrane. Caveolins also are associated
with endothelial nitric oxide synthase signaling (Bucci et al.,
2000) through direct protein–protein interactions (Feron et al.,
1996), exerting a suppressive effect (Razani et al., 2001). Protein–
protein interaction has been reported for CSDs and other kinases,
such as PKA (Levin et al., 2006), and co-localization with
Cav-1 has been demonstrated, although without confirming a
physical interaction (Stubbs et al., 2005). Caveolae also harbor key
proteins involved in calcium signaling (Pani and Singh, 2009),
with a functional impact on striated (Bryant et al., 2014) and
smooth muscle contraction, either directly (Yang et al., 2015)
or indirectly via endothelial nitric oxide synthase endothelial
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signaling and shear stress in endothelial cells (Yamamoto et al.,
2018). In cardiac muscle, Cav-3 participates in scaffolding a
molecular complex centered on calcium channels (Balijepalli
et al., 2006; Harvey and Hell, 2013). In neurons, Cav-1 binds
to calcium-sensing proteins and mediates photoreceptor activity
(Vladimirov et al., 2018), or independently of calcium, to
neurotransmitter receptors (Schmitz et al., 2010; Roh et al., 2014).

Caveolae might act as reservoirs of signaling proteins,
maintained in inactive forms, until the “holders” are signaled to
release them. Conformational changes in caveolins are at least
in part phosphorylation-dependent (Li et al., 1996b), under the
control of the very same kinases that they inactivate, acting as
negative feedback signals (Chen et al., 2012).

One of the few exceptions from the caveolae inhibitory effect
is insulin signaling (Yamamoto et al., 1998). Early studies have
indicated that in adipocytes and pre-adipocytes, downstream
insulin signaling requires intact caveolae (Parpal et al., 2001).
In an embryonic kidney cell line, both Cav-1 and Cav-3 could
directly stimulate insulin receptor kinase activity (Yamamoto
et al., 1998). Furthermore, insulin signaling triggered relocation
of Glut4 to caveolae (for review, see Cohen et al., 2003; Ishikawa
et al., 2005). Recently, other caveolae-associated proteins, such
as EHD2 (Moren et al., 2019) and NECC2 (Travez et al., 2018),
have been identified as part of the insulin-caveolae signaling
mechanism. Studies using a Cavin-1 null mouse have revealed
a distinct lipodystrophic, insulin-resistant phenotype (Liu et al.,
2008), which also has been subsequently documented in patients
who are cavin-1 deficient (Pilch and Liu, 2011). In contrast,
loss of cavin-3 does not have a significant impact on adipose
tissue and glucose metabolism, as shown in cavin-3 KO mice
(Liu et al., 2014a).

Of note, Cav-1 retains signaling functions in the absence
of caveolae, as it continues to act as a scaffolding platform
for signaling proteins. In neurons, Cav-1 was proposed to
scaffold signaling components promoting neuronal survival,
growth cone arborization (Head et al., 2011) and axonal growth
(Wang et al., 2019). Furthermore, flattening of caveolae under
membrane tension might trigger itself downstream signaling
by cavin-1 release (Sinha et al., 2011), protein kinase C
activation (Senju et al., 2015) or cooperation with cytoskeleton
(Echarri and Del Pozo, 2015).

Oncogenic Signaling and Caveolins
A significant body of evidence involves caveolins in oncogenesis
and emerged as a consequence of caveolins’ ability to suppress
cellular signaling pathways. Initial reports highlighted caveolae
and caveolin downregulation in transformed cells (Koleske et al.,
1995; Galbiati et al., 1998; Capozza et al., 2003), and murine Cav-1
and 2 genes were mapped to a tumor suppressor locus (Engelman
et al., 1998). Since then, numerous data have been collected from
cell lines involving both Cav-1 and -2 (Sagara et al., 2004), [colon
carcinoma (Bender et al., 2000), human breast cancer (Lee et al.,
1998), and ovarian carcinoma (Miotti et al., 2005)], or only Cav-
1 (Racine et al., 1999). Further data have come from studies
with KO animals (Capozza et al., 2003; Williams et al., 2004)
and human tissue samples of human colon carcinoma (Bender
et al., 2000), pancreatic adenocarcinoma (Tanase, 2008; Tanase

et al., 2009) lung neoplasia (Kato et al., 2004), breast (Chen
et al., 2004) and ovarian cancer (Wiechen et al., 2001a), and
malignant mesenchymal tumors (Wiechen et al., 2001b). The
role for caveolins as guardians against oncogenic transformation
is supported by reports that loss of Cav-1 in tumor-associated
fibroblasts drives a change in phenotype from “normal” to
“fuel-supplier,” modifying the stromal environment of cancer
cells into a medium favoring survival (Mercier et al., 2008;
Trimmer et al., 2011).

This suppressor status has been challenged over time, however,
with some limited but fairly consistent evidence of Cav-1
overexpression in various types of cancer. These findings have
sometimes been in contradiction with datasets from the same
types of cancer in which Cav-1 overexpression was reported
(Patlolla et al., 2004) and in other cases have arisen in areas of
cancer study where caveolins have otherwise gone unexamined
(Ito et al., 2002; Suzuoki et al., 2002; Steffens et al., 2011). Caveolin
expression seems to be increased in urogenital cancers (Kasahara
et al., 2002; Fong et al., 2003; Joo et al., 2004), although not
exclusively so. Some results suggest involvement of Cav-1 in
resistance to cancer treatments (Sekhar et al., 2013, as reviewed
in Ketteler and Klein, 2018), and in tumor spreading (reviewed in
Senetta et al., 2013; Campos et al., 2019).

On the other hand, involvement of Cav-2 in tumor biology
was not investigated until recently. The few data reported so
far converge toward a protumorigenic role for Cav-2. In a
Cav-2 KO mouse model, its loss seems to favor infiltration
of tumor-associated macrophages into the tumor tissue and
tumor regression (Liu et al., 2019). It also reduces metastatic
potential of pancreatic cell lines (Liang et al., 2018) and
its serum levels are increased in patients with pancreatic
cancer, a finding associated with poor prognosis (Liang et al.,
2018). Similar to Cav-1, Cav-2 involvement in tumorigenesis
seems to depend on the tumor type. Investigation of Cav-2
expression in lung cancer have revealed a loss of protein during
metastasis in lymph nodes, which correlated with poor prognosis
(Gerstenberger et al., 2018).

The role of the cavin family as an oncogene or tumor
suppressor is also controversial, depending on the cell
and/or tissue type.

Most reports show the same trends for cavins as observed
for Cav-1. Loss of cavin-1 is correlated with poor prognosis
in colorectal cancer (Wang et al., 2017) and liposarcoma
(Codenotti et al., 2017). Loss of cavin-2 also is correlated with
a poor prognosis in liposarcoma (Codenotti et al., 2017) and
hepatocellular carcinoma (Jing et al., 2016). In glioblastoma
(Huang et al., 2018) and pancreatic adenocarcinoma, cavin-1
enhances the prognostic potency of Cav-1 (Liu et al., 2014b).

Cell-to-Pathogen Interaction at Caveolar
Sites
Caveolins were related to both antiviral and antibacterial defense.
Cav-1 was proposed as a T cell–intrinsic orchestrator of TCR-
mediated membrane polarity and signal specificity selectively
employed by CD8 T cells to customize TCR responsiveness
(Tomassian et al., 2011). Downregulation of Cav-1 apparently
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disperses clusters of antiviral defense–related receptors (Gabor
et al., 2013), and Cav-1 KO cells display increased exosome
uptake (Svensson et al., 2013). Overexpressing Cav-1 in
macrophages seems to lower virion infectivity by altering
cholesterol content (Lin et al., 2012) or cellular proteins required
for viral replication (Simmons et al., 2012).

Viruses
Conversely, Cav-1 is a target of viral attacks, serving as a safe
environment for viral replication (Yan et al., 2012), including
of coronavirus strains (Nomura et al., 2004; Guo et al., 2017;
Wang et al., 2020). Similar to other membrane microdomains,
caveolae serve as entry gates for viruses, such as simian
immunodeficiency virus (Neu et al., 2008), HCV (Shi et al., 2003),
some species of adenoviruses (Leung and Brown, 2011), some
herpesviridae (Hasebe et al., 2009; Kerur et al., 2010), group B
of coxsackie viruses (Patel et al., 2009), foot-and-mouth disease
virus (O’Donnell et al., 2008), some types of papilloma virus
(Smith et al., 2007), echovirus-1 (Pietiainen et al., 2004), some
coronaviruses (Nomura et al., 2004; Guo et al., 2017; Wang
et al., 2020), and some types of flavivirus (Zhu et al., 2012).
Viral hijacking of caveolae is summarized in Figure 4 (based on
Xing et al., 2020).

A few viruses even seem to incorporate Cav-1 into new virions
(Brown et al., 2002; Laliberte et al., 2006; Ravid et al., 2010).
Whether caveolins are only part of the “vessel” or are being
hijacked and used as “anchors” has been elucidated for some
pathogens. Molecular modeling and simulation have suggested
the existence of caveolin-binding sites for SARS-CoV proteins
(Cai et al., 2003), although a Cav-independent mechanism
also has been described (Wang et al., 2008), and for rotavirus
endotoxin (Mir et al., 2007), HIV envelope proteins (Huang et al.,

2007), human influenza A viruses (Sun et al., 2010), and murine
leukemia viruses (Yu Z. et al., 2006).

Bacteria
Recent results offer growing evidence of Cav-1 acts against
bacterial infections, as well (Tsai et al., 2011; Hitkova et al., 2013).
It plays a protective role against fibronectin-binding pathogens,
such as Staphylococcus aureus (Hoffmann et al., 2010) and
Pseudomonas aeruginosa (Gadjeva et al., 2010), prevents Neisseria
gonorrhoeae uptake (Boettcher et al., 2010), and is a critical
protective modulator of sepsis (Feng et al., 2010).

On the other hand, some strains of streptococci (Rohde
et al., 2003), chlamydia (Webley et al., 2004), Salmonella (Lim
et al., 2010), Mycobacterium, Brucella species, FimH expressing
E. coli (for review see Duncan et al., 2002; Medina-Kauwe,
2007), other aggressive strains of E. coli (Rogers et al., 2012),
Campylobacter jejuni (Watson and Galan, 2008), Bordetella
pertussis (Martin et al., 2015), Leptospira interrogans (Li et al.,
2019), and Rickettsia (Chan et al., 2009) also use this endocytic
pathway for host infectivity. In addition, caveolae are targeted
by Gram-negative bacterial outer membrane vesicles, structures
involved in secretion of virulence determinants, modulation
of the host immune response, and contributions to biofilm
formation and stability (Sharpe et al., 2011). Gonococci use Cav-
1 phosphorylation and downstream signaling to switch from
local to invasive infection (Faulstich et al., 2013). Bacterial entry
into cells was divided in active and passive entry (Duncan
et al., 2002). Salmonella typhimurium was identified as an
example of active entry, driven by secreted proteins, while
Chlamydia trachomatis as a typical example of passive entering
germ (Duncan et al., 2002). Caveolae-mediated endocytosis
was shown to be not involved in Clostridium difficile toxin A

FIGURE 4 | Diagrammatic representation of the four classes of viruses (taking into account virus structure and target cell type) documented to use caveolae as
gates to entry cells.
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endocytosis (Chandrasekaran et al., 2016). This paper illustrates
a thinking pattern, suggesting that clathrin-dependent and
caveolae-dependent-mediated endocytosis have to be equally
explored as routes for both bacteria or bacterial products.
Clathrin, caveolae, macropinocytosis and secretory lysosomes
were investigated as the four major points (gates) pathogens
can hijack (Eto et al., 2008). Regarding mechanisms used
for hijacking, data is scares as only a few articles examined
specifically this subject (Eto et al., 2008; Watson and Galan,
2008; Chi et al., 2010, 2011; Lim et al., 2014; Martin et al., 2015;
Chandrasekaran et al., 2016; see also Table 1).

Some other papers were mentioning bacterial entry, but in a
broader context, examining, for example, clathrin-independent
mechanisms of endocytosis. It is noteworthy to observe that
“nomenclature is imprecise,” criteria used to classify such
transport systems relying on “cargoes, or plasma membrane
markers, or carrier morphologies, or speed of the process” (for
details see Ferreira and Boucrot, 2018).

Cav-1−/− mice show an increased production of
inflammatory cytokines, chemokines (Codrici et al., 2018),
and nitric oxide and an inability to control systemic infection
by Salmonella. The increased chemokine production in these
mice leads to greater infiltration of neutrophils into granulomas
but no changes in the number of granulomas present. Cav-
1−/− macrophages show increased inflammatory responses
and increased nitric oxide production in vitro in response to
Salmonella lipopolysaccharide. These results show that Cav-1
plays a key role in regulating anti-inflammatory responses in
macrophages. These data collectively suggest that the increased
production of toxic mediators from macrophages lacking
Cav-1 is likely to be responsible for the marked susceptibility
of Cav-1–deficient mice to S. enterica serovar Typhimurium
(Medina et al., 2006).

Prions
PrP(C) were shown to be associated in rafts with caveolin-1
and signaling molecules, including Fyn and Src tyrosine kinases
(Taylor and Hooper, 2006; Toni et al., 2006). These data open the
avenue for exploring conditions in which cell are handling prion-
like proteins (i.e., neurodegenerative diseases; Muradashvili et al.,
2016; Puangmalai et al., 2020).

Parasites
Last, but not least, parasitic pathogens such as Leishmania
infantum (Leishmania chagasi) (Rodriguez et al., 2006),
Plasmodium vivax (Bracho et al., 2006), and Trypanosoma cruzi
(Soeiro Mde et al., 1999) also use caveolae as cellular entry point.
“Leishmania spp. include the infectious promastigote and the
replicative intracellular amastigote.” It was shown that caveolae
are contributing to uptake and intracellular survival of virulent
promastigotes by macrophages (Rodriguez N. E. et al., 2011).
Parasites of the genus Plasmodium induce changes within the
host cell, among which, a type of “caveola-vesicle complex”
(Sherling and van Ooij, 2016), defined also as “distinctive
caveolae nanostructures” (Malleret et al., 2015). Chagas disease
is caused by the protozoan parasite Trypanosoma cruzi. Cardiac
injury observed during chagasic cardiomyopathy imply caveolae

components (reduced expression of caveolin-3) contributing
to the feature of disease (Adesse et al., 2010). Caveolae/raft-
mediated endocytosis was demonstrated as the main route
to AgB internalization, “a major component of Echinococcus
granulosus metacestode hydatid fluid” (da Silva et al., 2018).

Of note, as presented in table 1, caveolae are not exclusive
entry gates for these pathogens, who “hijack” other cellular entry
pathways [for an update on bacterial manipulation of clathrin
see (Latomanski and Newton, 2019), for endocytotic mechanisms
used by viruses, (Slonska et al., 2016)and for parasites (Horta
et al., 2020)]. Furthermore, lipids enriched in caveolae could play
a part in virus entry (Ewers et al., 2010)and virus replication
(Favard et al., 2019), but can be found elsewhere in the plasma
membrane. This may explain partly why pathogens can enter the
cells via caveolae with more or less specificity.

Current data support the idea that functions of caveolae
may be hijacked by different means, in different target cells,
with different consequences. Diverse viruses, prions, bacteria or
parasites are capable of such hijacking. From this point of view
caveolae could be considered as potential hijackable cell gates.
Identification of key points during the process could make more
effectively the treatment of such infectious diseases. Along with
these efforts, development new drug delivery techniques could
become be more likely.

Gatekeepers of Aging
Cho and Park proposed Cav-1 as a “gatekeeper molecule”
and a “major determinant of aging process” (Cho and Park,
2005). Cav-1 is involved in the regulation of many cellular
processes relevant to stem cell biology, such as growth, control
of mitochondrial antioxidant levels, migration, and senescence
(Baker and Tuan, 2013). The observation that caveolae are
decreased in senescent cells is now more than a decade old
(Somara et al., 2007; Lowalekar et al., 2012, reviewed in Nguyen
and Cho, 2017) and has been associated with an apparent paradox
of increased cellular caveolins (Wheaton et al., 2001). In vitro
data have confirmed that overexpression of Cav-1 induces early
senescence in different cell types (Volonte et al., 2002; Cho
et al., 2004; Dai et al., 2006), and Cav-1 KO animal models
have a reduced lifespan (Park et al., 2003). Several reports
have focused on signaling alterations in normally and induced
aging cells (Castro et al., 2004; Favetta et al., 2004). A direct
correlation between caveolin deficit and senescence has been
reported to involve the Mdm–p53–p21 axis (Bartholomew et al.,
2009). In-depth analysis of this correlation has shown that this
interaction is cavin-1 dependent (Bai et al., 2011), and through
inhibition of Nrf2-mediated signaling, Cav-1 links free radicals
to activation of the p53/senescence pathway (Volonte et al.,
2013). The same research group has argued that Cav-1 appears
to play a major role in the signaling events linking oxidative
stress to cellular senescence and identified an oxidant-responsive
Cav-1 promoter sequence (Bartholomew and Galbiati, 2010).
Furthermore, Cav-1 deficiency inhibited cardiolipin synthesis
and induced mitochondrial dysfunction (Yu et al., 2017).

Different tissue types age differently in terms of caveolae
and caveolins: cardiac muscle maintains the same levels of
total Cav-1 and -3, but levels of Cav-1 alpha and -3 increase
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TABLE 1 | Summarization of pathogens using caveolae as entry gates.

Entity type Name of
species

Experimental findings
Caveolin-dependent

References

Viruses SARS
coronavirus

Molecular modeling and simulation have suggested the existence of caveolin-binding sites for SARS-CoV proteins
ALSO
“SARS coronavirus entry into host cells through a clathrin- and caveolae-independent endocytic pathway”

Cai et al., 2003;
Wang et al., 2008

Human
coronavirus

Cav-1 knockdown by RNA interference reduced the HCoV-229E infection. As mechanism, HCoV-229E binded to CD13 in DRMs, then clustered CD13
by cross-linking
AND
caveolin-1 dependent endocytosis was documented by confocal microscopy; the vesicle internalization process required actin cytoskeleton
rearrangements.”

Nomura et al.,
2004; Owczarek
et al., 2018

Hepatitis B
Virus (HBV)

“ HBV requires a Cav-1-mediated entry pathway to initiate productive infection in HepaRG cells; chemical inhibitors that specifically inhibit
clathrin-mediated endocytosis had no effect on HBV infection.”

Macovei et al.,
2010

Human
influenza A
virus (H1N1)

“Cav-1 modulated influenza virus A replication presumably based on M2/Cav-1 interaction” Sun et al., 2010

Human
immunodeficiency
virus (HIV)

“HIV infection up-regulated the expression of Cav-1 and the enhanced level of Cav-1 subsequently represses virus replication by suppressing the
activity of NF-κB, promoting cholesterol efflux, and blocking the fusion steps of virus infectivity.”

Mergia, 2017

Japanese
encephalitis
virus (JEV)

“JEV entered human neuronal cells by caveolin-1-mediated endocytosis,. RhoA activation promoted the phosphorylation of caveolin-1, and then Rac1
activation facilitated caveolin-associated viral internalization”
ALSO
“ JEV enters porcine kidney epithelial PK15 cells through cholesterol- and clathrin-mediated endocytosis”

Yang et al., 2013;
Xu et al., 2016

Respiratory
syncytial virus
(RSV)

“Co-localization of RSV antigen and caveolae was observed by confocal microscopy.”
AND
“RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties
of the RSV envelope”

Werling et al., 1999;
Ludwig et al., 2017

Rift Valley fever
virus (RVFV)

“Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of
caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. These results
suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.”

Harmon et al., 2012

Human
papillomavirus
(HPV)

“HPV type 31 (HPV31) entry and initiation of early infection events require both caveolin 1 and dynamin 2 and occur independently of clathrin-mediated
endocytosis”

Smith et al., 2007

Echovirus 1 “Immunofluorescence confocal microscopy showed that EV1, alpha 2 beta 1 integrin, and caveolin-1 were internalized together in vesicular structures.
Electron microscopy showed the presence of EV1 particles inside caveolae. Furthermore, infective EV1 could be isolated with anti-caveolin-1 beads
15 min p.i., confirming a close association with caveolin-1.”

Marjomaki et al.,
2002

Murine
amphotropic
retrovirus
(A-MLV)

“. . .we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells.”
CONTROVERSIAL
“A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. A-MLV infection of mouse embryonic fibroblasts
deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected.”

Beer et al., 2005;
Rasmussen and
Vilhardt, 2015
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TABLE 1 | Continued

Entity type Name of
species

Experimental findings
Caveolin-dependent

References

Bacteria Listeria
monocytogenes

Cav1 Cav2 and PACSIN2 promote L. monocytogenes protrusion engulfment during spread. Sanderlin et al.,
2019

Edwardsiella
tarda

Entry of E. tarda into macrophages is clathrin- and caveolin-mediated endocytosis and cytoskeletons, and that the intracellular traffic of E. tarda involves
endosomes and endolysosomes. ”

Sui et al., 2017

Salmonella
typhimurium

Over-expression of Cav-1 increased Salmonellae invasion in non-senescent cells. Presence of high expression of Cav-1 in Peyer’s patch and spleen,
“might be related to the increased susceptibility of elderly individuals to microbial infections”
“ a new model in which caveolin-1 might be involved in Salmonella entry via its interaction with SopE and Rac1, leading to enhanced membrane ruffling
for phagocytosis into host cells. ”

Lim et al., 2010,
2014

Ehrlichia
chaffeensis
Anaplasma
phagocytophilum

“E. chaffeensis and A. phagocytophilum
utilize caveolae-mediated endocytosis for host cell entry ”

Lin and Rikihisa,
2003; reviewed in
Samanta et al.,
2017

Escherichia coli RNA(i) reduction of cav-1 expression inhibited bacterial invasion; (iii) a signaling molecule required for E. coli invasion was located in lipid rafts and
physically associated with caveolin-1; (iv) bacterial invasion was inhibited by lipid raft disrupting/usurping agents.”

Duncan et al., 2004

Pseudomonas
aeruginosa

“P. aeruginosa colonized cav1 KO mice much better compared with the wild-type controls in a model of chronic infection, indicting an important
contribution of Cav-1 to innate host immunity to P. aeruginosa infection in the setting of both acute pneumonia and chronic infection typical of cystic
fibrosis”
CONTROVERSIAL
“Unlike wild type mice, which succumb to pneumonia, caveolin-deficient mice are resistant to Pseudomonas”

Gadjeva et al.,
2010; Zaas et al.,
2009

Mycobacterium
tuberculosis

“. . . cav-1 proteins are present in great numbers in the plasma membrane of myeloid-derived suppressor cells (MDSC) ” Kotze et al., 2020

Parasites Trypanosoma
cruzi

“CD-1 mice infected with the Brazil strain of T. cruzi displayed reduced expression of Cav-3 and activation of ERK 66 days post infection.”
AND
“Immunofluorescence analysis demonstrated a colocalization of GM1, flotillin 1 and caveolin 1 in the T. cruzi parasitophorous vacuole of macrophages.”

Barrias et al., 2007;
Adesse et al., 2010

Leishmania “. . .virulent L. chagasi localize in caveolae during phagocytosis by host macrophages, and cholesterol-containing macrophage membrane domains,
such as caveolae, target parasites to a pathway that promotes delay of lysosome fusion and intracellular survival.”

Rodriguez et al.,
2006
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with aging in purified fractions of caveolae (Ratajczak et al.,
2003). Other studies have reported a decrease in Cav-3 with
age in ventricular myocytes (Kong et al., 2018). Aged smooth
muscle has a reduced number of caveolae and reduced levels
of Cav-2 and 3, but non-altered levels of Cav-1 and cavin-1
(Lowalekar et al., 2012), and aged endothelial cells have increased
levels of total Cav-1 (Yoon et al., 2010). The hippocampus of
aged mice shows low Cav-1 expression, and knocking it out
triggers a predisposition to an early Alzheimer’s disease–like
phenotype (Head et al., 2010). Total rat brain levels of Cav-1 are
decreased in aged animals (Yang et al., 2018), and skin fibroblasts
upregulate Cav-1 in both chronological and UV-induced skin
aging (Kruglikov et al., 2019).

Transduction of Environmental,
Non-chemical Signals
Of all environmental cues perceived by cells, caveolae
play an important part in translating those involved in
mechanotransduction (Rizzo et al., 2003; Sinha et al., 2011;
Joshi et al., 2012). This role has been comprehensively reviewed
(Nassoy and Lamaze, 2012; Shihata et al., 2016), including the
involvement of caveolae in signaling events, but new facets
are being constantly added to this particular facet of caveolae
behavior. Caveolae sensitivity to environmental physical stimuli
was being uncovered as researchers began to also reveal their
involvement in cellular signaling (Rizzo et al., 1998, 2003;
Spisni et al., 2003), and changes in caveolar morphology under
muscle stretch were reported even earlier (Gabella and Blundell,
1978). Caveolae morphology and number, as well as caveolins
expression and distribution, seem to depend on shear stress
(Boyd et al., 2003), gravitational force (Grenon et al., 2013), and
mechanical stretch (Sinha et al., 2011). Along with disappearance
of caveolae following mechanical stress in muscle cells, Cav-1
and -3 are translocated to non-caveolar membrane sites (Kawabe
et al., 2004) and Cav-1 showed increased phosphorylation (Zhang
et al., 2007) in a context of increased kinase activity and signaling
events. Cavins are released into the cytosol, where they form a
pool for subsequent caveolar reconstruction (Tillu et al., 2015).

Although Cav-3 is muscle specific, its involvement in stretch-
induced cell signaling has been less studied than that of Cav-1 and
may not even be mandatory for some signaling pathways (Bellott
et al., 1985). Cav-3 has been recently demonstrated to regulate
IL6/STAT3 mechano-signaling (and mechano-protection) (Tate
et al., 1987). Both the increase in shear stress and the cessation
of flow trigger a mechano-signaling cascade that leads to the
generation of reactive oxygen species (Noel et al., 2013). Through
their structure, composition, and mechanical properties, caveolae
limit activity of mechanosensitive ion channels, which seems to
require Cav-3 (Huang et al., 2013). One hypothesis is that the
reservoir of Cav-1 and glycosphingolipids can be released to
control mechano-signaling (Nassoy and Lamaze, 2012).

Localization of small GTPases involved in cytoskeleton
rearrangement within the caveolar compartments seems to be
essential for stretch-signal transduction (Kawamura et al., 2003).
Regulation of RhoA, for example, drives actomyosin contractility
and other mechanosensitive pathways, suggesting that caveolae

could couple mechanotransduction pathways to actin-controlled
changes in tension through their association with stress fibers
(Echarri and Del Pozo, 2015). Unfolding of caveolae under
stress, followed by activation of Src and redistribution of caveolin
and glycosphingolipids, might reflect mechanisms of the cellular
adaptation to mechanical stresses (Gervasio et al., 2011). The
role of caveolae as mechanosensors has been extensively reviewed
(Nassoy and Lamaze, 2012; Echarri and Del Pozo, 2015).

The mechanosensing of caveolae is only partially
supplemented by other cellular mechanisms, as demonstrated by
KO animal models. Cav-1 KO mice have impaired-flow–induced
vasodilation and flow-dependent arterial remodeling, effects that
are rescued by re-expression of endothelial Cav-1 (Yu J. et al.,
2006). Muscle fibers from cavin-1−/− mice have a prominent
sarcolemmal organization, aberrant T-tubule structures, and
increased sensitivity to membrane tension, effects that could be
rescued by muscle-specific cavin-1 re-expression. In vivo imaging
of live zebrafish embryos showed that loss of muscle-specific
cavin-1 or expression of a dystrophy-associated Cav-3 mutant
both led to sarcolemmal damage but only in response to vigorous
muscle activity (Lo et al., 2015).

Another aspect of environmental communication is
extracellular matrix sensing, which triggers cytoskeleton
remodeling. Disruption of lipid rafts or knockdown of Cav-1
decreased cell spreading on a stiff matrix, and this effect was
mediated by β1 integrin downregulation (Yeh et al., 2017).
Effects of defective extracellular matrix stiffness sensing in Cav-1
loss can be rescued by constitutive activation of yes-associated
protein (Moreno-Vicente et al., 2018).

Traffic of Macromolecules and Metabolic
Regulation
Caveolae are a conserved traffic pathway for a number of
proteins, including albumin transfer across the endothelium in
physiological (Predescu et al., 2002) and inflammatory conditions
(Hu and Minshall, 2009), matrix metalloproteinase traffic (Galvez
et al., 2004), endocytosis of many surface receptors, and traffic
to the Golgi apparatus and endoplasmic reticulum (Le and Nabi,
2003). Involvement of caveolin in endocytosis, as well as the
dynamics of caveolae between membrane-attached and scissored
state are the topics of several reviews (Parton and Richards, 2003;
Lajoie and Nabi, 2010; Hubert et al., 2020).

This prompted the hypothesis that caveolae are “metabolic
platforms” and “gateways for the uptake of nutrients
across the plasma membrane” (Örtegren et al., 2007).
Caveolin-1 has been reported to regulate metabolism of
lipid droplets in adipocytes (Briand et al., 2014, reviewed
in Martin, 2013) and endothelial cells (Kuo et al., 2018),
including the composition in peripheral phospholipids
and associated proteins (Blouin et al., 2010). CAV-1
gene polymorphisms have been reported in patients with
altered lipid metabolism in adult (Mora-Garcia et al., 2017,
2018) and juvenile forms (Nizam et al., 2018). Metabolic
alterations are partially mediated by impaired insulin signaling
(Gonzalez-Munoz et al., 2009; Perez-Verdaguer et al., 2018;
Travez et al., 2018). Conversely, it was recently shown that
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TABLE 2 | Clinical trials that include caveolin-1 as target or objective.

No. Study Title Conditions Interventions Phase Primary objective Secondary objectives
related to Cav-1

Outcome measures related
to Cav-1

NCT Number

1 Caveolin-1 and
Vascular Dysfunction

Hypertension
insulin resistance

Drug: para-aminohippuric Acid
Drug: angiotensin II
Drug: norepinephrine

Phase 1 Genetic variation at the Cav-1
locus

NCT01426529

2 Safety, Tolerability and
Pharmacokinetic Study
of LTI-03 in Healthy
Adult Subjects

Idiopathic pulmonary
fibrosis

Drug: Cav-1
scaffolding-protein–derived
peptide (LTI-03)
Drug: placebo

Phase 1 Incidence of
treatment-emergent adverse
events

NCT04233814

3 Metformin
Hydrochloride and
Doxycycline in Treating
Patients with Localized
Breast or Uterine
Cancer

Breast carcinoma
Endometrial clear cell
adenocarcinoma
Endometrial serous
adenocarcinoma
Uterine corpus cancer
Uterine corpus
carcinosarcoma

Drug: metformin hydrochloride
Drug: doxycycline

Phase 2 To determine if treatment with
a combination of metformin
and doxycycline can increase
the percentage of cells that
express Cav-1 in the
cancer-associated fibroblasts
of patients with breast, or
uterine, and cervical cancers

The effect of treatment
on the expression of
Cav-1 in stromal cells
related to the
percentage of cells
expressing ER and PR
for breast and uterine
samples and HER2 in
breast cancer samples.

Primary outcome: Change in
the percent of stromal cells
expressing Cav-1 at an intensity
of 1 + or greater assessed by
immunohistochemistry
Secondary outcome:
Percentage of stromal cells
expressing Cav-1 in relation to
the percentage of cells
expressing ER and PR for
breast and uterine samples and
HER2 in breast cancer
samples.

NCT02874430

4 Fat Biology, Sleep
Disorders, and
Cardiovascular Disease

Sleep disordered
breathing
Cardiovascular disease

Characterization of
serum/plasma levels of
Cav-1, and correlate this with
the presence or absence of
sleep disordered breathing,
obesity, and cardiovascular
disease

Not mentioned NCT01229501

5 Pilot Study of
Anti-oxidant
Supplementation With
N-Acetyl Cysteine in
Stage 0/I Breast
Cancer

Stage 0/1 breast
cancer
Post biopsy
Pre-surgery

Drug: IV/oral n-acetylcysteine
(NAC)

Phase 1 Primary outcome: To assess
the feasibility of evaluating the
effect of n-acetylcysteine on
tumor cell metabolism by
assessing the changes in
expression of Cav-1 and MCT4
in cancer-associated fibroblasts
in pre- and post-therapy breast
tissue treated with NAC

NCT01878695

8 Schedules of
Nab-Paclitaxel in
Metastatic Breast
Cancer

Metastatic breast
cancer

Drug: nab-Paclitaxel Phase 2 To investigate the prognostic
role of putative markers
(SPARC and caveolin) and
assess any change in the
expression of SPARC and
caveolin between primary and
the metastatic sites

NCT01746225
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TABLE 2 | Continued

No. Study Title Conditions Interventions Phase Primary objective Secondary objectives
related to Cav-1

Outcome measures related
to Cav-1

NCT Number

9 Efficacy and Safety
Study of ABI-007 Plus
Capecitabine as
First-line Chemotherapy
for Advanced Gastric
Cancer Patients

Gastric
adenocarcinoma

Drug: nanoparticle
Albumin-bound paclitaxel

Phase 2 To identify the molecular
biomarkers (such as SPARK,
β-Tubulin III, caveolin, etc.) by
immunohistochemical and
western-blotting before and
during therapy, to study the
biomarkers correlations with
clinical outcome and toxicity

NCT01641783

10 Correlation Between
Blood Biomarkers and
Postoperative Delirium
in Elective Non-Cardiac
Surgery

Postoperative delirium
Elective non-cardiac
surgery

Diagnostic test:
neuropsychological tests

Primary outcome: Serum
concentration change in
biomarker of blood–brain
barrier disruption Cav-1 to be
measured at 2 time points

NCT03915314

11 Radiological and
Biological Tumoral and
Peri-tumoral Factors in
Neoadjuvant
Endocrine-treated
Breast Cancers

Breast cancer Other: shear-wave elastography
Drug: letrozole
Procedure: breast core biopsy
Other: magnetic resonance
imaging

Not
applicable

Secondary outcome: evaluation
of Cav-1 in peritumoral tissue
by immunohistochemistry

NCT02701348

12 A Study of Dasatinib
(BMS-354825) in
Patients With
Advanced
“Triple-negative” Breast
Cancer

Breast cancer
Metastasis

Drug: dasatinib Phase 2 Secondary outcome: evaluation
of Cav-1 by
immunohistochemistry

NCT00371254

13 Neoadjuvant
Pembrolizumab(Pbr)/Nab-
Paclitaxel Followed by
Pbr/Epirubicin/Cyclophosphamide
in TNBC

Malignant neoplasm of
breast

Drug: pembrolizumab
Drug: nab-paclitaxel
Drug: epirubicin
Drug: cyclophosphamide

Phase 2 Other outcome: Cav-1
evaluation by
immunohistochemistry at
baseline, after treatment, and at
surgery

NCT03289819

https://clinicaltrials.gov/ct2/results?cond=&term=caveolin&cntry=&state=&city=&dist=. Accessed 10 February 2020. Cav-1, caveolin-1; HER2, human epidermal growth factor 2; ER, estrogen receptor; PR,
progesterone receptor; MCT4, monocarboxylate transporter 4.
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lifestyle interventions in patients with impaired glucose
regulation changed tissular and plasma cav-1 expression
(Fachim et al., 2020).

To summarize, caveolae can be viewed as “hijackable gates.”
They selectively filter extracellular signals, and no general rule has
yet been identified for opening or closing them. The variability of
response from cell type to cell type or tumor type to tumor type
can be partially explained by different interaction partners. The
complete picture of caveolin and cavin alterations in any given
type of tumor remains elusive. Another gap that is just gaining
attention is the comparative analysis of behavior between the
primary tumor and metastatic sites.

THE FORESEEN TREND: CAVEOLIN
RESEARCH (NOT YET) TRANSLATED
INTO CLINICAL PRACTICE

As a consequence of cancer-related studies, Cav-1 and -2 have
been investigated as tumor prognostic markers for different types
of cancers, mostly carcinomas (Sloan et al., 2009; Langeberg et al.,
2010; Steffens et al., 2011; Zhan et al., 2012; Lobos-Gonzalez
et al., 2014). The discovery of new communication patterns
between cancer and stromal cells, in which Cav-1 seems to be an
important key note for both sides (Sotgia et al., 2012), prompted
a new paradigm for prognosis of certain cancer types, based on
evaluation of Cav-1 in stromal cells (Witkiewicz et al., 2009; Zhao
et al., 2013).

In addition to cancer, caveolins are reported to be involved
as gatekeepers in a wide variety of pathological processes from
neurodegeneration (Head et al., 2010) to lipodystrophy (Martin
et al., 2012), atherosclerosis (Pavlides et al., 2014), pulmonary
fibrosis (Tourkina et al., 2008), and glaucoma (Thorleifsson
et al., 2010). Genetic polymorphisms in the Cav-1 gene are
associated with transplant-related renal (Moore et al., 2010)
and respiratory pathologies (Kastelijn et al., 2011). Because
of its tissue specificity, Cav-3 is involved in specific muscle
pathologies, ranging from myodystrophies (Minetti et al., 1998)
to arrhythmias (Balijepalli and Kamp, 2008).

Following the many pieces of evidence of caveolin
involvement in several pathologies, attempts have been made to
target them for therapeutic development in cancer (Tamaskar
and Zhou, 2008), cardiovascular diseases (Sellers et al., 2012),
and kidney disease (van Dokkum and Buikema, 2009). To
date, only 13 clinical trials related to caveolin are listed in the
U.S. National Institutes of Health database (Table 2), and only
one is registered in Europe, a 2013 clinical study regarding
nab-Paclitaxel treatment in HER2-negative metastatic (stage IV)
breast cancer. This ongoing European study is evaluating Cav-1
expression as a secondary prognostic marker.

As a potential drug, Cav-1 is being tested in a form of a
peptide-mimetic in a US randomized, double-blind, placebo-
controlled trial (NCT04233814) that is starting phase 1
in 2020. The trial will assess the initial safety, tolerability,
and pharmacokinetic profile of inhaled LTI-03, a Cav-1
scaffold protein–derived 7-amino acid peptide (LTI-03)
in healthy participants. The results will guide any future

clinical development of LTI-03 for the treatment of idiopathic
pulmonary fibrosis.

Other trials are evaluating caveolin as a prognostic biomarker
of therapy response in gynaecologic cancers (NCT02874430),
breast cancer (NCT01878695, NCT01746225, NCT02701348
NCT00371254), and gastric adenocarcinoma (NCT01641783),
and vascular response to hypertensive stimuli (NCT01426529).

No clinical trials that involve cavin are yet available.
Cell-penetrating-peptides (CPPs) are small amino acid

sequences characterized by the ability to cross cellular
membranes. In therapy, they can be useful for delivering bioactive
molecules, such as CPP-mediated delivery of anti-tumoral
proteins (Habault and Poyet, 2019).

CONCLUSION

Caveolae are complex membrane microdomains of (now
better) known molecular composition, with wide tissue
distribution. Two classes of proteins (caveolins and cavins)
cooperate to generate a gateway involved in transduction of
messages from the extracellular environment. Integrity of this
gate is essential for cell signaling, metabolism, antibacterial
defense, mechanoreception, and aging. Mutation or loss of
caveolae proteins affects human health and may generate
disease phenotypes called “caveolinopathies.” Caveolae
research has only recently been oriented toward translational
potential, with several clinical trials to investigate their role
as prognostic biomarkers in tumors. Although various
cell types (prokaryotic cells, parasitic cells, tumor cells)
have learned how to hijack them, we still need to learn
how to exploit caveolae and their proteins for our own
therapeutic purposes.
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